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Abstract

This paper makes two contributions to architectural sufpjoor
software debugging. First, it proposes a novel statisiased, on-
the-fly bug detection method call&C-based invariant detection
The idea is based on the observation that, in most progragissa
memory location is typically accessed by only a few insinng.
Therefore, by capturing the invariant of the set of PCs thmat n
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nity to use transistors to improve software robustness. ekam-
ple, Prvulovic and Torrellas proposed ReEnact [31], whisbsthe
state buffering, rollback and re-execution features o@drLevel
Speculation (TLS) to detect data races on the fly. Xu et abaesi
the “flight data recorder” [39], which enables off-line deténistic
replay and can be used for postmortem analysis of a bug. @ur pr
vious work on iWatcher [40] provides a convenient and effitar-
chitectural framework for dynamic monitoring. While ret@ork

mally access a given variable, we can detect accesses bgrouthrovides a good foundation, architectural support forvgarfe de-

instructions, which are often caused by memory corruptiorffer
overflow, stack smashing or other memory-related bugs.eSimis
method is statistics-based, it can detect bugs that do alzteiany
programming rules and that, therefore, are likely to be euddsy
many existing tools. The second contribution is a novel itgch
tural extension called théheck Look-aside Buffer (CLBJhe CLB
uses a Bloom filter to reduce monitoring overheads in thentbce
proposed iWatcher architectural framework for softwarteudging.
The CLB significantly reduces the overhead of PC-based ienvar
debugging.

We demonstrate a PC-based invariant detection tool célted

bugging is still far from providing a complete solution. $hpaper
takes another step toward the goal of improving softwareistb
ness.

Many methods have been proposed to detect bugs dynamically
during execution. These methods can be classified into two ca
egories: thgrogramming-rule-basedpproach and thstatistics-
rule-basedapproach. Methods in both categories check for viola-
tions of certain rules at run time, but they focus on différgpes
of rules. The programming-rule-based approach focusesiles r
that should be followed when programming in a specific laggua
such as C/C++. “An array pointer cannot move out-of-bourglah

cMon that leverages architectural, run-time system and compil&xample of these rules. Much work has been conducted onghis a

support. Our experimental results with seven buggy apjiics

proach, including Purify [15], CCured [6, 28], SafeC [1] alahes

and a total of ten bugs, show that AccMon can detect all ters bugind Kelly’s tool [19].

with few false alarms (O for five applications and 2-8 for twaph-

cations) and with low overhead (0.24-2.88 times). Sevedatiag

tools evaluated, including Purify, CCured and value-baseatiant
detection tools, fail to detect some of the bugs. In addjtRurify’s

overhead is one order of magnitude higher than AccMon’saliin
we show that the CLB is very effective at reducing overhead.

1. Introduction

Software bugs significantly affect system reliability anci&

The statistics-rule-based approach is a newly explorexttiim
that extracts rules (e.g., invariants) statistically froraltiple suc-
cessful executions (e.g., in-house regression tests) hiphewperi-
ods of a single long-running execution, and then uses thasg to
check for violations in a later execution (or later in the sdong-
running execution). This approach is promising becausaitatch
bugs that may not violate any programming rules. Many diedis
based rules such as value-based invariants (i.e., a v@galalue
always falls in a certain range during normal runs) are eeldo
applications semantics. Such information is difficult téeimfrom

ability, accounting for as many as 40% of computer systet faithe code, and is too tedious to be documented or annotaterbby p
ures [24]. According to NIST, software bugs cost the U.Sneco grammers.

omy an estimated $59.5 billion annually, or 0.6% of the GDA.[2
Memory-related bugs are among the most prevalent and diffacu
catch of all software bugs, particularly in programs writte an un-
safe language such as C/C++. In addition, they are ofterogggl
to launch security attacks [7].

As micro-architectural innovations have significantly inoyed
performance, interest has recently risen in the architectommu-
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F30602-01-C-0078; by an IBM SUR grant; and by additionatsgffom
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Only a few studies have been conducted on the statisties-rul
based approach, and almost all are software-only solutlohbt et
al [23] uses statistical analysis to find the difference leetwvabnor-
mal and normal runs for the purpose of providing more infdiom
for postmortem bug analysis. DAIKON [11, 12] and DIDUCE [14]
focus on detecting bugs on the fly by automatically extractin
variants and detecting violations during execution. Bo&iHIDN
and DIDUCE consider only value-based invariants, and theze
can miss bugs that do not violate these invariants.

Novel architectural support would provide several benédits
statistics-rule-based bug detection over software-arilytons: (1)



Efficiency: Architectural support can significantly lower the over-

head of dynamic monitoring because it does not need exgnsiv

code instrumentation. Note also that such instrumentatiomin-
terfere with compiler optimizations. Moreover, it is pdssito use
extra hardware to speed up certain operations. Both iWatated
AccMon are examples that demonstrate this benefitA@uracy
Architectural support can avoid pointer aliasing probleans ac-
curately capture all desired accesses to monitored menimjegts.
(3) Portability: Architectural support can be language-independen
cross-module and easy to use with low-level system code asich
the operating system. Moreover, it can be designed to woekctly
with binary code without recompilation.

Our Contributions.  This paper proposes two innovative ideas
in architectural support for software bug detection. Fing pro-
pose a novel statistics-based method, cgiediram counter (PC)-
based invarianceto detect memory-related bugs the fly This
idea is based on the observation that, in most programs, em giv
variable is typically accessed by only a few instructionse Vali-
date this observation using statistical analysis with ajpglications
(See Section 3). Based on this observation, if we can cafitaria-
variant of the set of PCs that normally access a given kewabbrij

it is possible to detect accesses by outlier instructioas dhe of-
ten caused by memory corruption, buffer overflow, stack sings
or other memory-related bugs. This is regardless of theegatinat
these instructions assign to the variables.

Second, we propose a novel architectural extension, ctiked
Check Look-aside Buffer (CLBthat uses a Bloom filter [3] to re-
duce the monitoring overhead in iWatcher. This extensikegad-
vantage of the good temporal locality that exists in dat@sses to
filter out a large percentage of monitored accesses. Thénhgixin
reduces the overhead by up to 80.6% in our experiments.

Based on the above two ideas, we have built an automatic, low-

overhead, low-false-alarm, PC-based invariant detecttiolhcalled

AccMon(Access Monitor, pronounced as “A-k-Mon”) that uses a

combination of architectural, run-time system, and coerpdlup-
port to catch hard-to-find memory-related bugs. First, AooM
leverages the iWatcher framework with the CLB extension tmm
itor accesses to key variables. Second, the run-time syatgm
matically infers PC-based invariants and detects viahatiof these
invariants. Third, AccMon uses compiler support to pro\édetain
optimizations to reduce the amount of monitoring and praisef
alarms.

Our experimental results with seven buggy applicationsh(ai
total of ten bugs) show that AccMon can detect all ten bugs feity
false alarms (O for five applications and 2-8 for two applimag),
whereas several tested existing tools fail to detect songs.bm
particular, AccMon catches a bug in the bc application thash
never been reported AccMon also has low overhead (0.24-2.88
times), which is an order of magnitude lower than Purify [1Gur
results also show that the CLB architectural extension ahédro
optimizations significantly reduce overheads.

AccMon complements other existing memory-bug detectio
tools, including programming-rule-based approaches tatidtcs-
rule-based approaches. This is because AccMon providesadev
unique advantages, some or all of which are unavailablefherot
tools:

e Since AccMon is a statistics-based approach, it does nat ne
pointer-type/object information. Therefore, it can détags

n

that either do not have such information (e.g., becauseef fin
grained pointer manipulation through various type-cagtin

or do not violate pointer-type/object association (suchaas
wrong pointer assignment bug caused by copy-paste). Our
experiments identify two such bugs that are detected by Acc-
Mon but are missed by programming-rule-based tools such as
Purify [15] and CCured [6, 28].

e Since AccMon uses architectural support to detect accésses
monitored memory objects, it can detect memory corruption
that occurs in third-party libraries whose source code is un
available. We have found one such bug in our experiments
that is detected by AccMon but missed by the other tested

tools.

t,

e AccMon does not rely on variable values, and therefore can
detect bugs that do not violate value-based invariantsuin o
experiments, AccMon detects six bugs that are very difficult
to catch using value-based invariant detection tools ssch a
DAIKON [11, 12] and DIDUCE [14].

Since AccMon relies on architectural support, it is langeag
independent and easy to use for low-level system code, e.g.,
operating system code. In our experiments, AccMon is able to
catch an extracted version of a real bug that exists in tlestlat
version of Linux.

Although the current AccMon implementation uses source
code in order to exploit certain compiler-based optimizadi
it can directly use binary code without recompilation.

AccMon’s overhead is low. Moreover, AccMon uses the
iWatcher framework that can dynamically turn on/off moni-
toring with little overhead, completely eliminating theesv
head in unmonitored code. Therefore, AccMon can be used
on production runs.

2. Background
2.1. Invariant-Based Bug Detection

Similar to previous invariant-based bug detection workhsas
DAIKON [11, 12] and DIDUCE [14], AccMon can be used in two
scenarios. The first one is debugging programs that fail omeso
inputs. It is common for many programs to work correctly omso
inputs (especially those tested in-house) but to fail oreisth In-
variant detection tools can be used to automatically pediebug-
ging information on failing cases by checking for invarmmtferred
from successful cases. The second one is debugging failures
long-running programs. Some bugs occur only after the jrogr
has executed for a long time. These bugs are very commonverser
programs, and are usually hard to track down because theptan
be easily (or quickly) reproduced. Automatic invariantedion
and checking tools can use a period of execution time befare t
bug occurs to extract invariants, and then continuouslgktier
violations of these invariants during the remainder of tkecation
to detect bugs.

For the above two usage models, the dynamic invariant detec-
tion and checking process has two phases: the training [arake
the bug-detection phase. The training phase tries to etneeri-
ants from the program’s execution using good inputs in the fir



usage scenario, or from the initial execution (before a hrgurs)

write or understand a program where a memory object can be ac-

in the second usage scenario. The bug-detection phasescfoeck cessed in many places. For convenience, we refer to the gt of

violations of invariants during the execution on failinguntested
inputs, or the remaining execution after the training phase

2.2. iWatcher

Our work is based on the iWatcher framework [40], which
an architecture for dynamically monitoring memory locatio We
use iWatcher because it provides several advantages loeddn
Section 1, namely efficiency, accuracy and portability.

The main idea of iWatcher is to associate programmer-spdcifi
monitoring functions with monitored memory objects. When

monitored object is accessed, the monitoring function @ased
with this object is automatically triggered and executedthy

hardware without generating an exception to the operatysg s

tem. iWatcher is flexible because monitoring functions artehiard-
wired into the architecture, but are provided by programexeernal
software tools.

Programs can us&VatcherOnandiWatcherOffto turn on and

off the monitoring of a memory object. These operations can

inserted into programs either automatically by a compitesroin-
strumentation tool, or manually by a programmer. The iae$ of
iWatcherOnandiWatcherOffare:

i WAt cher On( MemAddr, Length, WatchFl ag,
Par anil, Paran®, Par amN) ;

i Wat cher OF f (MemAddr, Length, WatchFl ag,
Moni t or Func) ;

Moni t or Func,

WheniWatcherOnis called, it associates a monitoring function

MonitorFund) with the memory object which begins BtemAddr

structions that normally access a given memory object #itSet

Based on this observation, this paper proposes a new type of
invariant, the Program Counter-based (PC-based) invari@en-
erally speaking, a PC-based invariant captures the rakitip be-
iStween a memory object and its AccSet. Based on this reldtipns
Itis possible to detect “illegal” accesses by an outlietringtion (an
instruction that is not in the AccSet of the accessed memijgob)
due to buffer overflow, stack smashing, dangling pointeemnary

corruption or other memory-related bugs.

To validate this observation and understand the charatiterbf
aAccSets, we have analyzed the behavior of nine programsealx
applications used in our evaluation of AccMon and three SRIEXO
benchmarks). In particular, we examine the average sizetaid-
ity of AccSets. If the average AccSet size is large, it willHagd to
detect bugs because the confidence of identifying an outbéuc-
tion will be low. Similarly, if most AccSets are not stablerass
different inputs or different execution periods, they catrine used
pio detect bugs because they may introduce many false alarms.

To find the average size and stability of AccSets, we colleet t
AccSets for all global objects in the nine programs, usindtipie
runs with different inputs. We then examine the cumulatiigrd
bution of the AccSet sizes and measure the similarity of AteS
across multiple runs with different inputs. We have alsodvaed
similar statistical analyses for heap objects and the teaut simi-
lar.

Figure 1 shows the cumulative distributions of the AccSetsi
for the three SPEC2000 benchmarks and six real applicatkors

and has sizéength The WatchFlagspecifies what types of ac- the SPEC2000 benchmarks, 96% of the global objects in vp hav

cesses (read, write, or both) to this memory object shoiglder the
specified monitoring functioMonitorFunc After theiWatcherOff
call, monitoring of the memory object with the specified ntoring
function is disabled. There are two more operatidfrsableMoni-

AccSet sizes less than 3, 90% of the global objects in paeer h
AccSet sizes less than 5, and 80% of the global objects intgzip
AccSet sizes less than 9. For the six real applications,nar&5-
100% of the global objects have AccSet sizes less than 1Qhér o

toring() and DisableMonitoring), that enable and disable system-words, the average AccSet size is small, and therefore Ascde

wide monitoring. After DisableMonitoring() is called, ne@ess
will trigger a monitoring function. In this case, there is moni-
toring overhead. Monitoring can be re-initiated by Enabdeiitor-
ing() when desired.

3. PC-Based Invariants

When observing the behavior of programs, we found an inter-

esting characteristic: program location and data accessduighly
correlated. This characteristic has two aspects. Finstfst mem-
ory objects, only a few instructions access a given objeeto8d,
in short-running programs, for runs with different inputse sets
of instructions that access a given object are remarkabiiegi; in

long-running programs, the set of instructions that aceegiwven
object is relatively stable across different executioriqu (of du-
ration long enough to capture at least one cycle of most ctetipa

phases). The latter is especially the case for long-runsérger
programs.

Intuitively, this characteristic makes sense. In most @ots,

be used to detect outlier accesses with reasonable cordidenc

To measure the stability of AccSets across multiple runé wit
different inputs, we introduce a metric call8anilarity. For a given
data objecOBJandn runs, the similarity for this object across the
n runs is defined as

‘ N (S1,Sz,.. 7Sn)|

Similarity(OBJ) = IE S|

wheresS; is the AccSet oOBJin runi. The similarity of an object
is the size of the intersection of its AccSets across differans
divided by the size of the union of its AccSets in all the rufis.
measures the fraction of common instructions in the totakjide
instructions that access this object. If the AccSet for ajeatls
very stable, the similarity metric is close to one. If it igy@nsta-
ble, the similarity metric is close to zero.

Figure 2 shows the cumulative distributions of the AccSmii-si
larity for different runs. The figure shows that most objdwse a
similarity close to one, which indicates that most AccSeé&ssta-

a memory object is accessed at only a few places. For examplde across different runs. In the SPEC2000 benchmarks09661

a linked list is usually accessed by the list manipulatiamctions.
Also, from the programmers’ point of view, it is very diffi¢uio

of the global objects’ AccSets have similarity values geedhan
0.97. For the six real applications shown in Figures 2(b) 2,
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Figure 2. Cumulative distribution of AccSet similarity for three SPEC2000 benchmarks and six real applications. Each cumulative
distribution curve shows the percentage of global data objects whose AccSets have a similarity greater than or equal to a given value. A

high percentage at a value close to 1 indicates that most objects’ AccSets are similar across different runs. Note that the x-axis starts at
1 and goes to 0.

around 84-100% of the global objects’ AccSets have sintylandl- AccMon uses iWatcher to catch all memory accesses to mon-
ues greater than 0.97. These results show that AccSets #ee qitored memory objects and trigger a monitoring function aths
stable across multiple runs with different inputs. accesses [40]. The monitoring function will check if the P&&di

Since our infrastructure for recording AccSets cannot supp t0 access the object is in the object's AccSet. If the TLSaptf
long-running server programs (our iWatcher simulator dusun ~ iWatcher is enabled, the main program is speculatively @beekin
an 0S), we do not have results on similarity analysis forediff parallel while the monitoring function runs, to reduce dwead.
ent execution periods of a very long run. However, we exgeat t

the results would be similar because most long-runningesqmo- | Component [ Main Functionality |
i i in di i _ Architectur¢ iWatcher| Catch accesses to monitored objects, invoke monifor-
grams perform similar computaﬂ_on in dn‘ferenF periodsr Exam ing functions to check if a PC belongs to the AccSet
ple, the Apache web server continuously services requests. of an object, and execute the main program in parallel
. . . . . with monitoring functions
F_urther validation pf our (_)bservatlons on PC-based innsies B Filter most accesses that do Rot violate PC-based]in-
provided by the data in Section 6. variants
Compiler Insert iWatcherOn/Off to monitor key memory objects,
. and provide hints to reduce overheads and false alafms
4. DeS|gn of AccMon Run-time system Extract invariants, detect violations and rank errors
Based on the above observation, a violation of a PC-based in- Table 1. Functionality of the components of AccMon.
variant usually indicates a potential bug in the progranr.és@m- To furth q . head he Check
ple, if a memory location is accessed by an instruction whiak 0 further reduce monitoring overhead, we propose the Chec

never accessed this location during normal execution, likéy Look-aside Buffer (CLB). Thg CLBis ? hardyvare cache that, fo
that this access is “illegal’, resulting from a memory-tethbug. most recently_-accessed monltored_ objgcts, filters out thesses
In this section, we design a tool to automatically detecs¢hmases. that do not violate the PC-based invariant. To do that, th& CL

We call this toolAccMon keeps the AccSets for several recently-accessed monibbjedts.
The memory address and PC of each load and store are checked
4.1. Overview against the contents of the CLB. If the memory address isdoun

and the PC is part of the AccSet of the address, the monitoring
AccMon uses some architectural support as well as some corfunction is not executed. If, instead, the memory addre$susd
piler and run-time software infrastructure. The main fimality  but the PC is not part of its AccSet, an access that violae&€r
of each of the components of AccMon is shown in Table 1. based invariant has been found. Finally, if the memory afdie



not found in the CLB and iWatcher indicates that this access & adjusts the confidence level as execution progresses.oBett

monitored object (i.e., a triggering access), the monigpfunction  describes the basic algorithms in more detail.

is executed to check if the access violates the PC-baserikintzan At the end of the bug-detection phase, AccMon produces an er-

addition, the run-time system inserts this address anditSAt into  ror report with a ranked list of detected violations. Thelaimns

the CLB. If necessary, the AccSet of a memory object in the CLBire sorted by their confidence levels as computed by AccMan. P

can be dynamically augmented with a new PC (See Section #.2 fgrammers can go through the list to check for potential bige-

details). grammers can also mark certain errors as false alarms, ahithad
The CLB resides in the processor. Figure 3 shows how it interewly-observed PCs that cause false alarms into AccSethaso

acts with the different pipeline stages and the iWatchgger bit.  AccMon can learn from its mistakes to reduce the number sgfal

More details are given in Section 4.2. alarms in future runs.
Execut i i
T xecute commit 4.2. CLB with a Bloom Filter
ename Aderen‘ Cache/Memory Access

The main purpose of the CLB is to reduce overheads by filtering
most of the valid accesses to monitored objects. Such vediekzes
do not need to trigger the monitoring function. By filteringsh of
the valid accesses, AccMon can significantly reduce the renmb
times the monitoring function is executed. Since the ovadHer
the bug-detection phase is more important than the oveffoe#ue
trigger monitoring function:  training phase, the CLB is only used for the bug-detecticasptin
our current prototype of AccMon.

Designing the CLB is challenging. A major constraint is et
CLB needs to be very fast. Indeed, as shown in Figure 3, thei€LB

We modify the Cetus compiler [21] to select memory objectdightly coupled with the processor pipeline. Moreovers aecessed
to be monitored and to provide hints to reduce the numberlsé fa PY every load and store instruction. In a wide-issue pramesse
alarms and the run-time overhead. In our current implentiemia  CLB 1S accessgd very often a_nd has little time to make a detisi
we monitor global data objects, heap objects, and a few kakst Consequently, it cannot be built as a large associative tabl
objects, such as the stack locations that store return ssiese The In addition, the CLB ideally needs to keep a lot of informatio
compiler usesWatcherOnto request iWatcher to monitor an ob- Since AccMon monitors every global data object, heap olgedt
ject, andiWatcherOffto stop doing it. While the monitoring is on, stack return address, there can be many monitored objemtexF
iWatcher will automatically catch accesses to monitorgeatb. ample, we have up to 10,000 such objects in our experimenfs. S

The compiler also provides hints to reduce overheads asd falPose that, on average, each AccSet contains 10 PCs, whére€ac
alarms. For example, the compiler passes information tauhe IS 4 bytes. Inthis case, an AccSet requires at least 48 ksites, it
time system regarding what instructions use pointers oeszar- N€eds 8 bytes to record the memory object’s start and enessidr
rays. These instructions are more likely to induce bugsdirtRCs ~ Therefore, maintaining all AccSets would require a 48009

are detected as outliers. The compiler can also tempouisigble ~CLB. Such information would need to be organized in a twelev
system-wide monitoring usingisable Monitoring() in certain Manner: A memory address would first index the table and find

Addr

g J1abbuL
s, Jayorepl

CLB D

PC

Figure 3. Interaction of the CLB with the processor pipeline and
the iWatcher trigger bit.

functions that do not have pointers or array accesses. the matching CLB entry; then, the PC would be used to index the
Note that although our current implementation uses a campil AccSet of the ad_dress to f'_nd if the_PC'was there. S
to insert iWatcherOn/Off() into the source code, AccMon eiso Clearly, keeping all this information in a fast CLB is imptaal.

leverage a binary-instrumentation tool to avoid recontipifaif =~ Moreover, it is unclear how to handle AccSets that contaimemo

source code is unavailable. However, source level instniae than 10 PCs.

tion can provide some advantages, such as the optimizatiens  To address these challenges, AccMon uses two strategies to

scribed above and in Section 4.4. Since most debugging isidlen make the CLB hardware practical: the first one is to use a Bloom

house, recompilation may not be a major issue. In additimees filter to avoid storing all the PCs of an AccSet in each enthg t

monitoring can be dynamically turned off for most produntians  second one is to treat the CLB as a cache, which maintaingioaly

by the underlying iWatcher architecture, code can be shipyigh ~ AccSets of recently-accessed monitored objects.

iWatcherOn/Off instrumentation. We use a Bloom filter for the CLB because it can quickly test
The run-time system executes the monitoring function tleat d whether a PC belongs to the AccSet of the accessed objecit and

tects and checks invariants. There are two distinct phdsesrain-  uses only a few bytes to maintain a relatively large set. Tloerd

ing phase and the bug-detection phase. During the trairtiagey filter was first proposed by Bloom [3] to support fast membigrsh

the monitoring function dynamically builds AccSets for theni-  testing of a set. It uses multiple hash functions to map ameé

tored objects. In addition, it also tracks the number of o@mces into a bit vector. For each member element, its correspanbiits

of each PC in an AccSet. This information will be used latethie  in the vector are set to 1. To test whether an element is a ntrembe

bug-detection phase, to determine the confidence levelf@u&  or not, its corresponding bits based on the hash functianteated.

lier PC. During the bug-detection phase, the monitoringcfiom  If one of the bits is 0, the element does not belong to the sét: O

checks each triggering access that does not hit in the CLBe¢o erwise, the element may belong to the set. A Bloom filter never

if it is an outlier. In addition, the monitoring function dgmically  has false negatives, but it may introduce false positivestdinash



collisions. However, if the vector is long enough and enobigé  structure called “PC-based invariants Table” (PCT), whicin-
are used for hashing, the probability of false positivesigyvow. tains the AccSet for each monitored memory object. The PCT is

Figure 4 shows the implementation of the CLB. Similar to amaintained as a hash table and can be searched using a memory

TLB, the CLB is a fully-associative table with only a few éaty (4  object's name, as described in Section 4.4.1. Initiallg, HCT is

or 8 in our experiments). At each memory instruction, the mgm empty. Each PCT entry contains both an AccSet and an ocaarren
address is used to index the CLB. Each CLB entry has 24 bytegpunter for each PC in the AccSet. This information is usechte
storing the start address, end address and the Bloom filgorve culate confidence and rank results, as described later.

for a recently-accessed monitored memory object. The CleBus  During the training phase with bug-free runs (or bug-freecex
128 bits as the Bloom filter vector. At each memory instrugtz0  tion phases for long-running programs), AccMon builds the Set
bits (bit 2 to bit 21, starting from the least significant kit taken for each monitored object. At an access to an ohjégtby an in-
from this instruction’s PC. The 20 bits are broken into 4 pantith ~ struction, AccMon first looks upb; in the PCT. If thisobj is notin

5 bits each. Each part is used to directly index 32 bits in el the PCT, itisinserted init. In any case, the instructioifsi®added
filter vector of the corresponding CLB entry. This partiatieebs  t0 theobj’'s AccSet if that PC is not already a member. The PC's
indexing idea was also used in [30]. We use a direct indeseamst  Occurrence counter is also incremented. At the end of eaatirig

of a hash function to simplify the logic as much as possible. run, the PCT is saved on disk and is reloaded to memory at the be
ginning of the next training run. Since all triggering acs®Esmade
during the training phase need to go through the run-timeesys
the CLB is disabled during the training phase.

During the bug-detection phase, AccMon detects violatimns
PC-based invariants. In this phase, the CLB is enabled. Vdhen
objectobj is accessed by a PC, the CLB is checkeddigr. If the
access is not filtered by the CLB (either because the CLB misse
this obj or the corresponding Bloom filter indicates that this PC is
notinobj's AccSet) and the access is a triggering one, the AccMon
In AccSet 2 (Y/N) monitoring function is triggered to determine if this is antlger
access. To do that, AccMon first checks the PCT to see if the PC
is already inobj's AccSet. If it is, thenobj and its AccSet are
inserted into the CLB. Otherwise, the AccMon monitoringdtian

If all indexed bits in the four parts have value 1, we ConCIUd‘?eportS the access as a suspect and stores it in a tablu(gpect
that this PC is in the AccSet. Therefore, this access is asdtiorbe

valid and can be filtered even if it is recorded as a triggesiceess
by iWatcher (Figure 3). Since we directly index bits 2-21 #f@to
four bits in the Bloom filter vector, the collision rate is ast zero,
and so is the rate of false positives introduced by the CLBal8ef
positive occurs when an outlier PC is incorrectly flaggedars of reported errors to find bugs. For an outlier access to objeit
the AccSet. its confidence value should depend on the number of obsensed a
Treating the CLB as a cache exploits the good temporal lycali cesses tobj, andobj’s AccSet size. 1bbj has been accessed only
of data accesses. Most programs have well-clustered meagery 3 few times, an outlier access #bj is less likely to be a bug. In-
cesses: an object such as an array or a structure tends todssed  stead, it is more likely to be a false alarm caused by insefiici
many times in a short period of time. If we keep recently aseds trajining. Similarly, ifobj's AccSet is large, the possibility for this
monitored objects in the CLB (with one entry per object), wéyo outlier to be a bug is also relatively low. Similar intuitithalso
need a small table with a few entries to filter most valid asess ghared by other work [10, 14].
to monitored objects. As shown later in Table 6 in Section 6.2 \oreover, we also consider the historical behavior of the ou
the CLB hit ratios for most of the evaluated applications\&g/ jier instruction. If the instruction has been previouslgidfied as
high, namely 80.1%-99.9% and 83.8%-99.9% for a 4-entry and an outlier for other memory objects, it is more likely to bewgb
8-entry CLB, respectively. because this instruction may have corrupted many othecbje
The CLB uses the least recently used (LRU) algorithm for re- Combining all these factors, the confidence value of an ésror
placement. After the CLB misses a triggering access, théidec  computed by using the formula:
run-time system inserts the accessed object’s AccSethetCLB.
If the CLB is full, the LRU entry in the CLB is replaced. This is
controlled by the run-time system because CLB misses a®lé@n oy, fidence — NumAccesstotar X (N "fmoccm’"encepc +1)
by the AccMon monitoring function in the run-time system. AccSetSize + 1

Program Counter (PC)
[ Memory Address | [a1 2[o1 17[16 11 7]6  2[10]

32 5 5 5

startAddr | endAdd ' 32bits 0! 32bits 32bits_1)! ! 32bits

Figure 4. Implementation of the CLB using a Bloom filter.

not reported.

To reduce the programmers’ effort in analyzing the erroorep
produced by AccMon, the errors are ranked based on their-confi
dence values. A programmer only needs to check the top (8)g. 1

4.3. Basic Algorithms where NumAccessiotar 1S the total number of timesbj has
been accessedYumOccurrence,. is the number of times this
The basic training and bug-detection algorithms, impleie#n outlier PC has been identified as an outlier for other objestsell,
mainly in AccMon’s run-time system, have three parts: (1) exand AccSetSize isbj's AccSet size. While it is possible to fur-
tracting invariants, (2) checking for violations of invanis, and (3) ther refine our ranking function, our results show that thisking
ranking results. All three parts need to access a core s tata function is already very good.

Table). Subsequent accesses by the same PC to the same object are



4.4. Design Issues before the software is released, or when a long-runningesgmno-
gram has very light load (e.g. when it receives few requetis)
overhead during this phase is less critical. In contrastimizing

AccMon currently monitors all global data objects, all hedp  the overhead in the bug-detection phase is very importasause
jects and key stack objects, e.g. stack locations used te sto  such overhead may prevent some time-related bugs frommgur
turn addresses. To monitor heap objects, we intercept atiane  In addition, it also affects the length of program executiuat can
allocation functions and insert instructions to ds¥atcherOnim-  be realistically monitored.

4.4.1. Monitoring and Naming Objects

mediately after a memory-allocation, aivdatcherOffimmediately There are two ways to reduce overheads in AccMon: reducing
before a memory-free. Foealloc(), iWatcherOffis called before it the number of accesses monitored, and reducing the ovediead
andiWatcherOrafter it. monitoring an access. The following three optimizations ba

We must name each memory object in the PCT. The primarysed by AccMon to reduce overheads. The first two belong to the
constraint on the naming strategy is that the name of an btgee  first type and the third one belongs to the second type:
not change across different runs. For global data objeud, vir- ) ) ) ]
tual memory addresses are used as their names. A global'sbjec ® Monitor only store accessesince corrupting writes are typ-

address is decided at compile time and will not change actifss ically more harmful than illegal reads, it may be enough to
ferent runs. monitor only store instructions. This can be achieved by

setting theWWatchFlag in the iWatcherOn call appropri-
ately [40]. Itis possible that this will lead to some bugsrgpi
undetected, but we feel that the probability is relatively.| In

any case, users can disable or enable this optimizationlbase
on their overhead tolerance level.

However, this simple naming strategy does not work for heap
and stack objects because their virtual addresses canebangss
different runs. Instead, we use a call-chain naming styatebich
has been used in some previous work [2, 4, 20] for other pespos
When a heap object is allocated, it is named based on thenturre
call-chain, i.e., the XOR-folding of the call-site addre$ssin. As
suggested in the literature [2, 4, 20], it is sufficient to tise last
four call-sites in the call chain to distinguish heap/statiects
from one another. Although several heap objects may hasihe
call-chain, e.g. those allocated irfa loop, it is not important for
our case since those objects are naturally similar and lyshele
similar AccSets.

e Disable monitoring in certain functions If a function
contains no pointer dereference or array access, we can
turn off the monitoring of memory accesses. This op-
timization is performed usinggnable Monitoring() and
DisableMonitoring(). We have not implemented this op-
timization in AccMon yet.

4.4.2. Pruning False Alarms e Software optimization Besides using the CLB to filter out
most valid accesses to monitored objects, AccMon software
It is possible that some corner cases caused by rarely tduche  can also be optimized to reduce the overhead of the monitor-
paths end up being reported as violations of an invariantes&h ing function. For example, in our current implementatioe, w
are false alarms. Too many false alarms make a debugging tool yse a hash table to manage the PCT.
unusable.
To reduce false alarms, we use, in addition to confidencésieve 5. Evaluation Methodology
simple heuristics. Specifically, by analyzing the behawitbuggy .
code, we have found that most invalid accesses in C/C++ cincur5'1' Methodology Overview

pointer dereferences and array accesses. The invaridatiors We use cycle-accurate execution-driven simulations toehad
caused by pointer or array accesses are more likely to bewbde  \yorkstation with iwatcher [40] and AccMon functionalityh® pa-
violations caused by other accesses are more likely to b@ecor rameters of the architecture are shown in Table 2. The awthite

cases caused by rarely executed paths. includes a 4-context SMT processor with optional TLS suppor
Based on the above observation, we use the Cetus compiler [21
to identify pointer-based dereferences and array acceShesCe- CPUfrequency [ 2.4GHz [ CLB entries 4or8
. . . Thread contexts 4 ROB size 360
tus compiler generates a list of PCs that may be pointerebdesef- Fetch width 16 Instruction window | 160
erences or array accesses. Of course, the compiler has tmbere Issue width 8 Int FUs 6
. . . . Retire width 12 Ld/st FUs 4
vative, otherwise AccMon may miss some bugs. During the bug- Ld/st queue entries  32/thr | FP FUs 4
detection phase, the AccMon monitoring function checksspeat LI cache 32K, 4-way, 32B/line, 3 cycles latency
PC against this list. If the PC is not in the list, the suspeceas e oy e ey Y

is unlikely to be a bug. This optimization may cause some boigs
escape detection, but the probability is low based on ougrara

behavior analysis. We compare AccMon to the Purify [15] and CCured [6, 28] (ver-
4.4.3. Reducing Overhead sion 1.2.5) toqls. Purify instruments the object code &ttiime and
does not require source code changes. It can detect seysealdf
Overhead is another major issue for software debugging. Waemory-related bugs, including uninitialized reads, wgto freed
consider the two phases in which AccMon is used: the invariaitmemory and memory leaks. CCured is a hybrid static and dymami
training phase and the bug-detection phase. Since thélgghase bug detection tool. It first attempts to enforce a strong ysem
typically takes place in-house using successful regredsist runs in C programs via static analysis. The portions of the pnogtizat

Table 2. Architecture modeled.



Application ‘ Lines Bug Bug Location Corrupted Bug Description

of Code Type Location
ncompress 1922 Real-Reported compress42.c: Stack Input file name longer than 1024
-4.2.4 line 886 bytes corrupts stack return address
linux-simple | 256 Extracted based on Semantic Bug Wrong pointer assignment
memory.c:116 (No Corruption) caused by copy-paste
polymorph 716 Real-Reported polymorph.c: Stack Input file name Tonger than 2048
-0.4.0 lines 193 and 200 bytes corrupts stack return address
gzip-1.2.4 8163 Real-Reported gzip.c: Data/BSS Input file name longer than 1024
line 1009 bytes overflows a global variable
tar-1.13.25 27137 Real-Reported prepargs.c: Heap Unexpected loop bounds
line 92 causes heap object overflow
man-1.5h1 4675 Real-Reported man.c: Data/BSS Wrong bounds checking
line 998 causes static object corrupted
Real-Reported storage.c: Heap Misuse of bound variable
line 176 corrupts heap objects
Real-Unreported util.c:line 577 Heap Overwrite the heap object bound
bc-1.06 17042 bc-Tib: Tnjected - Data/BSS Data corrupted inside a
third-party library
bc-freer Tnjected - Heap Access a freed object that
may be allocated for other data

Table 3. Applications and bugs analyzed. “Real-Reported” means that the bug was introduced by the original programmers and has been
reported and fixed. “Real-Unreported” means that the bug was introduced by the original programmers but has never been reported
before. “Injected” means that the bug was injected by us. “Extracted” means that the bug was extracted from a real program.

cannot be guaranteed by the CCured type system are instrednenandbc. gzip (GNU zip) is a popular compression utility provided
with run-time checks to monitor the safety of the execution. by the GNU projectmanis a utility in the UNIX family to format
Because CCured requires significant manual changes to an @md display online manual pagepolymorphis a tool to convert
plication’s source code to conform to its standard, we hateun  Windows’ style file names to something more portable for UNIX
all applications with CCured. We modified four applicatidasun  systemsncompress a compression and decompression utility that
with CCured. For the other applications, we estimate theieh is compatible with the original UNIX compress utilitiar is a tool
based on CCured’s functionality, but we cannot predict ther-o to create and manipulate tar archivéx is an arbitrary precision
head. In contrast, AccMon does not require any manual madificnumeric processing language.
tion of an application’s source code. To demonstrate the unique bug-detection strengths of AccMo
We run Purify and CCured on a real machine with a 2.6 GHzwve inject two bugs in bc-1.06. The first, bc-lib, demonstate
Pentium 4 processor, 32-Kbyte L1 cache, 2-Mbyte L2 cache, artase where a memory object is corrupted by a third-partygribr
1-Gbyte main memory. Since AccMon runs on a simulator, wevhose source code is unavailable. Some programming-aseeb
cannot compare the absolute execution time of AccMon wihah  tools, such as CCured or other similar tools, cannot insénirthe
Purify and CCured. Instead, we compare their executionh@agts library to detect the bug. The second, bc-free, is a bug where
relative to the runs without any monitoring. dangling pointer dereferences an object that is first freetithen
Since existing value-based invariant detection tools sagh reallocated. Since CCured uses garbage collection to reanag-
DIDUCE [14] do not work with C/C++ programs, we cannot quan-ory allocation, this bug will not occur when the code is lidkeith
titatively compare AccMon with DIDUCE. Instead, we caréful CCured. Consequently, CCured is unable to detect this bog- H
evaluated each application to see whether value-basedént& ever, when the program is not linked with CCured, the bug will
can easily be used to catch the bugs. To be as fair as possible, re-occur.

even used tricks (such as assuming perfect pointer ali&siog!- We also construct an extracted version of a bug from thetlates
edge) beyond those envisioned in the papers [11, 12, 14lid@&C  versjon of Linux (linux-2.6.6/arch/sparc64/prom/memo)y This
these tools. bug is caused by copy-paste and results in an incorrectgraist

5.2 Evaluated Applicati signment. The wrong pointer assignment causes incorragltsen
. Evaluate pplications some cases. Such copy-paste bugs are common in Linux [5, 22].
We have conducted two sets of experiments. The first one us8#ice we cannot run Linux in our simulator, we built a simple
buggy applications to evaluate the functionality and oeerds of benchmark (linux-simple) to measure the effectivenessazion
AccMon for software debugging. The second one further etaki on this type of bugs. Since this bug does not violate any jarogr

the overheads of AccMon with bug-free SPEC benchmarks. ming rule, it is hard for tools such as CCured and Purify tedet
For the first set of experiments, we selected seven buggy prt-
grams that exhibit a broad spectrum of memory-related blejse In our experiments, we do not use any specific knowledge about

3 gives the details about these applications and their bagacter-  the bugs. Instead, we blindly monitor all global objectsame
istics. Some of these applications, such as tar-1.13.25H&1d06, objects and stack return addresses for all applicationscMaa
are relatively large, with more than 17,000 lines of code. can be used in any run (normal or abnormal) to detect potentia
The six real buggy programs are from the open-source commbugs. To demonstrate AccMon’s capability to detect a bug, we
nity. The bugs come with the code and were introduced by theeed to use abnormal runs, as do other run-time bug detesttidn
original programmers (except the two injected bugs in I@6)L.For ies [6, 11, 12, 14, 28]. To do that, we use bug-exhibiting tapa
some programs, we select an older version that had memlatede generate these abnormal runs. But this does not mean thistokcc
bugs. The six programs argzip, man polymorph ncompresstar,  needs bug-exhibiting inputs to function.



Application AccMon Purify CCured Value-Based
Invariants
Bug Bug Bug Bug
Detected? | Overhead| Detected?| Overhead| Detected?| Overhead Detected?
ncompress-4.2.4] Yes 0.24X No 8.33X Yes 0.17X Difficult*
linux-simple Yes 0.60X No 32.84X No 5.50X Difficult
polymorph-0.4.0 Yes 0.76X No 44.65X Yes 0.50X Difficult
gzip-1.2.4 Yes 0.94X Yes 42.45X Yes 0.40X Easy
tar-1.13.25 Yes 1.04X Yes 13.68X NR(Yes) NR Difficult
man-1.5h1 Yes 1.50X Yes 483X NR(Yes) NR Easy
Bugl: Yes Yes NR(Yes) Depends
bc-1.06 Bug2: Yes 2.88X Yes 46.11X NR(Yes) NR Difficult
bc-lib: Yes No NR(No) Depends
bc-free: Yes Yes NR(No) Difficult

Table 4. Overall results. For bc, Bugl is in storage.c and Bug2 is in util.c. For CCured, NR means that we have not modified the
application’s source code to run with CCured; NR(Yes) means that we estimate that CCured should be able to detect the bug if the
application were modified to conform to CCured's requirement; NR(No) means that we estimate that CCured cannot detect the bug based
on our knowledge about CCured. *Difficult in column 8 means that we could not find an effective way to detect the bug using value-based
invariants.

Application Training # Monitored Ac- | # Monitored Accesses af{ Monitored Sizes|| Ranking of the| # False
H Overhead cesses ter the CLB (Bytes) H Bug Alarms
ncompress-4.2.4 1.20X 158995 13 806180 1 0
linux-simple 1.64X 11769 5 3352 1 0
polymorph-0.4.0 0.99X 520 4 10472 1 8
gzip-1.2.4 3.06X 274594 44441 396641 1 0
tar-1.13.25 1.52X 29729 102 88142 2 2
man-1.5h1 2.83X 1518 90 187898 1 0
bc-1.06 3.98X 260813 84716 467005 1,234 0

Table 5. Detailed results for AccMon. The column on number of monitored accesses after the CLB is only for the bug-detection phase.
Note that there are four bugs detected for bc.

The second set of experiments evaluates AccMon overheads s ncompress-4.2.4 and polymorph-0.4.0 because it doesiapnt
ing three bug-free SPEC2000 applications running the Tgmiti itor stack accesses. Purify misses the bug in bc-lib becauséy

data set, namely gzip, parse and vpr. cannot detect wrong pointer arithmetic that results in tiveuption
. of a valid memory object instead of Purify’s “red-zone” (platty
6. Experimental Results inserted by Purify). Purify fails to detect the bug in linsiaple

because that bug does not violate any programming rulesddstt
is just a simple incorrect pointer assignment.

AccMon detects all ten bugs in the seven buggy applications, We have modified four applications to run with CCured
and found one previously unreported bug (to the best of oawkn (ncompress-4.2.4, polymorph-0.4.0, gzip-1.2.4 and ksimple).
edge). Table 4 compares the effectiveness and the overlidad o Of these four applications, CCured detects the bugs in tfréem,
cMon, Purify, CCured, and value-based invariant detectomts.  but misses the bug in linux-simple because it does not \@aay
Table 5 shows detailed AccMon results. The default setup\ber  programming rule. For the other applications, we expectt@@to
cMon is a TLS-enabled iWatcher with an 8-entry CLB, and withmiss the bug in bc-free because CCured uses garbage awiléati
only write accesses monitored. The results are obtainedjtkis manage memory allocation (explained in Section 5). Sincaré€
default setup unless otherwise mentioned in Sections &Z%zh cannot monitor accesses by a third-party library whosecsocwde
AccMon’s initialization time to bring the PCT into the cadsealso  is unavailable, we believe that CCured would miss the bugitiib
included in AccMon’s overhead. The monitoring in iWatcherl- as well. For the other four bugs, we conservatively estintizae
ways enabled throughout the entire execution of a testegrano  CCured would catch them.

(i.e., DisableMonitoringis never called). Value-based invariant detection tools would miss six ofttre

The evaluation is done in two ways: actual experiments ansted bugs because these bugs do not violate any valué-ipase
best-knowledge analysis. If a tool is available, and workban  variant. To ensure a fair comparison, our evaluation witluea
application, we report the actual experimental resultst iBthe based invariant detection tools is very conservative. Vémeised
tool does not target C/C++ programs, or cannot work with goliap techniques beyond those described in the previous valsedhia-
cation, we use our best knowledge to estimate whether itetattd variant papers, such as assuming perfect aliasing knowledg

the bug or not. However, we cannot estimate its overheadreAll i
sults with Purify and AccMon are from actual experimentscein AccMon's Overhead.  Table 4 shows that AccMon has an accept-

these tools work with all applications. able overhead, which is significantly lower than Purify’sscMon
has an overhead of only 0.24-2.88 times, even though mobtapp
AccMon’s Functionality. From Table 4, we see that AccMon cantions monitor hundreds of KBytes data (Table 5). This is ateor
catch bugs that cannot be detected by other tools such afy,Purbf magnitude less than Purify, which has an overhead of 4831
CCured and value-based invariant detection tools. WhileMan  times (the Purify results match the numbers reported in f&jy ex-
catches all tested bugs, Purify misses four bugs: ncom@r@s$, ample, in ncompress-4.2.4, AccMon monitors a total of 0.8yk48
linux-simple, polymorph-0.4.0 and bc-lib. Purify missée tougs of memory (Table 5) and almost 92.1% of dynamic memory ac-

6.1. Overall Results



cesses (not shown in the tables), but it adds only 24% ovdrhegzip is reduced by a factor of 3.17 from 3.39 times to 1.07 $ime
(Table 4). with a 4-entry CLB. This is because the 4-entry CLB filters 8006
For those applications that can run on CCured, AccMon’s-ovethe triggering accesses in gzip, as indicated in Table 6y @d%
head is similar to that of CCured. The only exception is linux of the triggering accesses are processed by the AccMon anijt
simple. CCured has performed very aggressive compilezebasfunction. This effect is shown in the 77.5% reduction in thenin
optimizations to reduce the amount of dynamic checks. We beer+other overhead given in the breakdown of gzip in Figure 5
lieve that AccMon'’s overhead can be further lowered withiksim Except in tar and bc, the overhead is reduced only slightly (0
compiler-based optimizations. In addition, CCured reggiinon-  12.1%) for most applications as we go from a 4-entry CLB to an
trivial modifications to an application’s source code to.rihis re- ~ 8-entry CLB. The reason is that the CLB hit ratios only insea
quirement may not be practical for some programs, espgdéalie  slightly (0-3.7%) for these five applications. On the othand, for
Server programs. tar and bc, an 8-entry CLB reduces the overheads by 28.2% and
CCured has a much higher overhead (5.5 times) than AccMor.9%, benefiting from the 48.2% and 24.3% improvement in the
(0.60 times) for linux-simple. The reason is that this pesgr CLB hit ratios, respectively.
has many accesses to array structures, which cause manyidgyna
checks to be inserted by CCured. In contrast, AccMon’s CLE5.3. Impact of the Optimizations
hardware effectively filters out most of these memory aceasd o ) )
leaves a small number of accesses (only 5) to be checked by fifonitoring only Write Accesses. AccMon's overhead is re-
run-time system (See Table 5). _duced significantly (7.7-61.9%) _by mon_ltor_lng only V\_/rltecesses
AccMon’s False Alarm Rate. AccMon has a very low false |n_stead of all accesses. The rationale is c_ilsgussed |mse¢;t4.3.
alarm rate, and the bugs are ranked high in the error repdds. Figure 6 compares the overheads of monitoring both reaac-
ble 5 shows that there are no false alarms for five applicatiand cesses (rw) and write only accesses (wo). Table 7 Sh(.)WS thbem
only 2-8 false alarms for two applications. Moreover, alybare of monitored accesses before and after the CLB filteringgsefor
ranked in the top 2 entries of the error reports. Therefongroa bath rw and wo.

grammer can easily identify real bugs. In Figure 6, the reduction in overhead as we go from rw to wo
comes from reducing the number of monitored accesses. For ex
6.2. Impact of the CLB ample, in gzip the number of monitored accesses after the iELB

o o
Figure 5 shows the impact of the CLB on AccMon’s overheadsreduced by 58.5% as we go rw to wo (Table 7), resulting in a%1.9

and the sensitivity to the number of entries in the CLB. We Comr’eductlon in overhead (Figure 6).
pare the overheads in three cases: without CLB (CLBO), with a
4-entry CLB (CLB4) and with an 8-entry CLB (CLB8). The over-
head is broken down into two parts: (1) the iWatcherOn/O#rev
head (overhead for executing iWatcherOn/Off calls), andtli2
monitoring plus other overhead. Since we support TLS, itigiho
further separate the monitoring overhead from other oztiseich
as run-time system initialization (bring the PCT into thelos),
the effect of instrumentation on compiler optimization,toe ef- ) o
fect of resource competition. However, we expect that theitoo Figure 6. Overhead of monitoring different types of accesses.
ing overhead dominates the other overheads for most afiphisa
Table 6 gives the 4-entry and 8-entry CLB hit ratios for allese

=] Monitor+Others [] iWatcherOn/Off

Overhead (X)

Co. Application w WO w wo

applications. (Before CLB) | (Before CLB) | (After CLB) | (After CLB)
ncompress 334019 158995 27 13

PO Monitor+Others u WatcherOnOR linux-simple 178142 11769 5 5

4 polymorph 18658 520 5 4
o ¥ — gzip 1048300 274594 107079 44441
SO = tar 107980 29729 188 102
g man 3598 1518 737 90
é‘g L5 bc 782901 260813 164371 84716

=

051 = Table 7. Number of monitored accesses before and after CLB

0~

CLBOCLBACLBS | CLBOCLBACLBS | CLBOCLBACLBS | CLBOCLBACLBS | CLBOCLBACLBS | CLBOCLBACLBS | CLBOCLBACLBS

ncompress linux—simple polymorph gzip tar man be

filtering for different types of accesses.

Figure 5. Overhead introduced by AccMon with and without the In ncompress, linux-simple, and polymorph, going from rw to
CLB. wo induces a very small absolute decrease in the number of mon
tored accesses after the CLB (Columns 4 and 5 of Table 7). How-
#ENt- [ ncom- | finux- | poly- gzip tar man bc ever, linux-simple and polymorph show a significant oveches
ries | press | simple | morph duction in Figure 6. The reason is that going from rw to wo eaus
4 99.9% | 99.9% | 99.2% | 80.1% | 51.5% | 93.7% | 43.2% T . .
8 99.9% | 99.9% | 99.2% | 83.8% | 99.7% | 94.1% | 67.5% a significant reduction of monitored accesses before the @B
Table 6. CLB hit ratios for monitored accesses. these applications (Table 7). Since the PCT of an applicdato
generated based on all monitored accesses before the GLBizth
Figure 5 shows that the CLB reduces AccMon’s overheads byaf the PCT is significantly reduced from rw to wo for these tye a
significant 28.9-80.6%. For example, the overhead of AccMiith  plications. As a result, the overhead of bringing the PC® the




cache (part of other overhead) is reduced significantlyltieg in Many tools have been proposed for dynamic execution moni-
a similar reduction in the total overhead. toring. Well-known examples include Eraser [32], Stack@ya],
Valgrind [34] and others [1, 29], besides those discussepréa

Compiler-Based False Alarm Pruning. The compiler optimiza- ;4,5 sections. StackGuard only detects attacks agaiask se-
tion that differentiates pointer/array accesses fromraibeesses is 1, addresses — not general memory-related bugs. Eragetda

effective at pruning false alarms. As shown on Table 8, tis-0
mization reduces the number of false alarms in tar-1.13@% 8

to 2. However, this optimization fails for polymorph-0.4b@cause
the bug causes the program to enter an error handler thavés ne
entered in normal execution, resulting in eight false atathat are
caused by the pointer/array accesses inside the handler.

multithreaded programming, and detects data races inbaskd
multithreaded programs. Valgrind is a dynamic checker teate
general memory-related bugs such as memory leaks, mempry co
ruption and buffer overflow. It simulates every single instion of
a program, so it incurs a significant 10-20 times overheafl [40

As discussed in Section 1, most dynamic bug detection method

ncom= | Tnux- | poly- | gzip | tar [ man | bc can be pla}ssified into two types: programming-rule-bas@BoP

press | simple | morph and statistics-rule-based (SRB). These two are not comptach-
Before Pruning | 1 0 8 Lpsg oo niques. Instead, they complement each other since both offe
After Pruning 0 0 8 o | 2] 0o ques. , they p

unique advantages that can be integrated to detect a wiclge it
bugs. Since both approaches focus on different types of rthe
types of bugs caught by them often differ. For example, a gron
6.4. Overhead with SPEC Benchmarks pointer assignment bug caused by copy-paste does notevimtet
PRB rules, but may violate a SRB rule, such as a PC-based-invar

To measure AccMon overheads on bug-free applications, we rant. However, SRB usually requires inferring rules frommak
three SPEC2000 benchmarks, namely gzip, parser arfidwith  runs, which may not always be possible. Therefore, PRB issmor
the Test input data set. The experiments use the default $etu yseful for catching relatively simple bugs that obviousitylate pro-
AccMon: TLS-enabled, 8-entry CLB and only monitoring write gramming rules, whereas SRB is more applicable to detethivege
accesses. “silent” bugs that successfully pass through many regoestgsts

Table 9 shows the results for the three applications. The ovepefore the software is released. These regression tesis stttis-
heads are 1.29, 3.16 and 1.73 times for gzip, parser and sppece tical rules to be extracted.

tively. The size of monitored memory is 6.5-13.5 MBytes. &ec  Our work is also related to research on static analysis artkno

and monitoring plus other overhead. For all the three applios,  annotations or specification of invariants, and are comgnbmi-

the iWatcherOn/Off overhead is a substantial portion ofttital  jieq by pointer aliasing and other compile-time limitasonMC
overhead. The large iWatcherOn/Off overhead is mainly #selt  checker [9, 10] extracts beliefs from system code and apftiem
of watching the locations for return addresses. In this cheth g bug detection. This is an application of the invariarasds
iWatcherOn and iWatcherOff are invoked once per functidh ca  method to static analysis.

The monitoring overhead is related to the number of monitore  gesides iwatcher, AccMon can also use software-basediinstr
accesses per 1M instructions after CLB filtering. The CLBr&it  nentation tools such as ATOM [36] or Dyninst [16], hardware
tios for all three applications are high: 92.2%, 99.4% anB%&3 watchpoints [17, 18, 35, 37], or other tools [8]. However,aexpect
for gzip, parser and vpr, respectively. Therefore, mangsses are yat these tools would result in significant overheads. itah,
filtered by the CLB, especially for parser. This significgmédduces it jg possible to use special hardware [38] that providesdirsn

the monitoring overhead which, together with other ovedsd@e-  5ccess control to monitor memory accesses in AccMon. We use
scribed in Section 6.2), accounts for the non-iWatcher@W@m-  jwatcher for the reasons given in Section 1 and 2.2.

ponent of the total overhead.

Table 8. Number of false alarms before and after pruning.

Our work is also related to address profiling techniques for
performance optimization. Calder et al proposed a dataeplac

Appli- Overhead| iWatcherOn/Off # Monitored Monitored

cation Overhead Accesses per IM|  Sizes ment strategy based on temporal relations by profiling mgracy
Inst. after CLB (Bytes) iH ; ;
o7 155K 5EOX EO5.T TE53860 cesses [4]. _Barrett etal used addre_ss_ proflllng to prechdiféhtime
parser |  3.16X 2.13X 775 10244523 of heap variables and then used this information to redweetm-
vpr 173X 0.95X 7563.0 6585702 ory page fault rate [2]. In our work, we monitor memory acesss
Table 9. AccMon behavior for SPEC applications. to detect software bugs.

There are several works that use Bloom filters in hardware.
They use a Bloom filter to minimize load/store queue (LSQ)
7. Related Work searches [33], to identify cache misses early in the pipdla®],

Our work builds upon many previous studies on improving-softand t filter cache-coherence traffic in snoopy bus-based SfeP
ware robustness. Due to lack of space, we only briefly descri}€MS to reduce energy consumption [25].
some closely related work that is not described in previegtens. .
y P 8. Conclusions and Future Work

1For parser, we fast forward the program’s initializatioraph, which . _— . .
lasts for about 280 million instructions, because its b&iras not represen- This paper made two contributions. First, it proposed theeho

tative of steady state. To reduce simulation time, for battser and vpr, we idea of PC-based invariants to detect memory-related [Serond,
only run them for 300 million instructions. it proposed the CLB, a new architectural extension to thet¢W\é&r



framework that significantly reduces the overhead of PGdas-
variant debugging. We demonstrated our ideas with a debgggi
tool called AccMon. AccMon leverages architectural, rimet sys-
tem and compiler support. It detects all tested bugs withfédse
alarms (O for five applications and 2-8 for two applicatioasdl low
overheads (0.24-2.88 times). The latter is an order of ntadei
smaller than Purify. Since AccMon is a statistics-based @eh,
it can catch bugs that do not violate any programming-baslked.r
For example, there are 3-4 bugs in our experiments that &eetded
by AccMon but are missed by other tested tools such as Purify [
and CCured [28, 6].

There are several possible directions for future work.tFilse
to the limitations of our simulation infrastructure, we oah run
tests with long-running server programs. Consequentlyareen
the process of extending the simulation infrastructureuppsrt
Linux and long-running server programs. Second, we will €om[20]
bine AccMon with value-based invariants [11, 12, 14] to tul
more comprehensive tool. Third, it is possible to use a soiw
instrumentation tool to monitor memory accesses, detedb@&ed
invariants and then check for violations. However, we expleis  [22]
approach to have a much higher overhead because, due taglias
problems, we may have to monitor more memory accesses taan thg)
current approach. Finally, while AccMon uses the invarizrd set
of PCs that access an object, it may be also helpful to captere [24)
invariant of a set of objects accessed by a PC. Note that thisod
may not always work: in a loop that processes objects oneray-
from a linked list, a given PC is accessing many objects, eden
given object is accessed by only a few PCs.
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