
A Method for Transparent
Admission Control and Request Scheduling

in E-Commerce Web Sites

Sameh Elnikety
School of Computer and
Communication Sciences

EPFL
CH 1015 Lausanne, Switzerland

Erich Nahum
Networked Systems Department

IBM T.J. Watson Research Center
Yorktown Heights, NY, 10598, USA

John Tracey
Networked Systems Department

IBM T.J. Watson Research Center
Yorktown Heights, NY, 10598, USA

Willy Zwaenepoel
School of Computer and
Communication Sciences

EPFL
CH 1015 Lausanne, Switzerland

ABSTRACT
This paper presents a method for admission control and request
scheduling for multiply-tiered e-commerce Web sites, achieving
both stable behavior during overload and improved response times.
Our method externally observes execution costs of requests on-
line, distinguishing different request types, and performs overload
protection and preferential scheduling using relatively simple mea-
surements and a straightforward control mechanism. Unlike pre-
vious proposals, which require extensive changes to the server or
operating system, our method requires no modifications to the host
O.S., Web server, application server or database. Since our method
is external, it can be implemented in a proxy. We present such
an implementation, called Gatekeeper, using it with standard soft-
ware components on the Linux operating system. We evaluate the
proxy using the industry standard TPC-W workload generator in a
typical three-tiered e-commerce environment. We show consistent
performance during overload and throughput increases of up to 10
percent. Response time improves by up to a factor of 14, with only
a 15 percent penalty to large jobs.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer-communica-
tion networks—Distributed systems; C.4 [Computer Systems Or-
ganization]: Performance of systems; D.4.8 [Operating Systems]:
Performance

General Terms
Measurement, performance

Keywords
Dynamic Web content, Web servers, admission control, load con-
trol, request scheduling

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

1. INTRODUCTION
E-Commerce is a growing phenomenon as consumers gain ex-

perience and comfort with shopping on the Internet [33]. E-Com-
merce Web sites are typically composed of a three-tiered architec-
ture consisting of a front-end Web server, an application server and
a back-end database. Online merchants desire to maintain a con-
tinuous, consistent presence on the Web in order to keep customers
satisfied and maximize revenues and returns on their infrastructure.

Two problems are typically encountered with deploying e-com-
merce Web sites. First is overload, where the volume of requests
for content at a site temporarily exceeds the capacity for serving
them and renders the site unusable. Second is responsiveness, where
the lack of adequate response time leads to lowered usage of a site,
and subsequently, reduced revenues. Both issues are instances of
a larger problem: given the unpredictability of Web accesses, how
can an e-commerce site provide responsive service to clients, even
when user demand outstrips the capacity of the site?

This paper presents a method for providing admission control
and request scheduling for multiply-tiered e-commerce Web sites.
Our approach externally measures execution costs online, differen-
tiating between different types of requests, enabling overload pro-
tection and dramatic improvements in response time. Our admis-
sion control scheme accounts for variations in service costs. By
measuring service times online, our system is more robust to over-
load than approaches which assume that measurements taken under
light load are applicable to heavy load situations. As will be seen,
service costs can change as a function of load in the system. Our
approach also accounts for variation in the execution times of dif-
ferent types of requests; other approaches only account for a single
metric such as overall response time or queue length, or assume
a simple linear model of service costs. In contrast, we track the
amount of work generated by each request directly.

Other proposals require extensive modifications to the operating
system or a complete re-write of the server. Our implementation
requires no changes to the source code, server software, application
programs, or to the database. The benefits of such an approach
are clear: the use of unmodified commodity software components
reduces development effort tremendously. As a result, we are able
to demonstrate our approach using standard software components
and workload generators.

276

database serverapplication serverweb server

Internet HTTP app protocol SQL

Figure 1: Architecture of an e-commerce Web site.

Our method is embodied in a proxy, called Gatekeeper. A key
feature is that it is transparent to the database and application
server. For our evaluation, we use a standard test-bed environment
of a multiple-tiered e-commerce Web site, with Linux, Apache,
Tomcat, MySQL and DB2. In this environment, the database is
the bottleneck, and thus Gatekeeper is placed so as to transpar-
ently intercept requests from the application server to the database.
Driving the system with the industry-standard TPC-W benchmark,
Gatekeeper achieves both stable behavior during overload and dra-
matically improved response times.

Even though our approach is external and treats the system as a
black box, we gain many of the benefits of admission control and
request scheduling. Examples include:

• We show consistent performance during overload, across dif-
ferent database implementations and locking approaches.

• We demonstrate how admission control can improve peak
throughput by up to 10 percent, by preventing thrashing and
improving memory reference locality.

• We show how preferential scheduling in the form of shortest
job first (SJF) can make dramatic improvements to response
time for dynamic Web requests, while penalizing large jobs
only slightly. Average response time improves up to 14-fold,
while penalizing large jobs by only 15 percent.

• We present and evaluate an aging mechanism that prevents
starvation of large jobs when preferential scheduling is used.
Our results show a continuum of behavior between FIFO and
SJF request scheduling; Web site operators can use the mech-
anism to implement a policy enforcing a particular behavior.

These results show that relatively invasive techniques that require
extensive modifications to systems are not always necessary, par-
ticularly in the context of multiply-tiered e-commerce Web sites.

The remainder of this paper is organized as follows: Section 2
overviews the relevant background for our work. Section 3 presents
our implementation of admission control and request scheduling in
the Gatekeeper proxy. Section 4 describes our experimental envi-
ronment, and Section 5 shows our results in detail. Section 6 dis-
cusses related work. Finally, Section 7 summarizes our conclusions
and offers possible directions for future work.

2. BACKGROUND
In this section, we provide a brief overview of dynamic con-

tent generation, admission control, overload control, and request
scheduling, in the context of Web servers.

An e-commerce Web site is typically comprised of three compo-
nents as depicted in Figure 1: a front-end Web server, application
server and back-end database. The front-end Web server usually
handles the static component of the workload, such as images and

infrequently-changing HTML pages. The application server pro-
vides an environment to invoke methods that implement the busi-
ness and presentation logic of the application. Examples of these
methods include PHP scripts, Active Server Pages (ASPs) and Java
Servlets. The application logic issues a number of queries to the
database, which stores the true dynamic state of the Web site (for
example, the number of copies of a book in stock). The applica-
tion server formats the returned database query results as an HTML
page, which is passed back to the front-end Web server. Finally, the
Web server returns the aggregated content to the client.

Admission control and coping with overload is used to prevent
systems from being overwhelmed in the presence of persistent or
transient overload. Research in this area can be roughly catego-
rized under two broad approaches: reducing the amount of work
required when faced with overload, and differentiating classes of
customers so that response times of preferred clients do not suffer
in the presence of overload.

Multiple proposals have been offered for using QoS techniques
on Web servers [3, 11, 28, 44]. These have tended to include some
form of classification in the form of client IP address, IP subnet,
URL or cookie to identify requests as belonging to a particular
differentiated level of service. To support these classes, these ap-
proaches also include admission control and request scheduling, in
order to provide a particular server throughput, network bandwidth,
or client response time. Some have advocated using observation-
based measurements for providing QoS guarantees [35]; others have
proposed a control theoretic approach [2].

Our work complements and extends the above results by apply-
ing admission control for Web sites with dynamic content, rather
than simply static content. We use admission control to prevent
overload and maintain peak aggregate throughput, rather than for
guaranteeing response times for differentiated classes of service.
We believe extending our system to guarantee response times should
be straightforward.

In the last few years, a great deal of interest has arisen in ap-
plying a scheduling policy in the context of Web servers provid-
ing static content. Cherkasova [16] proposed using shortest job
first scheduling for static content Web sites. By using the URL in
an HTTP request to identify a file, the cost of servicing that file
(that is, the “job size”) could be well approximated by the size of
the file. Cherkasova evaluated her proposal via trace-driven simu-
lation. Crovella et al. [19] independently proposed a similar ap-
proach, scheduling outbound responses according to a “shortest
connection first” policy similar to shortest remaining processing
time first (SRPT). They demonstrated experimental results show-
ing that response time could be improved by up to a factor of 5.
Schroeder and Harchol-Balter [37] demonstrate an additional ben-
efit from performing SRPT scheduling for static content Web re-
quests. Under a wide breadth of networking and server conditions,
they show that SRPT scheduling can be used to mitigate the re-
sponse time effects of transient overload conditions.

277

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000 10000 100000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Time in Milliseconds

TPC-W Service Time Distributions (no load)

Admin Request
Admin Response

Best Sellers
Buy Confirm
Buy Request

Execute Search
Home

New Products
Order Display
Order Inquiry

Product Detail
Search Request

Shopping Cart

Figure 2: Execution times of TPC-W servlets (no load).

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000 10000 100000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Time in Milliseconds

TPC-W Service Time Distributions (high load)

Admin Request
Admin Response

Best Sellers
Buy Confirm
Buy Request

Execute Search
Home

New Products
Order Display
Order Inquiry

Product Detail
Search Request

Shopping Cart

Figure 3: Execution times of TPC-W servlets (peak load).

Our work advocates using preferential scheduling for dynamic
content Web sites in a transparent fashion, and evaluates its ben-
efits. We also address the starvation question by using an aging
mechanism to prevent starvation.

3. THE GATEKEEPER PROXY
In this section we describe the design of our method and its im-

plementation in the Gatekeeper proxy, which transparently inter-
cepts requests for dynamic Web Content. In this work, we use Java
servlets for application functionality, due to their frequent use in
commercial Web sites and their competitive performance [13].

3.1 Admission Control
Admission control generally requires two components: knowing

the load that a particular job will generate on a system, and know-
ing the capacity of that system. By keeping the maximum amount
of load just below the system capacity, overload is prevented and
peak throughput is achieved. In a dynamic content generation sys-
tem, we satisfy the above requirements in the following manner.

For the first requirement, Gatekeeper identifies different request
types (i.e., servlets) and maintains online estimates of their ex-
pected service times, based on measurements of recent executions.
The measurement interval is taken from when the servlet issues the
first query until the response from the last query is received. The
execution times are “learned” in an online fashion through a simple
moving average, and used as the estimated load that each request
imposes on the system. Given that any dynamic Web site has a
finite number of interactions, it is simple to maintain per-servlet
estimates. For example, the TPC-W workload has only 14 interac-
tions, each of which is embodied by a single servlet.

While different servlets issue different sets of queries, any one
servlet will typically issue the same set of database queries, albeit
with different parameters. Our experience is that the load generated
by a particular request is generally consistent; namely, that service
times depend primarily on which servlet is being executed rather
than on the parameters to that servlet. This is illustrated in Fig-
ures 2 and 3, which show the service time distributions of the 13
TPC-W interactions that communicate with the database. Figure 2
shows the times when measured in isolation (i.e., under no load)
and Figure 3 shows the times when measured at peak load. The X-
axis in Figures 2 and 3 is in log scale. Also, we show the averages
of the same data in Table 1.

Two significant observations can be made from these figures.
First, variation across servlets is much greater than variation within
servlets. Service times between servlets vary significantly as they
range from less than 1 ms to over 5 sec, a range covering four orders
of magnitude. Variation within the servlet is much less, as shown
by the relatively vertical straight lines in the distributions. While in
some cases variation within the script can be as much as a factor of
10, it is still orders of magnitude smaller than the variation across
scripts. Second, service times under heavy load are very different
from those measured in isolation; most are much higher than in the
no-load case. This shows the importance of measuring costs online
rather than using offline measurements.

Per-servlet estimates converge relatively quickly; in our experi-
ments, 11 out of the 13 servlets converge to within 90 percent of
their steady state values in under 50 seconds. We then define the
load produced by the servlet to be the average execution time (in
milliseconds) that the servlet requires.

The second requirement is to determine the capacity of a system,
which is a single numeric value. For our current environment, we
determine the capacity of the system offline rather than online. Our
approach is to use the method of incremental steps [24]. Briefly,
this method assumes that the functional relationship of the load and
resulting performance is monotonically increasing up to a peak and
then decreasing; in other words, it assumes the throughput function
is relatively concave, with the existence of a local maximum that
is also the global maximum. We define capacity as the maximum
load level that produces the highest throughput. Capacity is essen-
tially a “pool” of execution units that are allocated to requests. To
determine a particular system’s capacity, we run experiments us-
ing several relatively large candidate values (e.g., 20,000 or 40,000
milliseconds) for the capacity. We then perform a binary search
process of changing the candidate numbers and measuring the re-
sulting performance, seeking the proper candidate value that pro-
vides the maximum throughput. When the binary search converges,
we use the resulting value as our estimate of capacity.

Because we consider only the functional relationship between
the load and resulting performance, our technique is oblivious to
the bottleneck resource (which could be a physical resource such
as CPU cycles or a logical resource such as database locks). The
capacity of the system should be recomputed if there is a change
in the system, for example hardware upgrade, or a change in the
workload. Techniques with more elaborate adaptive algorithms for

278

Servlet Admin Admin Best Buy Buy Exec Home New Order Order Prod Search Shop
Name Req Resp Seller Conf Req Search Prod Disp Inq. Detail Req Cart

No Load 2.84 2476.75 1205.01 15.71 5.26 73.27 1.83 13.82 7.43 0.75 0.91 0.22 0.34
High Load 3.19 5072.42 2441.86 92.80 6.66 108.73 3.22 15.66 10.48 0.05 0.30 0.65 0.92
Frequency 0.1 0.09 5 1.2 2.6 17 16 5 0.66 0.75 17 20 11.6

Table 1: Servlet average execution costs (ms) and servlet execution frequencies (percentage).

estimating the online capacity of a running system could also be
used, and presumably control theoretic approaches as well.

With these two estimates, admission control is straightforward.
In the implementation, the Gatekeeper proxy maintains a running
estimate of system load, initially set to zero. When a servlet re-
quests a database connection, the work estimate for that servlet is
examined. If admitting the servlet will not exceed the capacity,
then the servlet is allowed to proceed, and the running load value
is incremented accordingly. Otherwise, the servlet is deferred to
execute later, and is placed in the admission queue in FIFO order.
As jobs finish, Gatekeeper decrements the running load value ap-
propriately, and if jobs are waiting in the queue, they are admitted
in turn as long as they do not overload the system. Gatekeeper does
not shed load by dropping requests; in persistent overload condi-
tions, the request waiting time will eventually become infinite and
pending requests will time out indicating the need to upgrade the
system. Other admission control policies, such as dropping certain
requests, could easily be provided depending on the requirements
of the Web site operator.

In summary, we use measurement-based admission control. We
maintain online estimates of request service times based on recent
request executions. The estimated request service time indicates
the load that a request imposes on the system. We estimate the
current load on the system as the sum of the estimated service times
of all executing requests. The system capacity is measured offline
and it limits the number of requests admitted to the system; excess
requests are queued.

3.2 Request Scheduling
The Gatekeeper proxy uses request scheduling to reduce the av-

erage response time of dynamic Web site interactions, in the form
of a shortest-job first (SJF) policy. As requests arrive, they are
placed in the admission queue sorted based on their expected pro-
cessing times. When requests finish, new requests are admitted
from the front of the queue until the capacity threshold is reached.
After jobs are admitted, they run to completion, i.e., they are not
pre-empted.

Scheduling cannot improve response times if the workload is
completely homogeneous. For example, if each request required
the same service time, changing the order of execution would be
pointless. However, large variability has been found in many In-
ternet workloads (e.g., [18]). In TPC-W, for example, execution
times vary by as much as five orders of magnitude, as was seen in
Figures 2 and 3. Most service times are small, less than 54 millisec-
onds. However, two interactions, the “Best Seller” and “Adminis-
trative Control” servlets, have service times of over one and two
seconds, respectively, in the no-load case. Their cost is high be-
cause they issue complex database queries. Luckily, the expensive
queries tend to be infrequent. Table 1 shows the frequency distri-
bution for the thirteen interactions that invoke the database using
the shopping mix of TPC-W. The fourteenth TPC-W interaction
requires no database access and it appears 3% of the time.

A frequent concern with preferential scheduling is that long jobs
may starve in the presence of a large number of small requests. To

prevent starvation, we implemented an aging mechanism, which is
similar to Alpha scheduling [16]. The aging mechanism enforces
an upper bound on the amount of time a request is delayed in the
queue. That upper bound is defined as a multiple of the expected
service time for the request. The upper bound is configurable. For
example, a Web site operator can choose a policy such that a request
will not wait more than twice its expected service time. Shorter
requests can be promoted towards the head of the queue only if this
promotion does not cause any pending request to be delayed more
than its bound. Aging only affects request scheduling, it does not
affect the average system throughput, as will be seen in Section 5.

4. EXPERIMENTAL ENVIRONMENT
In this section, we describe our environment for doing our ex-

perimental evaluation, including the hardware and software used,
metrics, and experimental methodology.

4.1 Hardware and Software
Our testbed consists of a client PC, two server PCs, and a 100

Mbps Ethernet switch. Each PC has a 1.33 GHz AMD Athlon, 768
MB RAM, and a 60 GB 5400 RPM disk. All machines have a 100
Base-T Ethernet interface connected point-to-point full duplex with
the switch. One server machine runs the Web server and applica-
tion server software, while the other contains the database. The
client machine drives the system with a workload generator, de-
scribed in more detail in Section 4.4 below. All machines run Red
Hat Linux with the Linux kernel 2.4.18. We use Apache version
1.3.27 for the front-end Web server, and Jakarta Tomcat version
3.2.4 as the application server. For the relational database, we use
two versions: MySQL version 3.23.53-max for most experiments
and DB2 for Linux version 7.2 for one experiment. To measure
the load on each machine, we used the sysstat utility [40] that col-
lects CPU, memory, network and disk usage from the Linux kernel
every second. The AMD Athlon processor has four performance
monitoring counters [4] that count processor events (e.g., level 1
data cache misses, level 1 and level 2 data TLB misses). We also
use Rabbit [25], a library and kernel module, to access these per-
formance monitoring counters.

Since we are evaluating Gatekeeper in the context of an e-com-
merce Web site, we place the proxy between the application server
and the database, as shown in Figure 4. To access a database,
servlets produce SQL queries using the JDBC API. In turn, the
JDBC driver invokes the vendor-specific connector code to inter-
act with the database server. Gatekeeper thus intercepts requests to
communicate with the database through the JDBC API.

4.2 Locking Options
In e-commerce Web sites, locking can be performed in either of

two places: on the database itself, or in the servlet that invokes
the particular transaction. The advantage of locking in the applica-
tion server is that performance is greatly improved, as will be seen
in Section 5.1. The disadvantage is that all access to the database
must be directed through the application server, which might not be
feasible. Since the decision of where locking is done will depend

279

database serverapplication serverweb server

Internet HTTP app protocol SQLproxySQL

Figure 4: Placement of the Gatekeeper proxy within an e-commerce Web site.

on many factors, such as the load on the site, architecture of the sys-
tem, and perhaps even the inventory management technique (e.g.,
just-in-time, inexact inventory), we evaluate both scenarios. When
locking is done in the database, we use strict two phase locking. For
each servlet that accesses the database, we insert database read and
write lock operations that obtain all necessary locks for the queries
in that servlet. Locks are held until the end of the execution of the
servlet. When locking is done in the servlet, no explicit SQL lock-
ing operations are added; the Java synchronization mechanisms are
used instead to serialize conflicting requests to the database.

4.3 The TPC-W Benchmark
When evaluating Web server performance, a workload genera-

tor is frequently used to drive the system in a hopefully representa-
tive manner. We use what is effectively the current standard work-
load generator for e-commerce sites, TPC-W [31, 43]. The TPC-
W benchmark from the Transaction Processing Council (TPC) is a
transactional Web benchmark specifically designed for evaluating
e-commerce systems. It is meant to model a “typical” e-commerce
site, in the form of an online bookstore. The TPC-W specification
requires 14 different interactions, each of which must be invoked
with a particular frequency. Of these interactions, eight initiate
queries that result in data being written to the database, whereas
the other six generate read-only queries. Each interaction may also
involve requests for multiple embedded images, where each image
corresponds to an item in the inventory. With one exception, all
interactions query the database server. In our testbed, all persistent
data is stored in the database, except for the static images used with
each book. All images are kept in the file system of front-end Web
server rather than stored in the database. The database contains
multiple tables that are meant to represent the data needed to main-
tain a real site, including customers, addresses, orders, credit card
information, individual items, authors, and countries. We scaled
the TPC-W database to 10,000 items and 288,000 customers, which
corresponds to 350 MB of data. The size of the static images, which
represent the inventory (i.e., book covers), is 183 MB.

TPC provides a specification but not source code. We thus used
the freely available TPC-W implementation developed by the Dy-
naserver project at Rice University [5, 36]. The Rice implementa-
tion captures all the functionality required by the TPC-W specifica-
tion that affects performance, including transactional consistency
and support for secure transactions. It does not implement some
functionality specified that affects only price, such as the require-
ment to provide enough storage for 180 days of operation. More
detail on the Rice TPC-W implementation may be found at the Dy-
naserver Web site and in their paper [5].

4.4 Client Workload Generator
The Rice TPC-W implementation includes a workload genera-

tor, which is a standard closed-loop session-oriented client emula-
tor. Each emulated client represents a virtual user. The amount of

load generated is determined by the number of emulated clients.
Thus we use the number of clients to indicate the load on the sys-
tem. Each client opens a session to the front-end Web server using
a persistent HTTP connection, issues a series of requests for the
duration of the session, and then closes the connection. Session
duration is exponentially distributed with a mean of 15 minutes
and a maximum of 60 minutes. Within each session, the client
repeatedly makes a request, parses the server’s response, waits a
variable amount of time, and then follows a link embedded in the
response. The server’s response is a Web page consisting of the
answer to the queries in the request, and contains links to the possi-
ble set of pages that the client can transition to from this response.
A finite-state Markov model is used to determine which subsequent
link from the response should be followed, using a transition matrix
with probabilities attached to each transition from one state to an-
other. Each state in the transition matrix corresponds to a particular
interaction defined in the TPC-W specification.

The variable amount of time between requests is called the think
time, and it is intended to emulate a real client who takes some
period of time before clicking on the next request. Therefore, each
client alternates between two states: either thinking to generate the
next request or waiting until it receives the full response of the last
request. TPC-W specifies that the think time should exponentially
distributed with a mean between 7 to 8 seconds and is bounded at
a maximum equal to ten times the average. In all our experiments
where locking is done in the application server, think time has an
average of 7 seconds and is bounded to 70 seconds. For locking in
the database, think time has an average of 8 seconds and bounded
to 80 seconds.

4.5 Metrics and Methodology
We evaluate throughput and response time, each as a function

of the load. Throughput is the average number of successful re-
quests that clients issue per unit time. Response time is the average
amount of time it takes for a client to send a request and success-
fully receive the full reply. The measured response time includes
the execution time on the Web, application and database servers as
well as the queue waiting time (if any) inside the Gatekeeper proxy.
However, the measured response time does not include the over-
head of the Gatekeeper proxy (collecting and maintaining statistics,
and sorting requests in ascending order of their expected service
times in SJF scheduling). If a request fails or times out, it is not in-
cluded in the measured throughput and response time, even though
some components of the system may have executed parts of the re-
quest. Hence, throughput and response time are measured only for
successful requests.

We use online measurements to estimate the load that each re-
quest imposes on the system in all experiments (except for the ex-
periment that compares online measurements to offline measure-
ments). The database capacity is always measured offline.

280

During overload, there are more requests generated than the num-
ber of requests successfully executed. When there is no admission
control and when admission control is in effect with FIFO schedul-
ing, requests that fail or time out during overload are distributed
uniformly across all request types. However, when using admis-
sion control with SJF scheduling during overload, requests that fail
or time out tend to be long requests because they stay much longer
in the system than short requests.

In the graphs we present, each data point is the average of five
runs, where each run is the average over a 600 second sampling
period after a 100 second warm-up. Most graphs include 90 percent
confidence intervals [26] calculated using the T distribution, which
assumes that the distribution underlying the data is Gaussian.

5. EXPERIMENTAL RESULTS
In this section, we present our results in detail, showing the ef-

fectiveness of our techniques. In all experiments, the bottleneck
is in the database machine, and the bottleneck resource is either
the host CPU or lock contention. The front-end machine, which
hosts both the Web server and the application server, has consis-
tently low CPU utilization of about 30 percent. As will be seen,
the single client machine is capable of driving the system both to
saturation and beyond into overload.

5.1 Admission Control
Figure 5 shows the throughput of the system, when locking is

done in the application server. The X-axis is the number of emu-
lated clients, and the Y-axis is throughput in interactions per minute.
Three curves are presented: the original system without admis-
sion control, marked “original”; the system using the Gatekeeper
proxy with FIFO scheduling, marked “gatekeeper-FIFO”; and the
system using the Gatekeeper proxy with shorted-job-first schedul-
ing, marked “gatekeeper-SJF.” For small loads, the three systems
behave similarly, up until roughly 50 clients where differences start
becoming apparent. The original system without admission con-
trol reaches a maximum throughput of about 852 interactions per
minute, but then starts degrading above 250 clients, falling to 589
interactions per minute at 300 clients. The system using the Gate-
keeper proxy maintains a consistent throughput even at the higher
loads, and exhibits a higher peak throughput than the original sys-
tem, of 941 interactions per minute at 230 clients. We see that the
Gatekeeper proxy is effective at preventing overload, and even im-
proves peak performance by about 10 percent. Throughput is un-
affected by changing the scheduling algorithm in Gatekeeper from
FIFO to SJF.

Figure 6 illustrates the difference between the online and offline
approaches to measuring servlet response time. The graph shows
the same system as in Figure 5, but here the SJF curve is removed
and a new curve is added showing throughput using offline mea-
surements taken in isolation. While Gatekeeper using offline mea-
surements does perform better than without any admission control,
the curve shows degrading throughput after about 270 clients. Re-
call from Table 1 that service times change under high loads. Thus,
the offline estimates are no longer accurate, leading to unstable be-
havior at high loads. These results emphasize the importance of
taking into account the behavior of the system under heavy load.

While theory would predict no change in peak throughput using
admission control, we see that this is not the case in practice. To
determine why, we ran a number of profiling experiments. Table
2 shows various performance statistics for the system under 3 sce-
narios from Figure 5: the original system at peak throughput, the
original system during overload, and the system using Gatekeeper
at peak throughput. In all situations the database CPU is fully uti-

lized, the database fits in memory, and the network bandwidth is
not a limiting factor. Throughout the “plateau” in Figure 5, the
statistics stay relatively consistent up until about 250 clients. Sev-
eral factors contribute to the explanation why the system through-
put degrades during overload, and why Gatekeeper provides better
performance. First note that, while small, the I/O transfer rate goes
up under overload, and shrinks when Gatekeeper is used. Second,
there are a significantly lower number of database processes when
Gatekeeper is used. Finally, memory pressure is clearly reduced, as
the amount of memory used is much lower. Profiling measurements
using the Athlon performance monitoring counters show that when
the load is increased from 200 clients to 300, the rate of the L1 data
cache misses increase 24.9 percent, L1 DTLB misses that causes
a hit in the L2 DTLB increase 24.8 percent, and L1 DTLB misses
that also cause a miss in L2 DTLB increase 22.5 percent. Clearly
the data cache and DTLB misses contribute to the thrashing behav-
ior of the system.

We now turn to the case where locking is done in the database,
rather than in the application server; this case is illustrated in Fig-
ure 7. Note that the scales of this graph are different from the scales
in Figure 5; the peak throughput here is much lower than in the
previous graph. This shows how locking in the database is more
expensive than locking in the application server. In this graph, the
three curves show similar performance up to about 70 clients, after
which the original system degrades quickly, but the experiments
using Gatekeeper again demonstrate consistent performance even
during overload. The original system reaches the peak through-
put of 515 interactions per minute at 70 clients. At this point,
the CPU utilization is 70 percent and all other system resources
are far less utilized. As the load increases beyond this point, con-
tention for the data locks causes thrashing, as two phase locking
is used and many database queries become blocked. This is con-
sistent with analytic models which show that the mean number of
blocked transactions is a quadratic function of the total number of
transactions [41]. This phenomenon explains the rapid decline in
the throughput for the original system without Gatekeeper. Con-
versely, Gatekeeper queues any excess database requests when the
estimated maximum capacity for the database is reached, and thus
maintains peak performance in the overload region.

One question that might occur is whether our results are de-
pendent on artifacts of a particular implementation, in this case
MySQL. To test this notion, we ran our experiments using DB2
instead of MySQL, and the results are shown in Figure 8. Note that
this experiment uses a different system, unlike the other figures,
and thus results should not be compared across graphs. Gatekeeper
again shows consistent throughput during overload, whereas the
original system degrades quickly after 400 clients. These results
demonstrate the applicability of our approach across database im-
plementations whenever overload causes the database to thrash.

5.2 Request Scheduling
In this section we evaluate the effect of request scheduling using

the Gatekeeper proxy. Figure 9 shows the average response time
in our system, corresponding to the experiments shown in Figure
5, where locking is done in the application server. In this graph,
the X-axis is again the number of emulated clients, but the Y-axis
is response time in milliseconds. As expected, response times are
low for small numbers of clients, but increase as a function of the
load, as jobs queue up in the system. The original system, as can be
seen, performs the worst. The system using the Gatekeeper proxy
with FIFO scheduling gives better response time, as it provides bet-
ter throughput and thus lower service and waiting times. The curve
showing the Gatekeeper proxy using SJF scheduling shows sub-

281

0

200

400

600

800

1000

0 50 100 150 200 250 300

N
um

be
r

of
 in

te
ra

ct
io

ns
 p

er
 m

in
ut

e

Number of clients

original
gatekeeper FIFO
gatekeeper SJF

Figure 5: Throughput (MySQL, locking in application server).

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300

N
um

be
r

of
 in

te
ra

ct
io

ns
 p

er
 m

in
ut

e

Number of clients

original
gatekeeper FIFO online
gatekeeper FIFO offline

Figure 6: Online vs. offline (MySQL, locking in appl. server).

Statistic Original Overloaded Gatekeeper
Throughput (interactions/min) 852 589 941
Number of Clients 200 300 230
Database CPU Utilization (user/system) 100 (76/24) 100 (74/26) 100 (75/25)
DB Memory Used (MB) 450 509 375
DB Memory Free (MB) 318 259 393
I/O Transfers/sec 36 43 33
Network Bandwidth (Mbits/sec) 1.1 0.9 1.2
Number of Processes (database/system) 266 (233/33) 378 (345/33) 82 (49/33)
Context Switches/sec 330 373 319
Interrupts/sec 219 220 219

Table 2: Performance statistics (MySQL, locking in application server).

0

100

200

300

400

500

600

0 20 40 60 80 100 120

N
um

be
r

of
 in

te
ra

ct
io

ns
 p

er
 m

in
ut

e

Number of clients

original
gatekeeper FIFO
gatekeeper SJF

Figure 7: Throughput (MySQL, locking in database).

0

50

100

150

200

250

300

100 150 200 250 300 350 400 450 500 550 600

N
um

be
r

of
 in

te
ra

ct
io

ns
 p

er
 m

in
ut

e

Number of clients

original
gatekeeper FIFO

Figure 8: Throughput (DB2, locking in application server).

282

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 50 100 150 200 250 300

R
es

po
ns

e
T

im
e

in
 m

s

Number of clients

original
gatekeeper FIFO
gatekeeper SJF

Figure 9: Response time (MySQL, locking in appl. server).

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20 40 60 80 100 120

R
es

po
ns

e
T

im
e

in
 m

s

Number of clients

original
gatekeeper FIFO
gatekeeper SJF

Figure 10: Response time (MySQL, locking in database).

0

2000

4000

6000

8000

10000

FIFO SJF

T
im

e
in

 m
ill

is
ec

Response Time Breakdown (Short Job)

waiting time
service (execution) time

Figure 11: “Exec Search” request.

0

5000

10000

15000

20000

25000

FIFO SJF

T
im

e
in

 m
ill

is
ec

Response Time Breakdown (Long Job)

waiting time
service (execution) time

Figure 12: “Admin Response” request.

0

2000

4000

6000

8000

10000

FIFO SJF

T
im

e
in

 m
ill

is
ec

Response Time Breakdown (Average Job)

waiting time
service (execution) time

Figure 13: Average across all requests.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 50 100 150 200 250 300

R
es

po
ns

e
T

im
e

in
 m

s

Number of clients

original
gatekeeper FIFO
gatekeeper SJF

gatekeeper wait 1
gatekeeper wait 3
gatekeeper wait 5

Figure 14: Response time (MySQL, Locking in appl. server).

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 20 40 60 80 100 120

R
es

po
ns

e
T

im
e

in
 m

s

Number of clients

original
gatekeeper FIFO
gatekeeper SJF

gatekeeper wait 1
gatekeeper wait 3
gatekeeper wait 5

Figure 15: Response time (MySQL, locking in database).

283

stantially better response times. For example, with 250 clients, the
original system has an average response time of roughly 11 sec-
onds, whereas with Gatekeeper, using FIFO scheduling provides
a response time of 9 seconds, and using SJF scheduling gives a
response time of about half a second. In this case, SJF improves
response time by a factor of 22. Note that the knee of the SJF
curve happens at about 290 clients in this experiment. While SJF
scheduling can reduce response time substantially, it cannot pre-
vent the queuing effects that occur with overload. If load exceeds
capacity, and no load shedding is performed, response times will
approach infinity. Scheduling can help stave off degrading response
time under overload, but cannot prevent it.

Figure 10 shows the average response time in our system when
locking is done in the database, corresponding to the experiments
shown in Figure 7. While the absolute numbers are different, the
trends are the same as in Figure 9. The original system has the
worst response time, the system using Gatekeeper with FIFO sched-
uling is better, and the system using Gatekeeper with SJF schedul-
ing performs the best. Here the magnitude of the improvement is
not as great as in Figure 9, but the differences are still substantial,
in this experiment by up to a factor of 4.

One concern about request scheduling using algorithms such as
SJF is that large jobs will be penalized severely. Since we are pro-
viding preferential treatment to short requests, it is important to
see what slowdowns may be incurred by large jobs. Figures 11,
12 and 13 show response times under both the FIFO and SJF poli-
cies, distinguishing execution time from waiting time. Three sam-
ple queries are shown: the “Exec Search” request, which is rela-
tively inexpensive with an execution time of about 400 millisec-
onds, shown in Figure 11; the “Admin Response” request, which
is complex and weighs in at roughly 4.8 seconds, shown in Fig-
ure 12; and the “Average” request, shown in Figure 13, the average
across all queries in TPC-W, which is 425 milliseconds. Note that
the scales of the y-axis are different across all figures. As expected,
execution times do not change in response to scheduling. Instead,
improvements in response time are due to reductions in the wait-
ing time of the requests. The “Exec Search” request waiting time
shrinks from over 8 seconds using FIFO to 99 milliseconds using
SJF, and the average waiting time falls from 8.8 seconds to 225 mil-
liseconds. The large job, however, is penalized, with waiting time
increasing from about 12.9 seconds to 15.6 seconds. Waiting time
increases by about 21 percent, and overall response time, which in-
cludes the service time, increases by about 13 percent. While large
jobs are penalized slightly, the slowdown is not significant, and
the substantial benefit in overall response time makes this trade-off
worthwhile.

Finally, we evaluate our mechanism to prevent starvation. Figure
14 shows response times using Gatekeeper with FIFO, SJF with no
aging, and SJF with aging, all when locking is done in the appli-
cation server. Figure 15 shows the corresponding response times
when locking is done in the database. Figures 14 and 15 show the
response time when three aging policies are used, where the la-
bel “gatekeeper wait X” corresponds to imposing an upper delay
bound of X multiples of the expected service time. For example,
“gatekeeper wait 1” permits requests to be reordered such that each
request can be delayed for at most as long as its service time. This
restrictive policy produces a graph that is closest to the FIFO policy.
The response time is lower (better) than FIFO because the sched-
uler still has a degree of freedom to reorder the requests in such
a way to reduce average response time. The curve marked “gate-
keeper wait 5” presents a response time curve similar to the SJF
policy. However, SJF yields better average response time because
it does not have any restrictions on reordering requests. As can be

seen, a continuum of behaviors is available between FIFO and SJF.
Web site operators can choose a value of X to achieve a specific
behavior based on their desired policy.

6. RELATED WORK
Much related work has been done in the areas of overload con-

trol, admission control, service differentiation, quality of service
(QoS), and request scheduling for Web servers. Due to space limi-
tations, we provide a very brief overview here.

Early works focused on delivering priority to one class of re-
quests over another [3, 23]. Other research investigates admis-
sion control, sometimes referred to as overload control. Mogul and
Ramakrishnan [32] showed how to prevent overload caused by in-
terrupts generated by packet arrivals in software-based routers. Dr-
uschel and Banga [22] demonstrate a similar concept in the context
of Web servers, showing how a network subsystem architecture
can provide improved stability and throughput under high loads.
Cherkasova and Phaal [17] show how considering session charac-
teristics rather than individual requests in admission control can be
used to reject fewer sessions. Chen et al. [15] use computation
quantums, which are similar to the pool of units used to estimate
the capacity of the database in our study. They develop an ana-
lytical model to perform admission control using a double queue
structure and verify their results using a simulation study driven by
a Web trace.

More recent approaches seek to combine differentiated service
with admission control. Bhatti and Friedrich [11] propose an ar-
chitecture for Web servers to provide QoS to differentiated clients,
incorporating request classification, admission control, and request
scheduling. They do not examine SJF or SRPT scheduling to im-
prove response time, and most importantly, do not experimentally
demonstrate sustained throughput in the presence of overload. Li
and Jamin [28] provide an algorithm for allocating differentiated
bandwidth to clients in an admission-controlled Web server based
on Apache. Bhoj et al. [12] present the Web2K mechanism, which
prioritizes requests into two classes: premium and basic. Connec-
tion requests are sorted into two different request queues, and ad-
mission control is performed using two metrics: the accept queue
length and measurement-based predictions of arrival and service
rates from that class. The authors evaluate their system using
Apache, and show how high priority requests maintain stable re-
sponse times even in the presence of severe overload. Voigt et
al. [44] study different kernel and user-space mechanisms for ad-
mission control and service differentiation in overloaded Web serv-
ers. They evaluate their proposed mechanisms in AIX and find that
the kernel-based mechanisms provide better performance. Prad-
han et al. [35] present an observation-based framework for “self-
managing” Web servers that adapt to changing workloads while
maintaining QoS requirements of different classes. Kanodia and
Knightly [27] propose a mechanism that integrates latency targets
with admission control. Using both request and service statisti-
cal envelopes, the mechanism improves the percentage of requests
that meet their QoS delay requirements. The authors evaluate their
scheme via trace-driven simulation.

Several researchers have examined how control theory can be
applied in the context of Web servers. Lu et al. [29] present a
control-theoretic approach to provide guaranteed relative delays
between different service classes. Abdelzaher et al. [2] propose
using classical control theory for Web servers to provide perfor-
mance isolation, service differentiation, and QoS adaptation. They
provide an implementation using the Apache Web server. Diao
et al. [21] advocate a similar approach, using control theory to
maintain Apache’s KeepAlive and MaxClient parameters, showing

284

quick convergence and stability. However, these parameters do not
directly address metrics of interest to the Web site, such as response
time or throughput.

Heiss and Wagner [24] perform a simulation study of thrashing
in transaction systems. They present two admission control algo-
rithms that prevent overload by limiting the amount of concurrency
in the system.

Instead of performing admission control and refusing clients as
a response to overload, several researchers have investigated using
service degradation. In this context, the service offered to clients is
reduced, in the form of providing smaller content, e.g., lower reso-
lution images. Different approaches include using HTTP’s content
negotiation feature [38], content substitution [1], or transcoding
[14] to improve Web client response times and server throughput
in the presence of server overload or network congestion.

Recently a number of researchers have observed the value of
integrating resource management with service differentiation, ad-
mission control, and quality of service. Banga et al. [9] propose
resource containers as an operating system abstraction that embod-
ies a resource, improving robustness and control over priorities.
Aron et al. [8] build on this notion by recognizing the fundamental
connection between resource allocation and providing predictable
quality of service. Their evaluation includes dynamic content based
on a trace from Google that includes an average service time, but
do not include database-driven workloads. Resource management
approaches have also been used in clusters of servers [7, 39].

Welsh and Culler [45] describe an adaptive approach to overload
control in the context of the SEDA [46] Web server. SEDA de-
composes Internet services into multiple stages, each one of which
can perform admission control. By monitoring the response time
through a stage, each stage can enforce a targeted 90th-percentile
response time. Their evaluation includes dynamic content in the
form of a web-based email service.

Gatekeeper differs from the above works in many respects. Most
importantly, most of the above work has only addressed static con-
tent, a much simpler workload, whereas Gatekeeper is fundamen-
tally concerned with dynamic content and database-driven Web
sites. Of the few that do consider dynamic content, two use a sim-
ple linear approximation of the service cost in the form of a dummy
CGI script [12, 35]. We use a full implementation of the dynamic
functionality and incur actual execution costs, which can vary or-
ders of magnitude.

Relatively few works are closely related to ours in terms of be-
ing implemented and addressing dynamic content: Neptune [39],
Aron’s resource management framework [8], McWherter’s prior-
ity mechanisms for transactional Web applications [30], and SEDA
[45, 46]. Neptune and Aron’s framework both use search as a dy-
namic workload, whereas we use a transaction-oriented e-commerce
workload. McWherter implemented preemptive and non-preemp-
tive prioritization algorithms by modifying the database server in
order to provide differentiated performance for some requests.
SEDA’s evaluation includes dynamic content in the form of a cus-
tom email service driven by a home-grown workload generator.
Our evaluation is performed using standard software components
and driven using an industry-standard e-commerce workload. While
SEDA’s approach is perhaps more general, our approach has the ad-
vantage that it is completely transparent to the database and is thus
more easily deployable.

Finally, many previous works have attempted to identify over-
load through indirect measurements such as queue length or band-
width utilization. Others have taken more direct indicators such
as response time, but measured them for the entire system or for
class-based categories. We address the concept of load directly by

measuring how per-script resources are used. We believe this mech-
anism provides more accurate and finer-grained approach to admis-
sion control, and is in fact complementary to other approaches. For
example, SEDA allows different scripts to be handled by different
stages. By including both an overall notion of system capacity with
an estimate of per-script execution costs, the number of rejected
requests at a given load could be lowered.

7. SUMMARY AND CONCLUSIONS
This paper presents a method for providing admission control

and request scheduling for multiply-tiered e-commerce Web sites.
By externally measuring service costs online and distinguishing be-
tween different types of requests, our approach can achieve both
stable behavior during overload and dramatically improved response
times. Other proposals require extensive modifications to the op-
erating system or a complete re-write of the server. Our approach
requires no changes to the source code, server software, applica-
tion programs, or to the database. This allows ease of deployment,
database independence, and use of standard software components.

Our method is embodied in a transparent proxy called Gate-
keeper. Gatekeeper intercepts requests from the application server
to the database, allowing interoperability with standard software
components. We evaluated Gatekeeper experimentally using the
Apache Web server, Tomcat servlet engine, and both the MySQL
and DB2 databases, using the industry-standard TPC-W workload
generator. Despite being external to the system, our proxy provides
many of the benefits of admission control and request scheduling:

• We show consistent performance even in the presence of per-
sistent overload, across database implementations and lock-
ing approaches.

• We demonstrate improved peak throughput of 10 percent,
due to reduced thrashing and better memory reference be-
havior.

• We demonstrate drastically reduced response times via pref-
erential scheduling using the shortest-job (SJF) scheduling
policy. Average response time is reduced by a factor of 14,
whereas large queries are penalized by only 15 percent.

• We present an aging mechanism that prevents starvation of
jobs under SJF. The mechanism allows decisions of where
in the continuum between FIFO and SJF a Web site should
operate based on operator policy.

These results show that extensive modifications to server soft-
ware are not always necessary in the context of e-commerce Web
sites, where the database is the bottleneck. A natural next step for
future work is to evaluate our approach using other dynamic work-
loads. In cases where the bottleneck resource is the application
server, rather than the database, it would make sense to place the
Gatekeeper proxy between the front-end Web server and the appli-
cation server.

8. REFERENCES
[1] T. Abdelzaher and N. Bhatti. Web content adaptation to improve

server overload behavior. Computer Networks,
31(11–16):1563–1577, 1999.

[2] T. Abdelzaher, K. G. Shin, and N. Bhatti. Performance guarantees for
Web server end-systems: A control-theoretical approach. IEEE
Transactions on Parallel and Distributed Systems, 13(1), January
2002.

285

[3] J. Almeida, M. Dabu, A. Manikutty, and P. Cao. Providing
differentiated levels of service in Web content hosting. In Workshop
on Internet Server Performance, Madison, WI, June 1998.

[4] AMD Corporation. AMD Athlon processor x86 code optimization
guide. http://www.amd.com.

[5] C. Amza, E. Cecchet, A. Chanda, A. L. Cox, S. Elnikety, R. Gil,
J. Marguerite, K. Rajamani, and W. Zwaenepoel. Specification and
implementation of dynamic Web site benchmarks. In Proceedings of
the 5th Workshop on Workload Characterization, Austin, Texas,
November 2002.

[6] M. Arlitt, D. Krishnamurthy, and J. Rolia. Characterizing the
scalability of a large Web-based shopping system. Technical Report
HPL-2001-XX, HP Labs, April 2001.

[7] M. Aron, P. Druschel, and W. Zwaenepoel. Cluster reserves: a
mechanism for resource management in cluster-based network
servers. In ACM SigMetrics Conference on Measurement and
Modeling of Computer Systems, Santa Clara, CA, June 2000.

[8] M. Aron, S. Iyer, and P. Druschel. A resource managment framework
for predictable quality of service in Web servers. Preprint vailable at
http://www.cs.rice.edu/∼ssiyer/.

[9] G. Banga, P. Druschel, and J. C. Mogul. Resource containers: A new
facility for resource management in server systems. In Operating
Systems Design and Implementation, pages 45–58, New Orleans,
LA, February 1999.

[10] N. Bhatti, A. Bouch, and A. Kuchinsky. Integrating user-perceived
quality into Web server design. Technical Report HPL-2000-3, HP
Labs, January 2000.

[11] N. Bhatti and R. Friedrich. Web server support for tiered services.
IEEE Network, 13(5):64–71, September 1999.

[12] P. Bhoj, S. Rmanathan, and S. Singhal. Web2K: Bringing QoS to
Web servers. Technical Report HPL-2000-61, HP Labs, May 2000.

[13] E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite, and
W. Zwaenepoel. Performance comparison of middleware
architectures for generating dynamic Web content. In Proceedings of
the ACM/IFIP/USENIX International Middleware Conference
(Middleware 2003), Rio de Janeiro, Brazil, June 2003.

[14] S. Chandra, C. Ellis, and A. Vahdat. Differentiated multimedia Web
services using quality aware transcoding. In IEEE Infocom, Tel-Aviv,
Israel, March 2000.

[15] X. Chen, P. Mohapatra, and H. Chen. An admission control scheme
for predictable server response time for Web accesses. In Proceedings
of the 10th World Wide Web Conference, Hong Kong, May 2001.

[16] L. Cherkasova. Scheduling strategy to improve response time for
Web applications. In Proceedings High Performance Computing and
Networking (HPCN), Amsterdam, April 1998.

[17] L. Cherkasova and P. Phaal. Session-based admission control: A
mechanism for peak load management of commercial Web sites.
IEEE Transactions on Computers, 51(6), June 2002.

[18] M. Crovella and A. Bestavros. Self-similarity in World Wide Web
traffic: Evidence and possible causes. IEEE/ACM Transactions on
Networking, 5(6):835–846, Nov 1997.

[19] M. Crovella, R. Frangioso, and M. Harchol-Balter. Connection
scheduling in Web servers. In Proceedings of the 1999 USENIX
Symposium on Internet Technologies and Systems (USITS ’99),
Boulder, Colorado, October 1999.

[20] P. J. Denning. A short theory of multiprogramming. In 3rd
International Workshop on Modeling, Analysis, and Simulation On
Computer and Telecommunication Systems (MASCOTS), Durham,
North Carolina, January 1995.

[21] Y. Diao, N. Gandhi, J. L. Hellerstein, S. Parekh, and D. M. Tilbury.
Using MIMO feedback control to enforce policies for interrelated
metrics with application to the Apache Web server. In Proceedings of
the Network Operations and Management Symposium, Florence,
Italy, April 2002.

[22] P. Druschel and G. Banga. Lazy receiver processing (LRP): A
network subsystem architecture for server systems. In Operating
Systems Design and Implementation, pages 261–275, Seattle, WA,
1996.

[23] L. Eggert and J. Heidemann. Application-level differentiated services
for Web servers. World-Wide Web Journal, 2(3):133–142, August
1999.

[24] H.-U. Heiss and R. Wagner. Adaptive load control in transaction
processing systems. In 17th International Conference on Very Large
Data Bases, Barcelona, Spain, September 1991.

[25] D. Heller. Rabbit performance counters library.
http://www.scl.ameslab.gov/Projects/Rabbit/.

[26] R. Jain. The Art of Computer Systems Performance Analysis. John
Wiley & Sons, 1991.

[27] V. Kanodia and E. W. Knightly. Ensuring latency targets in multiclass
Web servers. IEEE Transactions on Parallel and Distributed Systems,
13(10), October 2002.

[28] K. Li and S. Jamin. A measurement-based admission-controlled Web
server. In IEEE Infocom, Tel-Aviv, Israel, March 2000.

[29] C. Lu, T. F. Abdelzaher, J. A. Stankovic, and S. H. Son. A feedback
control approach for guaranteeing relative delays in Web servers. In
IEEE Real-Time Technology and Applications Symposium, Taipei,
Taiwan, June 2001.

[30] D. T. McWherter, B. Schroeder, A. Ailamaki, and M. Harchol-Balter.
Priority mechanisms for OLTP and transactional web applications. In
20th International Conference on Data Engineering (ICDE 2004),
Boston, MA, March 2004.

[31] D. A. Menasce. TPC-W: A benchmark for e-commerce. IEEE
Internet Computing, May/June 2002.

[32] J. C. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in
an interrupt-driven kernel. ACM Transactions on Computer Systems,
15(3):217–252, 1997.

[33] News.Com. E-commerce strong in third quarter.
http://news.com.com/2100-1017-971123.html,
November 2002.

[34] V. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient and
portable Web server. In USENIX Annual Technical Conference,
Monterey, CA, June 1999.

[35] P. Pradhan, R. Tewari, S. Sahu, A. Chandra, and P. Shenoy. An
observation-based approach towards self-managing Web servers. In
International Workshop on Quality of Service, Miami Beach, FL,
May 2002.

[36] Rice University Computer Science Department. The Dynaserver
project.
http://www.cs.rice.edu/CS/Systems/DynaServer.

[37] B. Schroeder and M. Harchol-Balter. Web servers under overload:
How scheduling can help. Technical Report CMU-CS-02-143,
Carnegie-Mellon University C.S. Department, Pittsburgh, PA, July
2002.

[38] S. Seshan, M. Stemm, and R. H. Katz. Benefits of transparent content
negotiation in HTTP. In Proceedings of the IEEE Globcom 98
Internet Mini-Conference, Sydney, Australia, November 1998.

[39] K. Shen, H. Tang, T. Yang, and L. Chu. Integrated resource
management for cluster-based Internet services. In Operating
Systems Design and Implementation, Boston, MA, December 2002.

[40] Sysstat Project. Systat home page.
http://freshmeat.net/projects/sysstat.

[41] Y. C. Tay, N. Goodman, and R. Suri. Locking performance in
centralized databases. ACM Transactions on Database Systems,
10(4):415–462, December 1985.

[42] The Apache Project. The Apache WWW server.
http://httpd.apache.org.

[43] The Transaction Processing Council (TPC). TPC-W.
http://www.tpc.org/tpcw.

[44] T. Voigt, R. Tewari, D. Freimuth, and A. Mehra. Kernel mechanisms
for service differentiation in overloaded Web servers. In Proceedings
of the USENIX Annual Technical Conference, Boston, MA, June
2001.

[45] M. Welsh and D. Culler. Adaptive overload control for busy Internet
servers. In Proceedings of the USENIX Symposium on Internet
Technologies and Systems (USITS), San Francisco, CA, March 2003.

[46] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for
well-conditioned, scalable Internet services. In Proceedings of the
18th Symposium on Operating Systems Principles (SOSP), Banff,
Canada, October 2001.

286

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

