
Programming Ad-hoc Networks of Mobile and
Resource-Constrained Devices∗

Yang Ni Ulrich Kremer Adrian Stere Liviu Iftode
Department of Computer Science

Rutgers University
Piscataway, NJ 08854

{yangni,uli,adrianst,iftode}@cs.rutgers.edu

Abstract
Ad-hoc networks of mobile devices such as smart phones and
PDAs represent a new and exciting distributed system architec-
ture. Building distributed applications on such an architecture poses
new design challenges in programming models, languages, com-
pilers, and runtime systems. This paper discussesSpatialViews,
a high-level language designed for programming mobile devices
connected through a wireless ad-hoc network.SpatialViews allows
specification of virtual networks with nodes providing desired ser-
vices and residing in interesting spaces. These nodes are discovered
dynamically with user-specified time constraints and quality of re-
sult (QoR). The programming model supports “best-effort” seman-
tics, i.e., different executions of the same program may result in
“correct” answers of different quality. It is the responsibility of the
compiler and runtime system to produce a high-quality answer for
the particular network and resource conditions encountered during
program execution. Four applications, which exercise different fea-
tures of theSpatialViews language, are presented to demonstrate
the expressiveness of the language and the efficiency of the com-
piler generated code. The applications are an application that col-
lects and aggregates sensor data in network, an application that
performs dynamic service installation, a mobile camera applica-
tion that supports computation offloading for image understanding,
and an augmented-reality (AR) Pacman game. The efficiency of the
compiler generated code is verified through simulation and physi-
cal measurements. The reported results show thatSpatialViews is
an expressive and effective language for ad-hoc networks. In ad-
dition, compiler optimizations can significantly improve response
times and energy consumption.

Categories and Subject DescriptorsD.3.0 [PROGRAMMING
LANGUAGES]: General

General Terms Design, Languages

∗This work was partially supported by NSF-ITR/SI award ANI-0121416.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’05, June 12–15, 2005, Chicago, Illinois, USA.
Copyright c© 2005 ACM 1-59593-080-9/05/0006. . . $5.00.

Keywords Ad-hoc Networks, MANET, Location-Awareness, Ser-
vice Discovery, Quality of Result

1. Introduction
An ad-hoc network, a.k.a. MANET (Mobile Ad-hoc Network)[19],
is a dynamic network spontaneously formed among mobile nodes
without support from any infrastructure[38, 21, 8]. Ad-hoc net-
works are becoming a promising new target platform, with the pro-
liferation of smart devices, i.e., small wireless devices with sig-
nificant computing power, memory, and sensory capabilities. Typ-
ical examples of such devices are state-of-the-art smart phones
and PDAs. These devices are able to provide information about
their surrounding physical environment using sensors (e.g.: light,
motion, temperature, pressure, speed), cameras, and microphones.
Since not all their resources are used all the time, ad-hoc network
nodes can potentially share cycles, memory, and sensors. The no-
tion of sharing over a distributed platform has been successfully
used in the context of peer-to-peer systems [13, 32, 24] and net-
works of workstations (NOW) [4]. Figure 1 illustrates an ad-hoc
network. Smart phones and PDAs carried by pedestrians com-
municate via short-range wireless networking such as 802.11 or
Bluetooth. Computer devices embedded in cars, buildings, or fixed
structures such as a traffic light may also be part of the wireless
network. The structure of the network changes dynamically as cars
and people move, entering or leaving it. Additionally, the network
shown in this figure may be part of a bigger ad-hoc network, per-
haps spanning the entire city or some larger geographical area.

In contrast to the P2P and NOW distributed system architec-
tures, the location of a network node in the physical space may
be crucial for a distributed application executed on an ad-hoc net-
work. Nodes are interesting for an application due to the hardware
and software services that they provide and their particular loca-
tion. Therefore, a programming model for ad-hoc networks must
be able to describe spaces and desired services within such spaces.
Since most such devices rely on battery power, any sharing will
involve energy consumption, which will lead to a shortened bat-
tery life. As a result, applications should be able to set limits on
their resource usage, trading off the quality of the produced an-
swer for a reduction in the resource usage necessary to compute
the answer. This tradeoff can be expressed as the desired quality of
result (QoR). The quality of result is defined by the programmer
and it is application specific in most cases. Due to the volatile and
dynamic nature of the network, a program execution can return a
range of “correct” answers, which must be partially orderable ac-
cording to one or more quality criteria. An implementation of such
a programming model should follow “best-effort” semantics to pro-
duce a high-quality answer under the particular network conditions,

CMU September 1, 2004

 4

Figure 1. An envisioned ad-hoc network at a busy street corner.

while respecting user-specified resource constraints. Developing a
formal “best-effort” semantics model is a new and important open
problem, but is beyond the scope of this paper.

In this paper, we discussSpatialViews, a programming lan-
guage for ad-hoc networks. The goal ofSpatialViews is to pro-
vide a high-level programming model, which allows application
programmers to easily develop and maintain their ad-hoc network
applications. Each node in the network is assumed to have substan-
tial computation and communication capabilities, and is aware of
its spatial location. The location of a node can be queried by the
user level program, i.e., a particular location may determine the ac-
tions performed by a program. Severely resource-constrained sen-
sor networks are not the main target ofSpatialViews. Examples
for target network nodes are state-of-the-art smart phones, PDAs,
notebooks, and laptop computers.

TheSpatialViews language is a vehicle to study different lan-
guage, compiler optimizations, and performance/QoR/energy trade
offs. Clearly, not all conceivable applications may be implemented
within the framework of this programming model. Our goal is to
provide a high-level programming model for a large class of appli-
cations for mobile ad-hoc networks that hides many details of the
underlying volatile target networks. In this sense,SpatialViews is
complementary to lower level languages such as nesC [14], SP [6]
and SM [22]. A case study are presented in this paper, using four
different applications implemented inSpatialViews. These appli-
cations are (a) an application that collects and aggregates sensor
data in network, (b) an application that performs dynamic service
installation, (c) a mobile camera application that supports com-
putation offloading for face detection to a server discovered on-
demand, and (d) an augmented-reality (AR) Pacman game that in-
volves multiple players in a physical space “tagged” with virtual
objects. The AR Pacman game application was inspired by the Hu-
man Pacman project[11] and the Pac-Manhattan game[37]. These
applications exercise differentSpatialViews features and have been
chosen to illustrate the expressiveness of the language, and the ef-
fectiveness of our prototype compiler to produce efficient code.
The performance of the compiler generated code were evaluated
through simulation and physical measurements. Other applications
such as TrafficView[12] and EasyCab[49] can also be implemented
in SpatialViews, but we did not evaluate them for this study.

In our previous work[35], we provided a straightforward serial
implementation ofSpatialViews. A single program “walks” around
the network and executes on each encountered node, one node af-
ter another. The serial implementation has scalability and robust-
ness issues. When the network size increases, the execution time
increases linearly at best. Even partial network disconnection or

failures of single network nodes may lead to the loss of the pro-
gram, resulting in no answers being reported. In [36], we performed
an initial benefits study of different parallelization and replication
techniques and their impact on program response time, energy con-
sumption, and quality of result. The discussed techniques were
based on flooding, spanning-tree construction, and bounded pro-
gram replication. Only a single sensor network application was
used in that previous study.

The contributions of this paper are as follows:

1. A detailed discussion of theSpatialViews language and its
features.

2. An evaluation of the expressiveness and performance ofSpa-
tialViews and its prototype compiler for four application pro-
grams that stress different features of the language. Evaluation
is done in terms of QoR, response time, and energy consump-
tion. Physical measurements were performed on a network of
12 HP iPAQ handheld PCs running Linux and communicating
through a wireless 802.11 network connection. Simulation re-
sults were obtained for up to 64 network nodes.

3. A discussion and evaluation of compiler optimizations used to
implement a coreSpatialViews construct, namely the spatial
view iterator.

The reported results show that the language model is expressive
and allows efficient implementations. The authors are very aware
that the success of any new language model will ultimately be mea-
sured in terms of its acceptance by users who try to run applications
they care about on ad-hoc networks. A first version of theSpa-
tialViews compiler, runtime system, and debugging/visualization
environment is publicly available1. We believe that this paper
makes a strong case for viewing ad-hoc networks as an interesting
distributed computing target platform with exciting and wide-open
application potential. Part of this potential can be easily accessed
through the use of ourSpatialViews programming language. In ad-
dition, SpatialViews has proven itself as a research infrastructure
into new compiler optimizations for ad-hoc networks.

2. SpatialViews Language
The programming target ofSpatialViews is a network of nodes em-
bedded in the physical world. A node in the physical world may be
of interest because it is at a specific place (location) at a specific
time, providing a specific service. Therefore, location and time are
crucial concepts for a programming model for ad-hoc networks,
in addition to node functionality. A first-class abstraction inSpa-
tialViews is a virtual network explicitly named by the services and
locations of its nodes, and instantiated across time. The actual net-
work embedded in the physical world consists of many such vir-
tual networks. For each virtual network, computation is specified.
The computation is performed on individual nodes of the speci-
fied virtual network, with computation migrating from one node to
another. It is desirable to support computation replication and par-
allelization, which allows computation to be performed on several
nodes or migrate between nodes at the same time.

A virtual network is declared as aspatial view, and instantiated
using aspatial view iterator. A spatial view declaration requires a
set of services and a space. An iterator instantiates a spatial view
by discovering those nodes that provide the services and reside in
the space, and by migrating computation to them. The iteration
procedure may be limited by a time constraint which represents
a time budget that once expired will lead to the termination of
the iteration procedure. The virtual network is thus the collection
of nodes that provide the specific services and are confined to a

1SpatialViews web site http://www.cs.rutgers.edu/spatialviews

space-time region defined by a spatial view and an iterator. To
write a program inSpatialViews is to define spatial views and
their iterators.SpatialViews is an extension to Java. Computation
is defined in each iterator as in standard Java.

For the remainder of this paper, a node is assumed to be a
virtual node unless explicitly specified otherwise. A virtual node
is bound to a physical node within a space×time region.Spa-
tialViews allows the specification of space and time granularities of
this space×time region. These granularities are closeness metrics
in terms of space and/or time, respectively. Every node in the vir-
tual network has to be distinct from any other node either in terms
of space or time. This language feature allows the programmer to
control the “density” of a virtual network that is spread across time
and space, making tradeoffs possible between performance, energy
consumption, and quality of result (QoR).

As time changes, the same physical node may represent differ-
ent nodes in a virtual network. If a physical node occupies multiple
locations due to its mobility, it may also represent different nodes
at the same time, i.e., within the same time granularity. The finest
granularity that can be chosen by an application in terms of time
and space depends on the location and timing technologies avail-
able in the physical network.

No bindings between virtual nodes and physical nodes can be
made explicit or permanent, because such bindings may change
over time and space. For this reason, a virtual network can only
be accessed by dynamically instantiating a spatial view using an
iterator. A more detailed description of theSpatialViews language
can be found elsewhere [26].

2.1 Spatial View Definition

A spatial viewis a collection of virtual nodes each of which pro-
vides a given set of services and resides in a given space. A spatial
view defines a virtual network over the real, physical network. A
virtual node is the programming abstraction for a physical node,
which can be denoted as a tuple (services, location, time). The ser-
vices are provided by the physical node. The location is the location
of the physical node. The time is the time when the program starts
its execution on the physical node representing the virtual node. A
virtual node is an execution environment in which a program has
access to the denoted services at the denoted location and time. To
simplify our discussion, we will assume for the remainder of the
paper that each virtual node specifies only a single service.

A service is named by a Java interface. The name of the inter-
face, the method list of the interface, and the semantics of all the
methods are agreed upon by all the participants of the network.
An object is said to provide a service if it implements its interface.
A physical node is said to provide a service if it hosts an object
that does. A physical node may provide multiple services, either by
hosting multiple objects or one object implementing multiple inter-
faces. Such a physical node is represented by more than one virtual
node. Installation of services will be discussed in Section 2.3.

A space is represented by a space type object. A space type
is classSpace or its derived class. ClassSpace has a single ab-
stract methodcontains, which takes a location as an argument
and returns a boolean value – true if the space contains the lo-
cation, and false if not. The derived classes ofSpace include
Circle, Rectangle, etc. SpaceUnion, SpaceIntersection,
andSpaceDiff – derived classes ofSpace – allow composition
of complicated spaces using simple spaces. A location is repre-
sented as aLocation object. Derived classes ofLocation may
represent locations in different formats, including GPS locations,
MIT Cricket locations[39], or “fake” locations appropriate for a
particular simulation purpose. Usually, such aLocation object is
returned by querying the location service. The current implementa-
tion of theSpatialViews runtime library supports GPS and Cricket

locations. For instance, a call to methodcreateGPSLocation cre-
ates aLocation object from longitude, latitude, and, optionally,
attitude.

A space granularity∆s can be defined for a spatial view. It de-
fines the spatial density of the virtual network. Specifically, the
expected density for a spatial view with space granularity∆s is
O(∆s−2) for 2D spaces, i.e., one node every∆s2 area. In 3D
spaces, the expected density isO(∆s−3). Beyond density, the
specification of∆s requires virtual nodes to be approximately uni-
formly distributed across the entire space. Space granularity gives
the programmer control over QoR, and provides the compiler and
runtime system an opportunity to make tradeoffs among perfor-
mance, resource usage, and QoR.

Spatial views are defined using thespatialview statement.
The following statements define two spatial views. Space granu-
larity ∆s is defined using a% (per) operator in aspatialview
statement.

spatialview sv1 = Camera @ BuildingC.Floor3;
spatialview sv2 = LightSensor @ CampusB % 100;

Camera and LightSensor are class names for two Java inter-
faces.BuildingC.Floor3 and CampusB are variable names for
two space type objects. They are defined as following.

Rectangle CampusB=new Rectangle(...);
class CBuildingC extends Rectangle {

//constructors omitted
...
//arguments omitted
public Rectangle Floor3=new Rectangle(...);

}
CBuildingC BuildingC = new CBuildingC(...);

These space definitions can be put into a library and imported into
an application program. For spatial viewsv2, the space granularity
is set to be 100 meters. For sv1, since no space granularity is
explicitly specified, it is assumed to be the finest accuracy needed
to distinguish two physical nodes, or the finest achievable with the
available positioning technology.

2.2 Spatial View Iterator

Once a spatial view is defined, an iterator can be applied to it. The
iterator discovers the virtual nodes in the spatial view, gets access
to their services, and migrates program execution to them.

In SpatialViews, an iterator is expressed as avisiteach state-
ment. For example,

visiteach x : sv1 {
Picture p=x.getPicture();
...

}

where sv1 is the spatial view of cameras defined above, and
x is an object which is an instance of the service (defined by
the Camera interface in this example). When the control flow
reaches thevisiteach statement, the program should have mi-
grated to a node that provides the service and is in the specified
space(BuildingC.Floor3 in this example), andx should have
been initialized as an object of typeCamera to access the service.
The program continues its execution on the new node, until the
end of the iterator. One execution of the iterator body on a node is
called a visit to the node. After visiting one node, the program will
try to visit another virtual node. If no more nodes can be found,
the program will migrate back to the node where it migrated from
before the program execution reached the iterator. The order in
which the program visits the nodes is not known a priori. In fact,
the program may replicate itself and execute on multiple nodes in

program node (service)
spacespace

new A; register(100) A;

Figure 2. TheSpatialViews memory model: The program space is
part of a program’s execution state and migrates with the program;
the node or service space is a resilient memory area and does not
migrate. Objects in program space are allocated using thenew con-
struct. Theregister creates objects in the service space. Service
variables have a specified, maximal life time (100 seconds in this
example) and can be accessed by otherSpatialViews programs,
thereby allowing exchange of information between programs.

parallel. However, only one instance of the program remains after
the iterator has finished.

During an iteration, unique virtual nodes are visited. Unique-
ness requires that the location or time of a virtual node differ from
other nodes. The difference should be at least an amount specified
by the space or time granularity. Space granularity is specified in
the spatial view definition. Time granularity is specified in the iter-
ator. Different physical nodes can be visited, as long as they have
distinguishable locations, or are visited at different times. A sin-
gle physical node can be revisited in∆t time after the previous
visit, where∆t is the time granularity. It can also be revisited if it
changes its location at least∆s, where∆s is the space granularity.
In practice, the desired spatial and temporal distribution may be ap-
proximated. The current implementation uses a relaxed model that
considers virtual nodes different if they are in different∆s × ∆t
subgrids of the original space×time target region.

Infinite iteration is possible, because the target virtual network
could be infinite. There are two reasons. First, new physical nodes
may join the network. Second, with time change or movement, the
same physical nodes can be reused, and keep appearing as new
virtual nodes in our spatial view. Although infinite spatial view
iterations have their applications, it is often desirable to avoid them.
The time constraint on an iterator can be used for this purpose. A
time constraint is a time budget for an iteration. After each visit to
a virtual node, the remaining budget will be checked. If the budget
is exhausted, further visit to new nodes will be prevented.

The time granularity∆t is specified in theevery clause. An
every clause is always followed by awithin clause orforever
keyword. For example.

visiteach x:sv1 every 3 within 600 {...}
visiteach x:sv1 every 5 forever {...}

where “every 3 within 600” means:∆t = 3 seconds and the time
constraint is 600 seconds, and “every 5 forever” means:∆t = 5
seconds and the time constraint is infinity. Awithin clause or a
forever keyword is always used after anevery clause and never
used alone. If noevery, within, or forever clauses are used in
the iterator, the programmer indicates that as many virtual nodes as
possible should be visited without using a physical node more than
once. In other words, an unqualified iterator produces a snapshot of
the network that can be greedily discovered in one try.

2.3 Memory Model

Every variable in aSpatialViews program is either aprogramvari-
able or aservicevariable. Program variables migrate as part of the
program execution state from one virtual node to another. Service
variables do not migrate. The main motivation for service variables
is the support of cooperation amongSpatialViews programs, and
the access to services provided by and residing on physical nodes,
e.g. hardware-specific functionality such as access to sensors or
cameras. Program variables are stored in the program space, and
service variables are stored in the node (service) space. Program
variables are created using thenew operator or are of basic type,
and service variables are allocated using theregister operator.
Figure 2 shows the partitioned memory model forSpatialViews
programs.

Service Variables A service variable is declared in an iterator. It
can only be accessed in that iterator, but not in any nested iterators.
A register operation creates a service object in the node space
from a class that implements one or more service interfaces. That
service object can be used later through a service variable. For
any created object, aregister operation generates one or more
entries in the service table of the hosting node. The service table
is a data structure that maps service names (interfaces) to service
objects. An object’s names are all the interfaces that it implements,
directly or through inheritance. Once created, a service object can
be found by an iterator through its names in the service table,
and can be bound to a service variable. Theregister operator
contains a parameter that specifies the lifetime of the created object
in seconds. This lifetime is a hint for garbage collection in the node
space. The runtime system does not guarantee that the registered
service will be available for its specified, maximal lifetime. The
host node may decide at any time to temporarily suspend access to
service variables, or to permanently delete service variables.

Program Variables There are three categories of program vari-
ables in aSpatialViews program. Each category has specific access
constraints, giving opportunities for different optimizations such as
parallel execution of the iterations of a spatial views iterator using
structured communication patterns [36]. Without such restrictions,
race conditions could occur during parallel execution. By default,
all program variables are assumed to be local.SpatialViews pro-
gram variables can be of one of the following categories:

1. local: a local variable is read/write within the defining iteration,
and read-only within nested iterators.

2. container: a container variable represents a collection of ob-
jects. It is read/write within the defining iteration, and write-
only within nested iterators. The corresponding abstract data
type is that of a set of elements of a particular type. “Write-
only” means that objects can only be inserted into the collec-
tion, but not read or removed. A container variable must be an
instance of the predefinedContainer class.

3. reduction: a reduction variable is specified together with a com-
mutative and associative operation. It is read/write within the
defining iteration, and apply-reduction-operation-only within
nested iterations. The initialSpatialViews language will only
support a rather small subset of reductions, such as sum and
product reductions. Reduction variable declarations start with
the keywordssumreduction or productreduction.

There are no global, shared variables without any access restric-
tions in theSpatialViews language. If a variable cannot be classi-
fied as either one of the three types of program variables or as a
service variable, a compile-time error will occur. The compiler and
runtime system will enforce the access restrictions for the program
variables.

public interface LightSensor {
public float read();
...

}
public interface SpaceDefs {

public static final Space CampusB=new Rectangle(...);
...

}
public class AverageLighting {

public void static main(String[] args) {
sumreduction float s=0;
sumreduction int n=0;
spatialview sv=LightSensor @ SpaceDefs.CampusB % 320;
visiteach x : sv

{ s += x.read(); n++; }
if (n>0)

System.out.println(Float.toString(s/n));
}

}

Figure 3. An average sensor reading program.

2.4 Example Program

Figure 3 shows an example program that collects readings from
light sensors and calculates the average. The program contains a
single spatial view that specifies a virtual network of light sensors
on a university campus, with a desired density of one sensor every
320×320 square meters. The iterator declares a service variable
x. When the program visits a node,x will be bound to an object
that implements theLightSensor interface on the visited node.
The service object lives in the node space, allowing accesses to
the light sensor installed on the node. In this example, the space
definition is assumed to be provided by the space definition class
SpaceDefs. This class may be written by the user or may be
imported from a library of space definitions. Since the iterator does
not contain any clauses, the program will try to find and migrate to
as many virtual nodes as it can while observing the space constraint,
and then return to the program injecting node, i.e., the machine
that started the execution of the entire program. The body of the
iteration, namely{s += x.read(); n++;}, is executed on each
visited virtual node. Boths and n are reduction variables. They
are allocated in the program space and migrate with the program.
Since the values of the reduction variables cannot be read in the
iterator, the compiler has the option of generating code that exploits
the parallelism in this program, for instance, using of geographic
flooding as discussed in Section 3.1.2. Once the iterator terminates,
the values ofs andn will have been appropriately updated. The
average light sensor reading is calculated froms andn, and printed
on the injecting node.

3. Implementation
The current implementation includes theSpatialViews compiler,
virtual machine, runtime library, and debugging/visualization en-
vironment. The runtime library implements different iteration ap-
proaches that are selected through compiler options. Based on the
selected iteration approach, the compiler generates code that ex-
tends classes in the appropriate library. The current prototype com-
piler performs type checking for access restrictions on program and
service variables, but does not support any interprocedural analysis
yet. The virtual machine provides support for program migration.
Figures 4 and 5 show the compiler and runtime system, respec-
tively. The debugging and visualization environment is a program
that emulates ad-hoc networks of mobile nodes, on which a pro-
grammer can run and debug compiledSpatialViews programs be-
fore deploying them to real networks.

3.1 Compiler

The prototypeSpatialViews compiler extendsjavac in Java De-
velopment Kit (JDK) 1.3.1 from SUN Microsystems, Inc. A flow
graph is given in Figure 4 for the compiler. The parser was changed
to accept new statements such asspatialview andvisiteach,
and the corresponding new intermediate representations (IR) were
added. Program analysis or transformation at the IR level are im-
plemented as translators (a.k.a. passes).

The SpatialViews compiler added two main translators to the
SUN Java compiler. One translator verifies that variables are ac-
cessed as declared in an enclosed iterator, i.e., non-local variables
are never written, reduction or container variables are never read,
and service variables are never written or read. If this check fails, a
compile-time error will be reported. The other translator performs
optimizations such as parallelization of spatial view iterators based
on the user selected iteration strategy. For all updates on reduction
variables and container variables, the translator generates code that
does local computation and code that merges partial results. In ad-
dition, this translator generates code to implement transparent pro-
gram migration on top of the SmartMessages[22] virtual machine.

3.1.1 Migration

SpatialViews supports transparent program migration. The current
implementation does not allow recursive calls from within an itera-
tor. Migration is implemented at two levels. At the lower level, the
SmartMessages[22] virtual machine supports explicit migration. At
the upper level, the compiler generates code to make migration ap-
pear transparent.

The SmartMessages system is an extension to the Java 2 Plat-
form, Micro Edition (J2ME)[41]. The Kilobyte Virtual Machine
(KVM)[42] and the Connected, Limited Device Configuration
(CLDC) class library were modified to implement light-weight
migration. J2ME has been widely used in today’s cell phones. The
memory budget is in the range of 160KB to 512KB.

The migration provided by SmartMessages is explicit, opposite
to transparent full-process migration. Only a very limited amount
of information about the program execution state, including the in-
struction pointer, stack pointer, etc., is automatically transferred
to the new node. No program data are automatically transferred.
Instead, a collection of data are explicitly allocated (called a data
brick) for the program to carry in a migration. If the value of some
variable is needed after migration, the program should copy it into
the data brick. It is the SmartMessages program’s responsibility to
restore the variable with the value from the data brick after a migra-
tion. At the upper level, theSpatialViews compiler transparently
decides what data items have to be migrated, packs and unpacks the
resulting data bricks, and thereby hides all the above discussed de-
tails. As a result, at theSpatialViews language level, a programmer
does not explicitly deal with program migration, and no migration
primitive is provided.

3.1.2 Iteration

Spatial view iteration is end-to-end migration among the injecting
node and virtual nodes that provide the service in the space. Differ-
ent iteration approaches can be chosen with a command line option
for theSpatialViews compiler. Each approach represents a differ-
ent tradeoff among performance, resource usage, and QoR. The set
of currently supported approaches is discussed below.

Simple Iterationapproaches do not make use of location infor-
mation in the process of searching for new nodes and the routes to
them. Location information is only used to decide whether a found
node is part of the spatial view or not. A straightforward imple-
mentation of spatial view iteration is a serial implementation as
discussed in [35, 36]. In a serial iteration, a single program mi-
grates from one node to another. To improve its failure resilience or

Figure 4. TheSpatialViews compiler.

SpatialViews Applications

SpatialViews/SmartMessages Library

SmartMessages Virtual Machine

Operating System

Figure 5. TheSpatialViews runtime environment.

performance, a program may be replicated. The replica may work
independently, each of which performs a serial iteration, or they
may cooperate with each other. Experiments showed that coopera-
tive approaches are more failure resilient and more energy efficient.
In a cooperative approach, a program clones itself on a new node.
The clones are propagated to nodes immediately (one hop) reach-
able from the current node. The clones then clone themselves and
propagate to more nodes, and so on. The clones mark nodes so
that they do not visit a node that has been visited by another clone.
When a limit in the node discovery strategy is reached or the time
constraint exceeded, the clones migrate back. The partial results
of reduction variables and container variables are merged on inter-
mediate nodes while clones are converging back. After the partial
results are merged, the clones that produced the partial results ter-
minate. In the end, the original program continues on the node that
initiated the iteration and all clones terminated. The program has
the final results of all reduction and container variables. This ap-
proach is calledflooding. A tree-basedapproach is similar to flood-
ing, but remembers the spanning tree of visited nodes for the spatial
view. Subsequent iteration over the same spatial view will reuse the
spanning tree. The tree-based approach can be more efficient than
a flooding approach. However, the tree-based approach does not
allow the discovery of new nodes and/or routes. A more detailed
discussion of these approaches can be found elsewhere [36].

Geographic Iteration approaches use location information.
Two geographic iteration approaches are proposed in this paper.
Both approaches use a quadtree[40] to represent the target space.
A quadtreeis a recursive division of a minimal square cover of the
target space. For 3D spaces,octrees can be used. However, a dis-
cussion of octrees is beyong the scope of this paper. To construct
a quadtree for a space, a minimal square cover has to be found.
This square is divided into four smaller squares. The four smaller

squares are divided into even smaller squares, and so on. This divi-
sion process continues until the size of the smallest squares is less
than∆s as defined in the spatial view. The smallest squares in this
division are calledcells. The cells that are not located the original
target space can be ignored. The largest square is represented by
the root of the quadtree. It has four children, which are four smaller
squares that the root is divided into. They are at the first level of the
quadtree. The smallest squares (cells) are the leaves of the quadtree.
Given the quadtree, a geographic iteration should visit one node in
each cell, if there exists such a node. This way, the density of the
virtual nodes isO(∆s−2), and they are evenly distributed over the
target space.

In the Geographic Serial Iterationapproach, an iteration is
modeled as a multi-stage dynamic planning problem and solved
using a greedy strategy. The program remembers all visited cells.
After visiting every node, the program migrates to a neighbor,
if and only if that neighbor minimizes the program’s distance to
unvisited cells. That distance is defined as the shortest among the
distances from the program’s running node to all unvisited cells.
As a special case, if a physical node is located in an unvisited cell,
this distance is zero. After the program has visited all the cells in a
quadtree, it migrates back to the injecting node, using geographic
routing. Backtracking maybe necessary in sparse networks. If a cell
does not contain any virtual node, the algorithm will only detect this
fact after exhausting all possible alternative routes to reach a node
in the cell. This results in a significant overhead and may make this
approach less efficient than simple serial iteration.

Geographic Flooding, the second approach, is similar to sim-
ple flooding. The difference is that the program is propagated over
spatial topology instead of network topology. Specifically, the pro-
gram first migrates into the root of the quadtree, i.e., any node in
the minimal square cover of the target space. Subsequently, the pro-
gram forks into four clones, each of which migrates to the next level
of the quadtree, i.e., the sub-squares of the current square. This pro-
cess repeats recursively until the program clones propagate into all
the cells. If the first physical node visited by the program in a cell
does not provide the service, a simple serial iteration confined to
that cell has to be performed to find another physical node that
does. And this extra serial iteration will stop on the first of such
nodes. Finally, all the clones migrate up the quadtree back to the
starting node. Partial results are merged on the way back. In this
approach, geographic routing is used to migrate from one node to a
specified square region.

3.2 Programming Environment

Our SpatialViews development environment also contains a de-
bugging/simulation/visualization component designed to facilitate
testingSpatialViews code on an emulated mobile ad-hoc network.
Mobility is emulated by feeding dynamically generated location
and topology information to a collection of KVM processes run-
ning on the same PC. The debugger can be used to inject code
into the network, observe its behavior, and interact with the sys-
tem through a graphical user interface. The same compiler gener-
ated code can be executed on a real target system, for instance a
collection of HP iPAQs, or on an emulated network using the de-
bugging/simulation/visualization environment.

Currently, the debugger can display a schematic view of the
network topology and tracking the movement of individual nodes,
inject SpatialViews code into the network through a user-selected
node, and display program output and migration information.
Planned features include the ability to recreate real-life network
configurations based on location data gathered experimentally,
more extensive control over the parameters of the synthetically-
generated network configurations, and a more structured presen-
tation of debugging information gathered from KVM processes.

Figure 6. Debugger/Visualization Prototype forSpatialViews

A general “replay” mechanism will allow the understanding and
debugging of a particular program execution. Such a replay mech-
anism is important since the particular program/system behavior
may not be reproducable.

A preliminary version of the debugger which allows remote
real-time interaction with several exampleSpatialViews programs
running on an emulated network hosted on our servers is available
as a Java applet. Figure 6 shows a screen snapshot of the current
implementation. Each gray dot represents a node in the emulated
network. Each node has an associated display area which shows
the node’s spatial position (top) and the last few lines of that node’s
output. The user interface panel on the right allows the user to (1)
control several parameters of the network, (2) select a program
from a list of compiledSpatialViews programs available on the
system and inject it into the network, and (3) overlay information
about signal ranges and code migration paths onto the main display
window.

4. Experimental Results
We will illustrate the expressiveness of theSpatialViews program-
ming model and the performance of the compiler generated code
based on four example applications. Each application exercises dif-
ferent features of the language.

4.1 QoR vs. Resource Usage Tradeoffs

Most SpatialViews target applications are location sensitive, i.e.,
location information is required by the applications. In some cases,
it may be unnecessary or wasteful to visit every node in a dense
network if an acceptable program answer can be computed by only
visiting a representative subset of the network nodes. For exam-
ple, this representative subset are nodes that are evenly distributed
across the target space. As a rule of thumb, the fewer nodes are
visited, the faster the program will return and the lesser network
and node resources are used. This comes at the price of a potential
reduction in the quality of the produced answer.

The space granularity in a spatial view definition allows the
user to express a QoR vs. resource usage vs. performance tradeoff.
We evaluated both geographic approaches with simulations and
experiments. The reported results used the light sensor program
as shown in Figure 3. The experimental platform was a network
of 12 H3700 or H3800 iPAQs each running the SmartMessages
virtual machine under Familiar Linux. The simulation environment
was a PC running 64 KVMs under RedHat 9 Linux. The KVMs in

the simulation environment were the same as those running on the
iPAQs except that they were built for the x86 ISA. The compiler
generated the same bytecode for both simulations and experiments.

The simulated network topology is shown in Figure 7(a). The
target space was 1000m×1000m. The nodes were randomly dis-
tributed over the space with a wireless network signal range of
250m. Each pair of nodes that are within the signal range of each
other are connected with an edge in the figure. Figure 7(b) shows
the trace of the program migrating with the geographic serial ap-
proach. Figure 7(c) shows the trace using geographic flooding. Iso-
lated nodes without any edges were not visited at all. Only 24 nodes
were visited using either approach. If the simple serial or network
flooding approaches are used, all the 64 nodes will be visited. These
simulation results imply that geographic approaches will improve
response time and save energy consumption over simple iteration
approaches.

We did physical measurements of energy consumption and re-
sponse time on 12 HP iPAQs using both geographic and simple
iteration approaches. We connected the 12 iPAQs to a single DC
power supply in parallel. An oscilloscope was used to measure the
current at the output of the power supply. The current readings were
collected by a data acquisition PC. Figure 9 shows a diagram of the
testbed setup. We calculated the power dissipation of all the iPAQs
from the current readings and the input voltage of 5V. Since all
batteries were fully charged before the experiments and since the
iPAQs’ DC/DC converters are highly efficient, the observed power
dissipation is very close to the actual power dissipation of the net-
work. Energy consumption was calculated by integrating the power
over the execution time. In the reported results, energy consump-
tion of idle state was deducted. In other words, only the extra dy-
namic energy consumption caused by the program execution is re-
ported.

Since all iPAQs were connected to a common power supply
in the experiments, their physical distribution was limited by the
length of their power cables. As a result, all iPAQs were able to di-
rectly communicate through their wireless connection. Even when
we shielded each individual iPAQ with metal foil, the radio sig-
nals were still able to travel along the power supply cable to all
iPAQs. To get a more interesting network topology, we disabled
the dynamic network neighbor discovery in these experiments, and
instead used static configured neighbor lists. Figure 8(a) shows the
used network topology. The target space was 625m×625m with a
wireless network signal range of 250m. The node locations were
simulated, i.e., statically configured. The program was injected
from a laptop computer which is not shown in the figures. Fig-
ure 8(b) shows the trace for geographic serial iteration, and Fig-
ure 8(c) the trace for geographic flooding. Figure 10 reports energy
consumption, response time, and number of visited nodes for the
four approaches. Compared to simple iteration, geographic itera-
tion saved 50% or more energy and ran at least twice as fast in
our experiments. These savings were achieved by visiting only a
spatially representative subset of nodes that cover the entire target
space. Depending on the application, this may only slightly impact
the quality of the produced result. Our example application has this
property. As pointed out in Section 3.1.2, the effectiveness of geo-
graphic iteration also depends on the network density and may not
work well for sparse networks.

4.2 User-Defined Services

An every clause in a spatial view iterator allows a physical node to
be visited again as a new virtual node every∆t time interval. This
feature can be used to specify and deploy a user-defined service
which provides automatically refreshed information within every
∆t time interval. Figure 11 shows such aSpatialViews program
that installs and updates a location service. The program installs an

 0

250m

500m

750m

1000m

 0 250m 500m 750m 1000m

(a) Network topology

 0

250m

500m

750m

1000m

 0 250m 500m 750m 1000m

Injecting Node

(b) Trace of geographic serial iteration

 0

250m

500m

750m

1000m

 0 250m 500m 750m 1000m

Injecting Node

(c) Trace of geographic flooding

Figure 7. Simulation on 64 nodes with the average sensor reading program (Figure 3).

 0

312.5m

625m

 0 312.5m 625m

(a) Network topology

 0

312.5m

625m

 0 312.5m 625m

(b) Trace of geographic serial iteration

 0

312.5m

625m

 0 312.5m 625m

(c) Trace of geographic flooding

Figure 8. Experiments on 12 iPAQs with the average sensor reading program (Figure 3).

Power Supply

Oscilloscope

iPAQ

iPAQ

iPAQ

...

Current
Samples

Data Acquisition
Computer

Data
Via

Ethernet

Figure 9. The energy measurement setup.

“eager” location service on every node within a hallway that peri-
odically queries a positioning system based on MIT Crickets [39].
The Cricket system may take up to four seconds to acquire a loca-
tion reading. If a program running on a node in the hallway needs
to know its location, an on-demand, i.e., lazy query of the Crickets
may lead to a significant performance bottleneck, for instance dur-
ing the execution of a spatial view iterator [36]. The latency of the
Crickets may be hidden from an application by using an eager loca-
tion service instead. The eager service can be written and deployed
by theSpatialViews programmer, i.e., the user.

Serial Geographic Serial Flooding Geographic Flooding
0

5

10

15

20

25

30
Energy (joules)
Execution Time (seconds)
Number of Visited Nodes

11.9

26

12

6.16 6.2 6

9.83

7.8

12

3.7 3.8

6

Figure 10. The measurements for the average sensor reading pro-
gram running on 12 iPAQs.

public interface LocationService {
public Location currentLocation();

}
public class EagerLocationService

implements LocationService {
Location l;
public EagerLocationService(l) {this.l=l};
public Location currentLocation()
{ returns l; }

}
public class DedicatedLocationService {

public void static main(String[] args) {
float dt = Float.valueOf(args[0]).floatValue();
spatialview sv = @ Hallway;
visiteach x : sv every dt forever {

CricketLocationService ls=
new CricketLocationService();

Location loc=ls.currentLocation();
register(dt) EagerLocationService(loc);

}
}

}

Figure 11. A user-defined service example.

0

1

2

3

4

5

6

 0 4 8 12 24 36 48 60U
se

r
pr

og
ra

m
 e

xe
cu

tio
n

tim
e

(s
ec

on
ds

)

Service time granularity ∆t (seconds)

Figure 12. Overall execution times of the average sensor reading
program (Figure 3) on 6 iPAQs using the user-defined eager loca-
tion service (Figure 11) with different time granularities∆t (= dt
in Figure 11).

We conducted experiments with this eager, self-updating loca-
tion service. We ran the service on 6 iPAQs. As an application pro-
gram, we ran the light sensor program shown in Figure 3 using
flooding and a fully-connected network topology. We measured the
overall execution times of the light sensor application using the ea-
ger location service with∆t values ranging from 4 seconds to 1
minute. The results are reported in Figure 12. When the application
used the Cricket service directly, i.e., in a lazy fashion, the execu-
tion time was 8 seconds. In contrast, the execution times using the
eager service were significantly lower, ranging from 0.6 to 5.8 sec-
onds. The eager service will compete with the application for CPU
time. The more frequently a service runs, the less responsive the
overall system will be and the more resources will be used. From
a programmer’s perspective, the choice of∆t represents a trade-
off between QoR (“freshness” in this case), system responsiveness,
and resource usage.

public class ShootAndDetect {
public static void main(String[] args)
{

Container result = new Container();
spatialview CameraView = Camera @ BuildingC.Floor3;
visiteach c : CameraView {

Picture p = c.getPicture();
spatialview DetectorView = FaceDetector;
visiteach d : DetectorView {
result.addElement(d.detect(p));

}
}
int i=0;
for (Enumeration e=result.elements();

e.hasMoreElements();) {
Picture p=(Picture)e.nextElement();
p.savePNMFile("PIC"+(i++)+".pnm");

}
}

}

Figure 13. A camera and face detection example.

4.3 Cooperating Nested Virtual Networks

Multiple spatial views cooperating with each other is a very use-
ful feature ofSpatialViews. This feature is usually expressed via
nested iterators. Based on conditions encountered during program
execution, additional service discovery is initiated. Figure 13 shows
a SpatialViews program that finds nodes with cameras within a
building, instructs the cameras to take pictures, and then initiates
face detection on server nodes that provide face detection.

We ran the program on the 12 iPAQs shown in Figure 8(a)
and a laptop computer. Only one iPAQ had a camera sleeve and
therefore provided theCamera service. In the first experiment,
the face detection service was available on a single iPAQ. If a
face was found in the picture, the response time of the program
was 75 seconds. If no face was detected, the response time was
159 seconds. The face detection code uses an image pyramid that
is exhaustively searched. Once a face is found, the face detector
terminates. This explains why the detector takes longer if no face
can be found. In the second experiment, we ran the single face
detection service on the 800MHz laptop. Depending on whether
a face was found or not, the overall response time was 70 and 72
seconds, respectively. This example shows that it may be useful
to allow a spatial view iterator to return after a finite number of
virtual nodes have been visited. For instance, if the face detection
service is replicated in the network, the nested iterator will try to
find each face detector and apply it to the picturep. Clearly, this
is redundant work unless the detectors are of different qualities.
We plan to extend the language to allow users to specify an upper
bound on the number of visited nodes by a spatial view iterator.
In the case of the discussed example, the upper bound of 1, which
means visiting at most one detector, is a reasonable choice.

4.4 Augmented-Reality Gaming

Multi-player on-line gaming on the Internet has become increas-
ingly popular and has developed into a profitable business, as well
as new area of academic research. In fact, prototype systems have
already been developed that support multi-player games on wire-
less ad-hoc networks with handheld devices. Figure 14 and Fig-
ure 15 show an augmented-reality (AR) Pacman game for ad-hoc
networks of mobile devices. This game is a new version of the pop-
ular 1980’s pacman game. Each player has a GPS enabled PDA,
which presents an interface as in Figure 14, with virtual obstacles,
pellets (food for pacman to eat), ghosts (played by opponent play-
ers), and pacman (the player). The player eat pellets by moving

Figure 14. The AR Pacman game interface.

across their locations. The goal for the pacman is to win by eat-
ing all the pellets without being caught. He/she will lose if caught
by a ghost. The Human Pacman project[11] developed a prototype
system to play this game in a wide outdoor area.

The core of this game can easily be written inSpatialViews.
Figure 15 shows aSpatialViews implementation. Each player runs
this program on his/her PDA. The outer iterator propagates the
program to all player nodes (PDAs). Every 4 seconds, the program
initiates the collection of the current locations of all players, and
updates the display. The inner iterator does the location collection.
If the collection takes longer than 4 seconds (the time constraint),
the results can be discarded. Theshow method in thePacman
interface renders a graphical interface on the PDA, showing the
playground, obstacles, pellets, and all players’ locations. Obstacles
and pellets are supposed to be generated and maintained by the
show method.

We did some first experiments for this location collection code
with the help of 5 student participants. Each student carried an
iPAQ handheld PC and a Garmin geko 201 GPS. The GPS device
was connected to each iPAQ’s serial port. The iPAQs communi-
cated through 802.11b in ad-hoc mode. The students were playing
the game in two parking lots of about 100m×100m each.The exper-
iments showed that an update rate of 4 seconds was feasible for our
program and hardware. The GPS receivers provided an accuracy of
2.5 meters to 5.5 meters.

5. Discussion
In this section, we discuss miscellaneous issues in the design,
implementation, and evaluation ofSpatialViews.

5.1 New Language vs. Library

Effective programming for ad-hoc networks requires abstractions
that do not exist in traditional models. These abstractions are
needed to represent dynamic grouping, space, location and time
resolution, discovery, routing, and in-network reduction. A li-
brary may provide a rapid implementation for a new programming
model, because it does not require new tool chains or learning new
language constructs. However, a new language is able to provide
better support for the new programming model in terms of effec-
tiveness of compiler-time analyses and opportunities for compiler
optimizations. As a result, we expect compiler generated code to
be more efficient than the corresponding program version based
on a library (API) implementation of the programming model.
New language abstracts are expressed explicitly, making the code
more readable and maintainable. Finally,SpatialViews was also
designed to serve as a vehicle to investigate different language fea-
tures and compiler optimizations.

public interface Pacman {
// Render a graphical interface including
// pacman, ghosts, peletts, and obstacles.
public void show(Container c);

// Get the role of the player: pacman or ghost.
public Role getRole();

}
public class PacmanGame {
public static void main(String[] args) {

spatialview sv = Pacman @ SpaceDefs.PlayGround;
visiteach x : sv every 4 forever {
Container c = new Container();
visiteach y : sv within 4 {

Location l = System.currentLocation();
c.add(new Player(y.getRole(),l);

}
x.show(c);

}
}

}
class Player {
Location l;
Role r;
public Player(Role r, Location l)

{ this.r=r; this.l=l; }
}

Figure 15. An AR Pacman game program.

5.2 Units of Measurements

Units of measurements are currently not explicitly specified in
SpatialViews. The current language assumes that length is always
specified in meters and time always in seconds. This is a deficiency
of the language that will be addressed in a future language release.
The lack of units may initially lead to some confusion, but allowed
the rapid development of our prototype with focus on the major
design issues such as location-aware service discovery and quality
of results. Explicit specification of units with enhanced language
features, such as proposed in [2], will be investigated as part of a
future language release.

5.3 High-Level Iteration Transformations

An interesting analogy can be made between∆s or ∆t specifi-
cation and traditional index-set splitting[3]. The target space in a
spatial view definition can be thought of as the iteration space of a
traditional loop. The geographic evenly distributed iteration has a
similar flavor as traditional index-set splitting. Based on this obser-
vation, other traditional loop transformations may be applicable in
the context of spatial view iterations. An example is loop flatten-
ing. Using a straightforward implementation, the code in Figure 16
requires one flooding of the network to find lighting sensors, fol-
lowed by additional flooding to find cameras. If loop flattening is
performed, only one flooding is necessary, which will collect both
sensor readings and camera images, and select the correct results
in the end. Preliminary experiments with one laptop computer and
three HP iPAQs showed that the transformed version using loop
flattening may run up to five times faster than the original version.
Other loop based compiler optimizations such as loop interchange
and loop fusion are currently under investigation.

5.4 Security and Privacy

Security and privacy are important issues in ad-hoc networks,
where mostly unidentified nodes join and leave transparently. These
issues become more important in a network running mobile code
such asSpatialViews programs. Security and privacy are impor-
tant for the migrating program as well as the participating nodes in

Container c = new Container();
spatialview SensorView = LightingSensor @ CampusB;
visiteach s : SensorView {

if (s.read()>0.5) {
Location loc = System.currentLocation();
spatialview CameraView = Camera @ new Circle(loc,5);
visiteach cam : CameraView

c.addElement(cam.getPicture());
}

}

Figure 16. An example program for loop flattening.

the network: A migrating program carrying user data needs to be
protected from a malicious node, and a node needs to be protected
from malicious migrating code. These issues are challenging not
only for the language design, but also for the design of the whole
system involving almost all other layers, including runtime library,
virtual machines, operating systems, and hardware. Our current
working assumption is thatSpatialViews applications are going
to be used in either a network of trusted members or on top of a
trustworthy virtual machine or operating system that provides the
protection needed. Providing security in a SmartMessages virtual
machine is currently under investigation[48].

6. Related Work
Programming of ad-hoc networks has become a research focus
in the past decade. Jini[43] is an architecture that supports ser-
vice discovery and spontaneous networking.SpatialViews shares
with Jini the same approach of naming services with Java inter-
faces. However, in contrast to Jini and other service discovery
architectures[1],SpatialViews does not assume the existence of
network-wide lookup services or service directories.

In recent years, programmability of sensor networks has be-
come a hot research area[5, 47, 44, 14, 17, 28, 30, 7]. TinyOS[17]
and nesC[14] provide a component-based event-driven program-
ming environment for Berkeley Motes. nesC is an extension to
C that supports and reflects TinyOS’s design. TinyOS and nesC
use Active Messages, which is similar to program migration in
SpatialViews, but uses non-migrating handlers instead of migrat-
ing code. Mat´e[28] is a tiny virtual machine built over TinyOS
for sensor networks. It allows capsules in bytecode to forward
themselves through a network with a single instruction, which en-
ables on-line software upgrading for large-scale sensor networks.
Impala[30] also provides an event-based programming model, and
emphasizes issues such as on-line software updates and adaptabil-
ity. SensorWare[7] provides lightweight mobile scripts for sensor
networks and is very similar to SmartMessages. Hood[47] and Ab-
stract Regions[44] provide similar abstractions asSpatialViews,
i.e., grouping nodes based on their properties. Blum et al.[5] pro-
posed the concept of entity for an addressable group of sensors
that monitor an event. TAG[31] considers a sensor network as a
database, and provides a high-level SQL-like language to query it.
Location is one property of the database about which queries can
be made.

Programming models for massive networks of tiny embedded
systems have also been studied. Such a network may contain mil-
lions of nodes, each of which is as small as a grain of sand. Nagpal
presented a high-level language to program a sheet of agents simi-
lar to epithelial cells to form a global-specified shape just through
local computation and communication[33]. Butera designed a pro-
gramming model for paintable computers, which are small enough
to mix with paint[9]. The major abstraction is process fragments
migrating among nodes as the basic elements of a self-assembly
process.

Migratory execution as seen inSpatialViews and implemented
by SmartMessages has been extensively studied in the literature,
especially in the context of mobile agents[10, 46, 27, 16, 15, 45].
Unlike a typical mobile agent system which makes migration a
programming primitive,SpatialViews hides it in an iteration of
virtual nodes named by properties.

Ad-hoc networking has been extensively studied[38, 21, 8]. It-
eration inSpatialViews were implemented based on the same ba-
sic ideas of those ad-hoc network routing algorithms. In particu-
lar, it is not novel to use georgraphic information for addressing
and routing. Navas and Imielinski proposed GeoCast for both ge-
ographic unicast and geographic multicast over the Internet[34].
Ko and Vaidya improved GeoCast for mobile ad-hoc networks[25].
Karp et al. proposed perimeter forwarding to recover from local
maximal in greedy routing using node locations[23]. Li et al. pro-
posed GLS, a location database that uses of geographic hierarchy
to serve location queries with a server close to the querier in geo-
graphic routing[29]. And there have been also works for geographic
multicast after GeoCast. Huang et al. proposed mobicast to dissem-
inate packets into a moving and changing delivery zone[18]. Com-
pared to those works, the geographic iteration inSpatialViews is
different in that the expected node density can be specified for the
target region, allowing redundant nodes to be avoided.

SpatialViews deals with time constraint. However, the time
constraint inSpatialViews is significantly different from previous
systems with strict time constraints, e.g. the time constraints in the
Time Warp OS[20]. In Time Warp OS, the messages generated by
a parallel discrete event simulation system have to be received in a
nondecreasing timestamp order. This restriction can never be vio-
lated in order to guarantee the correctness of the simulation. Time
Warp OS uses aprocess rollbackmechanism to implement the time
constraints. In contrast, the time constraint inSpatialViews is a
soft deadline which should be better described as a budget. It is the
amount of time that a programmer is willing to spend to finish a
spatial view iteration. If the program spends more than the budget,
further iteration will be prevented, but no rollback is necessary if
ever possible. The time constraint inSpatialViews is one way for
the programmer to tune the trade-off between the iteration time and
the quality of results.

7. Conclusions and Future Work
Ad-hoc networks are an exciting new target platform with a wide
open application potential.SpatialViews is a simple yet expres-
sive high-level programming language for ad-hoc networks. The
language tries to hide enough details about the underlying volatile
target system while giving a programmer sufficient control over the
efficiency and resource usage of the program as well as the qual-
ity of the computed result. A wide range of applications can be
implemented inSpatialViews, indicating the expressiveness of the
language. This paper discusses four applications together with pos-
sible optimizations. Simulation results and physical measurements
showed the efficiency of the compiler generated code. The language
can also serve as a testbed to investigate different compiler and run-
time optimizations, and allows insights into the characteristics and
requirements of programs executing on a volative, dynamic, and
heterogeneous network.

Future challenges include compiler and runtime optimizations
that take advantage of particular network characteristics such as
network topology, degree of dynamic behavior, and node and com-
muncation failure rates. Investigating the mathematical founda-
tions of best-effort semantics is another important future chal-
lenge. It is not clear whether approaches used to specify non-
deterministic languages can be extended to incorporate a best-effort
model. A prototype version of ourSpatialViews compiler, run-

time system, and debugging/visualization environment is available
at http://www.cs.rutgers.edu/spatialviews.

Acknowledgment

We would like to thank Marios Dikaiakos and the anonymous
reviewers for their insightful comments.

References
[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The

design and implementation of an intentional naming system. InSOSP,
1999.

[2] Eric Allen, David Chase, Victor Luchangco, Jan-Willem Maessen,
and Guy L. Steele Jr. Object-oriented units of measurement. In
OOPSLA, Vancouver, British Columbia, Canada, October 2004.

[3] Randy Allen and Ken Kennedy.Optimizing compilers for modern
architectures. Morgan Kaufmann, 2001.

[4] T.E. Anderson, D. E. Culler, and D. A. Patterson. A case for networks
of workstations: NOW.IEEE Micro, 15(1):54–64, February 1995.

[5] Brian Blum, Prashant Nagaraddi, Anthony Wood, Tarek Abdelzaher,
Sang Son, and Jack Stankovic. An entity maintenance and connection
service for sensor networks. InMobiSys, 2003.

[6] C. Borcea, C. Intanagonwiwat, P. Kang, U. Kremer, and L. Iftode.
Spatial programming using Smart Messages: Design and implementa-
tion. In International Conference on Distributed Computing Systems
(ICDCS’04), Tokyo, Japan, March 2004.

[7] A. Boulis, C. Han, and Mani Srivastava. Design and implementation
of a framework for efficient and programmable sensor networks. In
MobiSys, 2003.

[8] Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, and
Jorjeta Jetcheva. A performance comparison of multi-hop wireless ad
hoc network routing protocols. InMobiCom, 1998.

[9] William J. Butera. Programming a paintable computer. PhD thesis,
MIT, February 2002.

[10] Luca Cardelli. A language with distributed scope. InPOPL, 1995.
[11] Adrian David Cheok, Siew Wan Fong, Kok Hwee Goh, Xubo Yang,

Wei Liu, and Farzam Farbiz. Human pacman:a mobile entertainment
system with ubiquitous computing and tangible interaction over a
wide outdoor area. InFifth International Symposium on Human
Computer Interaction with Mobile Devices and Services, 2003.

[12] S. Dashtinezhad, T. Nadeem, B. Dorohonceanu, C. Borcea, P. Kang,
and L. Iftode. TrafficView: A driver assistant device for traffic
monitoring based on car-to-car communication. InIEEE Semiannual
Vehicular Technology, Milan, Italy, May 2004.

[13] eDonkey.homepage. http://www.edonkey2000.com.
[14] David Gay, Phil Levis, Robert von Behren, Matt Welsh, Eric Brewer,

and David Culler. The nesC language: A holistic approach to
networked embedded systems. InPLDI, 2003.

[15] Robert S. Gray.Agent Tcl: A flexible and secure mobile-agent system.
PhD thesis, Dartmouth College, June 1997.

[16] Robert S. Gray, George Cybenko, David Kotz, Ronald A. Peterson,
and Daniela Rus. D’Agents: Applications and performance of a
mobile-agent system.Software: Practice and Experience, May 2002.

[17] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler,
and Kristofer Pister. System architecture directions for network
sensors. InASPLOS, 2000.

[18] Qingfeng Huang, Chenyang Lu, and Gruia-Catalin Roman. Spa-
tiotemporal multicast in sensor networks. InSenSys, 2003.

[19] The IETF Mobile Ad-hoc Networks (manet) Working Group.
homepage. http://www.ietf.org/html.charters/manet-charter.html.

[20] D. Jefferson, B. Beckman, F. Wieland, L. Blume, M. DiLoreto,
P. Hontalas, P. Laroche, K. Sturdevant, J. Tupman, V. Warren,
J. Wedel, H. Younger, and S. Bellenot. Distributed simulation and
time warp operating systems. InSOSP, 1987.

[21] David B Johnson and David A Maltz. Dynamic source routing in
ad hoc wireless networks. In Imielinski and Korth, editors,Mobile
Computing, volume 353. Kluwer Academic Publishers, 1996.

[22] P. Kang, C. Borcea, G. Xu, A. Saxena, U. Kremer, and L. Iftode.
Smart messages: A distributed computing platform for networks of
embedded systems.The Computer Journal, Special Issue on Mobile
and Pervasive Computing, 47(4), January 2004.

[23] Brad Karp and H.T. Kung. GPSR: Greedy perimeter stateless routing
for wireless networks. InMobiCom, 2000.

[24] Kazaa.homepage. http://www.kazaa.com.
[25] Young-Bae Ko and Nitin H. Vaidya. Location-aided routing (lar) in

mobile ad hoc networks. InMobiCom, 1998.
[26] U. Kremer, Y. Ni, and A. Stere. Spatial Views language specification,

version 1.0. Technical Report DCS-TR-563, Department of Computer
Science, Rutgers University, November 2004.

[27] Danny B. Lange and Mitsuru Ishima.Programming and deploying
Java mobile agents with Aglets. Addison-Wesley, 1998.

[28] Philip Levis and David Culler. Mat´e: A tiny virtual machine for
sensor networks. InASPLOS, 2002.

[29] Jinyang Li, John Jannotti, Douglas S. J. De Couto, David R. Karger,
and Robert Morris. A scalable location service for geographic ad hoc
routing. InMobiCom, 2000.

[30] Ting Liu and Margaret Martonosi. Impala: a middleware system for
managing autononmic parallel sensor systems. InPPoPP, 2003.

[31] S. Madden, M. J. Franklin, J. Hellerstein, and W. Hong. TAG:a Tiny
AGregation service for ad-hoc sensor networks. InOSDI, 2002.

[32] Mutella. homepage. http://mutella.sourceforge.net.
[33] Radhika Nagpal. Programmable self-assembly using biologically-

inspired multiagent control. InAAMAS, Bologna, Italy, July 2002.
[34] J.C. Navas and T. Imielinski. geocast–geographic addressing and

routing. InMobiCom, 1997.
[35] Yang Ni, Ulrich Kremer, and Liviu Iftode. Spatial Views: Space-

aware programming for networks of embedded systems. InThe 16th
International Workshop on Languages and Compilers for Parallel
Computing (LCPC 2003), October 2003.

[36] Yang Ni, Ulrich Kremer, and Liviu Iftode. A programming language
for ad-hoc networks of mobile devices. InThe 7th Workshop on
Languages, Compilers, and Run-time Support for Scalable Systems
(LCR 2004), Houston, TX, October 2004.

[37] Pac-Manhattan.homepage. http://pacmanhattan.com.
[38] Charles. E. Perkins.Ad hoc networking. Addison-Wesley, 2001.
[39] Nissanka B. Priyantha, Allen K. L. Miu, Hari Balakrishnan, and

Seth J. Teller. The cricket compass for context-aware mobile
applications. InMobiCom, 2001.

[40] Hanan Samet.The Design and Analysis of Spatial Data Structures.
Addison-Wesley, Reading, MA, 1990.

[41] Sun Microsystems, Inc.Java 2 Platform, Micro Edition (J2ME).
http://java.sun.com/j2me.

[42] Sun Microsystems, Inc.The K virtual machine. a white paper
available at http://java.sun.com/products/cldc/wp/.

[43] Jim Waldo. The Jini architecture for network-centric computing.
ACM Communications, July 1999.

[44] Matt Welsh and Geoff Mainland. Programming sensor networks
using abstract regions. InNSDI 2004, March 2004.

[45] D. Wetheral. Lessons from a Capsule-based system. InSOSP, 1999.
[46] James E. White.Telescript technology: mobile agents, 1996. General

Magic, Inc. White Paper.
[47] Kamin Whitehouse, Cory Sharp, Eric Brewer, and David Culler.

Hood: A neighborhood abstraction for sensor networks. InMobisys
2004, June 2004.

[48] Gang Xu, Cristian Borcea, and Liviu Iftode. Toward a security
architecture for smart messages: Challenges, solutions, and open
issues. InProceedings of the First International Workshop on Mobile
Distributed Computing, May 2003.

[49] P. Zhou, T. Nadeem, P. Kang, C. Borcea, and L. Iftode. EZCab: A cab
booking application using short-range wireless communication. In
Proceedings of the 3rd IEEE International Conference on Pervasive
Computing and Communications (PerCom), March 2005.

