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Abstract

Weighted graph matching is a good way to align a pair of
shapes represented by a set of descriptive local features;
the set of correspondences produced by the minimum cost
matching between two shapes’ features often reveals how
similar the shapes are. However, due to the complexity of
computing the exact minimum cost matching, previous al-
gorithms could only run efficiently when using a limited
number of features per shape, and could not scale to per-
form retrievals from large databases. We present a con-
tour matching algorithm that quickly computes the min-
imum weight matching between sets of descriptive local
features using a recently introduced low-distortion embed-
ding of the Earth Mover’s Distance (EMD) into a normed
space. Given a novel embedded contour, the nearest neigh-
bors in a database of embedded contours are retrieved in
sublinear time via approximate nearest neighbors search
with Locality-Sensitive Hashing (LSH). We demonstrate our
shape matching method on a database of 136,500 images of
human figures. Our method achieves a speedup of four or-
ders of magnitude over the exact method, at the cost of only
a 4% reduction in accuracy.

1. Introduction
The minimum cost of matching features from one shape to
the features of another often reveals how similar the two
shapes are. The cost of matching two features may be de-
fined as how dissimilar they are in spatial location, appear-
ance, curvature, or orientation; the minimal weight match-
ing is the correspondence field between the two sets of fea-
tures that requires the least summed cost. A number of suc-
cessful shape matching algorithms and distance measures
require the computation of minimal cost correspondences
between sets of features on two shapes, e.g., [2, 17, 8, 6, 3].

Unfortunately, computing the optimal matching for a
single shape comparison has a complexity that is super-
polynomial in the number of features. The complexity is
of course magnified when one wishes to search for similar
shapes (“neighbors”) in a large database: a linear scan of the
database would require computing a comparison of super-

polynomial complexity for each database member against
the query shape. Hierarchical search methods, pruning, or
the triangle inequality may be employed, yet query times
are still linear in the size of the database in the worst case,
and individual comparisons maintain their high complexity
regardless.

To address the computational complexity of current
correspondence-based shape matching algorithms, we pro-
pose a contour matching algorithm that incorporates re-
cently developed approximation techniques and enables fast
shape-based similarity retrieval from large databases. We
treat contour matching as a graph matching problem, and
use the Earth Mover’s Distance (EMD) – the minimum cost
that is necessary to transform one weighted point set into
another – as a metric of similarity. We embed the minimum
weight matching of contour features into L1 via the EMD
embedding of [11], and then employ approximate nearest
neighbor (NN) search to retrieve the shapes that are most
similar to a novel query. The embedding step alone re-
duces the complexity of computing a low-cost correspon-
dence field between two shapes from superpolynomial in
the number of features to O(nd log Δ), where n is the num-
ber of features, d is their dimension, and Δ is the diameter
of the feature space (i.e., the greatest inter-feature distance).

In this work we also introduce the idea of a low-
dimensional shape descriptor manifold. Using many exam-
ples of high-dimensional local features taken from shapes
in an image database, we construct a subspace that captures
much of the descriptive power of the rich features, yet al-
lows us to represent them compactly. We build such a sub-
space over the “shape context” feature of [2], which con-
sists of local histograms of edge points, and successfully
use it within the proposed approximate EMD shape match-
ing method.

We demonstrate our fast contour matching method on
a database of 136,500 human figure images (real and syn-
thetic examples). We report on the relative complexities
(query time and space requirements) of approximate ver-
sus exact EMD for shape matching. In addition, we study
empirically how much retrieval quality for our approximate
method differs from its exact-solution counterpart (optimal
graph matching); matching quality is quantified based on
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its performance as a k-NN classifier for 3-D pose. With
our method it is feasible to quickly retrieve similar shapes
from large databases – an ability which has applications
in various example-based vision systems – and our tech-
nique eliminates the constraint on input feature set size from
which other contour matching techniques suffer.

2. Related Work

In this section we review relevant related work on current
shape matching techniques requiring optimal correspon-
dences between features, the use of EMD as a similarity
measure, and the embedding of EMD into a normed space
and fast approximate similarity search. For additional infor-
mation about various distance metrics for shape matching
and their computational complexities, please refer to [18].

A number of shape matching techniques require optimal
correspondences between feature sets at some stage. The
authors of [2] obtain least cost correspondences with an
augmenting path algorithm in order to estimate an aligning
transform between two shapes. They achieve impressive
shape matching results with their method, but they note that
the run-time does not scale well with the representation size
due to the cubic complexity of solving correspondences.
The authors of [3] characterize local shape topologies with
points and tangent lines and use a combinatorial geometric
hashing method to compute correspondence between these
“order structures” of two shapes. In [17], a polynomial time
method is given where the shock graphs of 2-D contours
are compared by performing a series of edit operations, and
the optimal alignment of shock edges is found using dy-
namic programming. In [8], a graduated assignment graph
matching method is developed for matching image bound-
ary features that operates in time polynomial in the size of
the feature sets.

The concept of using the Earth Mover’s Distance to
measure perceptual similarity between images was first ex-
plored in [15] for the purpose of measuring distance be-
tween gray-scale images. More recently EMD has been
utilized for color- or texture-based similarity in [16, 9],
and extended to allow unpenalized distribution transforma-
tions in [4]. In [12] exact EMD is applied to a database
of 1,620 silhouettes whose shock graphs are embedded into
a normed space; the method does not use an embedding
to approximate the EMD computation itself, and thus may
not scale well with input or database size. In [6], a pseudo-
metric derived from EMD that respects the triangle inequal-
ity and positivity property is given and applied to measure
shape similarity on edges.

In recent work by [1], AdaBoost is used to learn an
embedding that maps the Chamfer distance into Euclidean
space, and it is applied to edge images of hands in order to
retrieve 3-D hand poses from large databases. However, as

the authors note, their training algorithm, which requires a
large number of exact distance computations, has a running
time that thus far prevents their method from embedding
more complex distances (such as graph matching or EMD),
and retrievals are based on a linear scan of the database.

Our goal is to achieve robust, perceptually meaningful
shape matching results as the above methods can, but in
a way that scales more reasonably with an arbitrary rep-
resentation size and allows real-time retrieval from larger
databases.

In this work we show how EMD and Locality-Sensitive
Hashing (LSH) can be used for contour-based shape re-
trievals. An embedding of EMD into L1 and the use of LSH
for approximate NN was shown for the purpose of color
histogram-based image retrieval in [11]. We utilize the
shape context feature (log-polar histograms of edge points)
of [2] as a basis for our shape reprentation in this work.
While the authors of [14] mention that using approximate
NN search algorithms for shape context-based retrieval is a
possibility, their system actually utilizes pruning techniques
to speed searches. To our knowledge our work is the first to
use an EMD embedding for fast contour matching, to em-
ploy LSH for contour matching, and to develop a compact
shape context subspace feature.

3. Fast Similarity Search with EMD
In this section, for the reader’s convenience, we briefly sum-
marize the EMD metric and the randomized algorithms we
use in our shape matching method: the approximate similar-
ity search algorithm LSH [7], and the embedding of EMD
into a normed space given in [11].

EMD is named for a physical analogy that may be drawn
between the process of transforming one weighted point set
into another and the process of moving piles of dirt spread
around one set of locations to another set of holes in the
same space. The points are locations, their weights are the
size of the dirt piles and holes, and the ground metric be-
tween a pile and hole is the amount of work needed to move
a unit of dirt. To use this transformation as a distance mea-
sure, i.e., a measure of dissimilarity, one seeks the least cost
transformation – the movement of dirt that requires the least
amount of work. When the total weight in the two point sets
is equal, the solution is a complete one-to-one correspon-
dence, and it is equivalent to the problem of bipartite graph
matching. That is, for a metric space (X ,D) and two n-
element sets A,B ⊂ X , the distance is the minimum cost
of a perfect matching between A and B:

EMD(A,B) = min
π:A→B

∑

a∈A

D(a, π(a)). (1)

EMD performs partial matching in the case that the two sets
have unequal total weights; the distance is then the min-
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imum work needed to cover the mass in the “lighter” set
with the mass in the “heavier” one.

Locality-Sensitive Hashing (LSH) indexes a database of
examples residing in a normed space by a number of hash
tables, such that the probability of collision is high for simi-
lar examples and low for dissimilar ones. In particular, LSH
guarantees that if for a query point q there exists a point in
the database p such that D(p,q) ≤ r, then (with high prob-
ability) a point p′ is returned such that D(p′,q) ≤ (1+ε)r.
Otherwise, the absence of such a point is reported. The
query time for a database of N d-dimensional examples is
bounded by O(dN (1/(1+ε))). See [7] for details.

The low-distortion embedding of EMD given in [11] pro-
vides a way to map weighted point sets A and B from the
metric space into the normed space L1, such that the L1

distance between the resulting embedded vectors is compa-
rable to the EMD distance between A and B themselves.
Working in a normed space is desirable since it allows the
use of fast approximate NN search techniques such as LSH.
The general idea of the embedding is to compute and con-
catenate several weighted histograms of decreasing resolu-
tion for a given point set. Formally, given two point sets A
and B, each of cardinality n, and each containing points in
�d: impose grids Gi, −1 ≤ i ≤ log(Δ), on the space
�d, with grid Gi having side length 2i, and Δ equal to
the diameter of A ∪ B. Each grid is translated by a vec-
tor chosen randomly from [0,Δ]d. To embed a point set
A, a vector vi is created for each Gi with one coordinate
per grid cell, where each coordinate counts the number of
points in the corresponding cell, i.e., each vi forms a his-
togram of A. The embedding of A is then the concate-
nated vector of the vi’s, scaled by the side lengths: f(A) =[
v−1(A),v0(A), 2v1(A), . . . , 2ivi(A), . . .

]
. The distor-

tion of the embedding has an upper bound of O(log Δ)). 1

4. Approach
The main contributions of this work are a fast contour
matching method that exploits the approximate EMD em-
bedding and NN search algorithms described above, a rich
but compact contour feature descriptor manifold that is
amenable to approximate EMD, and an extension to the
EMD embedding that handles general point sets with a
sampling-based approach.

4.1. Matching Contours with Approximate
EMD

Recall our motivation to design an efficient means of cal-
culating the least cost correspondences between two shape

1The distortion C of a metric embedding f describes how much in-
formation loss the embedding induces: 1

C
EMD(A,B) ≤ ||f(A) −

f(B)||L1 ≤ EMD(A,B).

Figure 1: Imposing a hierarchy of grids on a set of con-
tour points to get its embedding. Embedding shape features
residing in higher dimensions is an analogous process of
imposing hyperplane grids on the space.

feature sets: such correspondences are required by a num-
ber of effective shape matching algorithms, but typically
optimal solutions make large per-object feature set sizes or
large database retrieval problems impractical for these al-
gorithms. To address these issues, we embed the problem
of correspondence between sets of local shape features into
L1, and use the approximate solution to match the shapes.

Our method proceeds as follows: features are extracted
from a database of shape images, and each image’s features
are treated as a uniformly weighted point set. Using the
L1 embedding of EMD over the point sets, one sparse vec-
tor is produced for each input shape. Next, a set of ran-
dom LSH hash functions are generated, and all of the em-
bedded database vectors are entered into the hash tables.
Both the database embedding and hash table construction
is performed offline. Then, given a novel shape, the em-
bedding for its features is computed using the same random
grid translations used for the database embedding. Finally,
shapes similar to the novel query are retrieved from the
database by computing the L1 distance between the query’s
embedding and only those vectors in the union of the hash
buckets that are indexed by the query’s embedding.

The embedded vector resulting from an input point set
is high-dimensional, but very sparse; only O(n log(Δ)) en-
tries are non-zero. The time required to embed one point set
is O(nd log(Δ)). Thus the computational cost of obtain-
ing the near-optimal feature correspondences for our shape
matching method will be O(nd log(Δ)) + O(n log(Δ)) =
O(nd log(Δ)), the cost of embedding two point sets, plus
an L1 distance on the sparse vectors. 2 The exact meth-
ods typically used in shape matching to solve for corre-
spondences (such as the transportation simplex algorithm
for linear programming, or the Hungarian method for bi-
partite graph matching) require time cubic or exponential in
n.

Probably the most direct application of EMD for 2-D

2L1 distances are computed in time proportional to the number of non-
zero entries in the sparse vectors as follows: a sparse vector data structure
is composed of a vector of non-zero indices plus a vector of values at those
indices. At the time of embedding, the vectors are sorted according to their
indices (an offline computational cost). Then computing the L1 distance is
a matter of running two pointers through the vectors to sum the difference
of their values where they have the same index, or add the value of one
vector where the index is not shared.
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Algorithm 1 The procedure for embedding sets of local fea-
tures
Given: N weighted point sets {A1, . . . ,AN}, where Ai =
{(f1, w1) . . . , (fmi , wmi)} is a weighted point set composed
of mi d-dimensional features Fi with scalar weights Wi =
[w1, . . . , wmi ], where t(Ai) =

∑mi
j=1 wj , and Δ is the di-

ameter of ∪N
i=1F

i,
1: Let tmax = max

i
t(Ai)

2: for all i = 1, . . . , N do
3: if t(Ai) < tmax then
4: Ai ← {(f1, w1), . . . , (fmi , wmi), (d1, u), . . . , (dq, u)},

where u is unit weight, q = tmax − t(Ai), and dz is a
random selection from {f1, . . . , fmi}.

5: end if
6: end for
7: Let L = �log Δ/ log 2�+ 1.
8: For 1 ≤ l ≤ L, let each sl = [sl

1, . . . , s
l
d] be a random vector

from [0, 2l]d.
9: for all Ai, 1 ≤ i ≤ N do

10: for all (fj = [f j
1 , . . . , f j

d ], wj) ∈ Ai do
11: for all sl, 1 ≤ l ≤ L do
12: xj

l = [c(sl
1, f

j
1 ), . . . , c(sl

d, f j
d)],

where c(sh
k , f) = trunc((f − sh

k)/2h)
13: vj

l = wj × 2l

14: end for
15: pi

j = [(xj
1, v

j
1), . . . , (x

j
L, vj

L)]
16: end for
17: embed(Ai) = tally(sort([pi

1, . . . ,p
i
mi

])),
where pairs (x, v) represent sparse vector en-
tries with index x and value v, sort() returns
[(xs1 , vs1), . . . , (xsn , vsn)] such that xsi ≤LEX xsi+1

(lexicographic ordering of concatenated vector elements)
and tally() sums values of sparse vector entries with equal
indices.

18: end for

contour matching is to compose point sets from the literal
points on the two contours (or some subsets of them) and
use the Euclidean distance between two contour points’ im-
age coordinates as the ground distance D in (1). For this
simple positional feature, examples must be translated and
scaled to be on par with some reference shape. To embed a
set of 2-D contour points, we impose a hierarchy of grids on
the image coordinates themselves, starting with a grid res-
olution where each image coordinate receives its own cell,
and ending with a single cell grid the size of the largest im-
age, Glog Δ (see Figure 1).

When two weighted point sets have unequal total
weights, EMD does not satisfy the triangle inequality or
positivity property, and thus is not a true metric. However,
it is desirable for robust matching to allow point sets with
varying total weights and cardinalities (e.g., different num-
bers of edge points occur in different images, inputs may
originate from images of different resolutions, etc.). While
the embedding of EMD into a normed space is defined for

(a) Input shapes (b) EMD flow

Figure 2: To simulate equal total weights for point sets hav-
ing unequal weights, randomly sampled points from the
lighter set are counted multiple times in the embedding
grids.

only the metric case of EMD, we preserve the partial match-
ing abilities of EMD in the approximate case by modify-
ing the manner in which the points are embedded. In order
to embed two sets of contour features with different total
weights, we simulate equal weights by adding the appropri-
ate number of duplications of random points from the lower
weight set. This means that multiple features from one set
may map to a single feature in the other set. For example, in
Figure 2, when points are sampled uniformly from the ap-
ple and pear contours, the pear has 33 fewer points than the
apple, so 33 points are randomly chosen from its contour to
be duplicated (circled points). The EMD flow (b) will then
contain many-to-one correspondences. Pseudo-code for the
EMD contour matching embedding is given in Algorithm 1.

Once a database of contours is embedded into a normed
space, we do fast (time sublinear in the database size) re-
trievals for a novel embedded query contour via LSH. In
addition to the complexity savings for a single shape match
described above, the time required for retrieving similar
shapes is reduced to O(sN (1/(1+ε))), where N is the num-
ber of shapes in the database, ε is the LSH parameter re-
lating the amount of approximation of the normed distance,
and s is the dimension of the sparse embedded contour vec-
tors, s having a space requirement of O(n log(Δ)). Results
showing the quality of the approximate NN contours we re-
trieve with LSH are reported in Section 5.

4.2. Shape Context Manifolds
There are drawbacks to using the simple positional fea-
ture for shape matching with approximate EMD. Though
straightforward to embed, it can be a brittle feature, and in
order to achieve scale or translation invariance this feature
demands a pre-processing stage on all shapes (which re-
quires some a priori knowledge about the shapes, and can it-
self be brittle). Richer shape descriptors can help overcome
this, as several authors have noted [13, 2, 3]. Thus, we have
experimented with richer shape descriptors with the approx-
imate EMD distance, as we expect to achieve more robust
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Figure 3: Visualization of feature subspace constructed
from shape context histograms for two different datasets.
The RGB channels of each point on the contours are col-
ored according to its histogram’s 3-D PCA coefficient val-
ues. Matching with EMD in this feature space means that
contour points of similar color have a low matching cost (re-
quire little “work”), while highly contrasting colors incur a
high matching cost. (This figure must be viewed in color.)

matchings and more meaningful correspondence fields from
descriptive feature representations. We employ the shape
context local descriptor of [2]. The shape context feature
at a single contour point is a log-polar histogram of the co-
ordinates of the rest of the point set, measured using the
reference point as the origin. It is inherently translation in-
variant, and scale and rotation invariance may be added [2].

While matching with the full shape context feature is
possible with our method, a low-dimensional feature de-
scriptor is desirable since any constant change in point di-
mensions changes the constant distortion factor C in the
embedding, and also changes the d factor in the complexity
of computing the embedding itself. Thus we find a low-
dimensional feature subspace based on a large sample of
the shape context histograms, and then perform the embed-
ding step in the domain of this subspace. The subspace
is constructed from a large sample of features drawn from

input 1 input 2 5 dim 32 dim 60 dim input 1 input 2 5 dim 32 dim 60 dim

input 1 input 2 5 dim 32 dim 60 dim input 1 input 2 5 dim 32 dim 60 dim

input 1 input 2 5 dim 32 dim 60 dim input 1 input 2 5 dim 32 dim 60 dim

Figure 4: Shape context subspace captures local contour
variations in much fewer dimensions. The optimal corre-
spondences for feature sets composed of 5 and 32 shape
context PCA coefficients are shown here and compared with
the correspondences that result with the raw (d=60) shape
context feature. The optimal correspondence found by the
raw high-dimensional feature is generally achieved by pro-
jections onto a much lower dimensional subspace.

the database of contours on which we wish to apply our
method. All contour features (from the database items and
novel queries alike) are then projected onto the subspace,
and the approximate EMD embedding is performed in the
domain of a small number of their subspace coordinates.
We use principal components analysis (PCA) to determine
the set of bases that define this “shape context manifold”.

We found that a very low-dimensional subspace was
able to capture much of the local contour variation in our
datasets. Figure 3 gives examples of the shape context sub-
space for human figures and handwritten digits. In Figure 4
we measure its expressiveness as a function of feature di-
mension, as compared to a higher-dimensional raw point
histogram. In Section 5 we report results using the shape
context subspace representation.

5. Results
5.1. Dataset and Representation
We have tested our method on a database of contours from
136,500 images of synthetic human figure contours in ran-
dom poses that were generated with a computer graphics
package called Poser [5]. We query the database with a sep-
arate test set of 7,000 synthetic human figure images, and a
test set of 1,000 real images from a single human subject in
various poses.

We constructed a set of hash functions for the synthetic
image dataset in order to perform LSH approximate-NN re-
trievals. We determined the LSH parameters (number of
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Figure 5: Comparison of the quality of retrievals from the
exact versus approximate methods. Quality is measured via
k-NN classification task. See text for details.

hash tables and number of bits per hash value) based on
the proof in [10] which shows how to select parameters for
the case of the Hamming space over a non-binary alphabet,
such that the desired level of approximation versus speed
tradeoff is achieved. For the complete dataset of 136,500
examples, this meant using 8 tables and 120-bit functions.
For all experiments ε is set to 1.

We have run a number of experiments with this dataset
using shape context subspace features (see Section 4.2).
We construct a shape context subspace from 5 x 12 log-
polar histograms extracted from the training set; we used
a sample of 855,600 histograms. The representation of a
novel contour is determined by projecting its shape con-
text histograms onto the low-dimensional subspace. We
found that for our dataset, a 2-D projection adequately cap-
tured the descriptive power of the shape context feature and
resulted in good contour matches. This representation is
translation invariant, and the scale of the shape context his-
tograms initially extracted from the data is determined from
the mean inter-point distance per shape. Because the co-
efficients are real-valued, they must be appropriately scaled
and discretized before the embedding grids can be imposed.
We remap the projection coefficients to positive integers by
subtracting the minimum projection value from all exam-
ples, then scaling by 100.

5.2. Retrieval Quality
We measure the retrieval quality of our method by compar-
ing the 3-D pose of each query example with the pose of the
k-NN’s that are retrieved from the database. When the syn-
thetic human figure database is generated, the 3-D pose (a
set of 3-D joint positions) is recorded for each example. If
the joint positions of a retrieved shape are on average within
some threshold of distance, we consider the retrieved shape
a good match. We chose a threshold of 10 cm, since this is
a distance at which the 3-D poses are perceptually similar.

The chart in Figure 5 quantitatively compares the qual-
ity of results obtained with our approximate method with

Figure 6: Real image queries: examples of query contours
from a real person (left,blue) and 5 NN retrieved from syn-
thetic database of 136,500 images using L1 on EMD em-
beddings of shape context subspace features.

those obtained from exact EMD for a database of 10,000
images. 3 In this figure the optimal results were obtained
by running the transportation simplex algorithm to compute
EMD on full, 60-D shape context features, whereas results
for the two approximations (the embedding and LSH) were
obtained using only 2-D shape context subspace features.
There is a slight decrease in classification performance at
each approximation level; however, we found that the prac-
tical bound on the distortion introduced by the EMD embed-
ding is significantly (about one order of magnitude) lower
than the upper theoretical bound.

We note that in a practical system classification rates
could be improved for the approximate methods if a re-
fining step were implemented – for instance a handful of
exact computations on the approximate matches. Figure 7
shows some example retrievals using our approximate EMD
method with synthetic query images. Examples of the syn-
thetic NN that were retrieved for the images from a real
person are shown in Figure 6.

5.3. Empirical Measure of Complexity
As discussed in Section 4, the theoretical computational
complexity of retrieving the approximate minimum cost
feature correspondences with our method for feature sets
of cardinality n and dimension d residing in a space of di-
ameter Δ is O(nd log(Δ)). The diameters of the spaces in
which our point sets reside are on the order of 103 up to
105, depending on the representation; with n on the order

3Due to the complexity of exact EMD, the exact comparisons were
necessarily computed with a parallel implementation.
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(a)
Queries

(b) Exact EMD (c) L1 on embed-
ded EMD

(d) LSH on em-
bedded EMD

(e)
Queries

(f) Exact EMD (g) L1 on embed-
ded EMD

(h) LSH on em-
bedded EMD

Figure 7: Approximate EMD retrieves shapes very similar to those retrieved by the optimal matching. Figure shows examples
of 3 NN (left to right in rank order) with embedded EMD contour matching (c,g) and embedded EMD contour matching with
LSH (d,h), compared to NN under exact EMD contour matching (b,f). Examples shown were chosen randomly from 7,000
test set results, and NN were retrieved from a database of 136,500 examples. Columns (c,d,g,h) use embedded 2-D shape
context subspace feature; (b,f) are from exact EMD applied to full 60-D shape context feature. Note that the embedded match
results are qualitatively similar, yet several orders of magnitude faster to compute.

of 102, d = 2, theoretically this means that a single em-
bedding and L1 distance cost requires on the order of 103

operations. This is the cost of embedding two point sets,
plus performing an L1 distance on the very sparse vectors.
In practice, for n = 200 an unoptimized C implementation
of our method takes about 0.005 seconds to perform a single
matching with exact L1 this way (less than 0.005 seconds
to compute the two embeddings, plus 7.9 × 10−5 seconds
to compute the L1 distance). In comparison, to compute
a single exact EMD distance using a C implementation of
the simplex algorithm required on average 0.9 seconds for
data of the same dimensions. In accordance with the upper
bound on the embedding’s space requirements, the number
of non-zero entries in the sparse embedded vectors was on
average 350 for the histogram representation.

Figure 8 gives a summary of the empirical run-time be-
havior of the embedding. Our experiments confirm that the
run-time for embedding point sets increases only linearly
with the size of the input’s dimension or cardinality. This
means that our method scales well to handle inputs with
large representation sizes.

The larger payoff for using the approximate embedding,
however, comes when we use LSH to query a large database

with an embedded point set. The input must be compared
against only a small fraction of the database’s embedded
vectors – those in the union of the hash buckets that are
indexed by the query’s embedding. On average, in our ex-
periments LSH needed to compute only 1,915 L1 distances
per query, (less than 2% of the database). The median query
time for the complete 136,500 item Poser database was only
1.56 seconds. In comparison, a single query with the exact
EMD method would require 34 hours (performing a worst-
case linear scan of the database). Figure 9 shows how query
time for the human figure dataset varies with the database
size.

6. Conclusions and Future Work
We have presented a new fast contour matching algorithm
that utilizes an approximation to EMD to judge similar-
ity between sets of local shape descriptors. Our tech-
nique enables fast shape-based similarity retrieval from
large databases, and its run-time is only linearly dependent
on the number of feature points used to represent a shape.
We have also constructed a rich but compact contour feature
manifold based on shape contexts for approximate EMD.
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Figure 8: Mean embedding time per point set for 500 point
sets with varying dimensions and cardinalities.

In the future we intend to experiment with approxi-
mate EMD and different shape representations. We will
also explore alternative means of compactly representing
inherently continuous features within the discrete embed-
ding framework, such as vector quantization or multi-
dimensional scaling. We are also interested in investigating
ways to improve the efficacy of the NN hashing process in
this context.

Acknowledgments
We would like to thank Piotr Indyk for useful discus-
sions and for suggesting duplicating points to deal with un-
equal cardinalities, Greg Shakhnarovich for generating the
database of synthetic human figure images, and the anony-
mous CVPR reviewers for their comments.

References
[1] V. Athitsos, J. Alon, S. Sclaroff, and G. Kollios. Boostmap:

A Method for Efficient Approximate Similarity Rankings. In
CVPR, Washington, D.C., 2004.

[2] S. Belongie, J. Malik, and J. Puzicha. Shape Matching
and Object Recognition Using Shape Contexts. TPAMI,
24(24):509–522, 2002.

[3] S. Carlsson. Order Structure, Correspondence and Shape
Based Categories. In Intl Wkshp on Shape Contour and
Grouping, Sicily, May 1998.

[4] S. Cohen and L. Guibas. The Earth Mover’s Distance under
Transformation Sets. In ICCV, Corfu, Greece, Sept 1999.

[5] Egisys Co. Curious Labs. Poser 5 : The Ultimate 3D Char-
acter Solution. 2002.

[6] P. Giannopoulos and R. Veltkamp. A Pseudo-metric for
Weighted Point Sets. In ECCV, Copenhagen, May 2002.

[7] A. Gionis, P. Indyk, and R. Motwani. Similarity Search in
High Dimensions via Hashing. In Proc of the 25th Intl Conf
on Very Large Data Bases, 1999.

3,500 17,500 31,500 45,500 59,500 73,500 87,500 101,500 113,300 129,500 136,500

0

2

4

6

8

10

q
u

er
y 

ti
m

e 
fo

r 
   

   
   

em
b

ed
d

ed
 p

o
in

t 
se

t 
(s

ec
)

database size

Figure 9: Query time distributions for embedded point sets
for increasing database sizes. Test set is composed of 1,000
examples from the human figure database, d = 2, n = 200.
Lines in center of boxes denote median value; top and bot-
tom of boxes denote upper and lower quartile values, re-
spectively. Dashed lines show extent of rest of the data,
pluses denote outliers. The median query time for the
136,500 item database is only 1.56 seconds; exact EMD
could require over a day to perform the same query.

[8] S. Gold and A. Rangarajan. A Graduated Assignment Algo-
rithm for Graph Matching. TPAMI, 18(4):377–388, 1996.

[9] H. Greenspan, G. Dvir, and Y. Rubner. Region Correspon-
dence for Image Matching via EMD Flow. In IEEE Wkshp on
Content-based Access of Image and Video Libraries, 2000.

[10] P. Indyk. High-Dimensional Computational Geometry. PhD
thesis, Stanford University, 2000.

[11] P. Indyk and N. Thaper. Fast Image Retrieval via Embed-
dings. In 3rd Intl Wkshp on Statistical and Computational
Theories of Vision, Nice, France, 2003.

[12] Y. Keselman, A. Shokoufandeh, M. F. Demirci, and S. Dick-
inson. Many-to-Many Graph Matching via Metric Embed-
ding. In CVPR, Madison, WI, 2003.

[13] F. Mokhtarian, S. Abbasi, and J. Kittler. Robust and Efficient
Shape Indexing through Curvature Scale Space. In BMCV,
Edinburgh, UK, 1996.

[14] G. Mori, S. Belongie, and J. Malik. Shape Contexts Enable
Efficient Retrieval of Similar Shapes. In CVPR, Lihue, HI,
Dec 2001.

[15] S. Peleg, M. Werman, and H. Rom. A Unified Approach to
the Change of Resolution: Space and Gray-level. TPAMI,
11:739–742, 1989.

[16] Y. Rubner, C. Tomasi, and L. Guibas. The Earth Mover’s
Distance as a Metric for Image Retrieval. IJCV, 40(2):99–
121, 2000.

[17] T. Sebastian, P. Klein, and B. Kimia. Recognition of Shapes
by Editing Shock Graphs. In ICCV, Canada, Dec 2001.

[18] R. Veltkamp and M. Hagedoorn. State-of-the-Art in Shape
Matching. In Tech Report UU-CS-1999-27, Utrecht Univer-
sity, 1999.

8


	Text1: In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Washington DC, June 2004.


