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From last time: Assumption 1: ∃f ∈ E such that CC(f) ≥ 2εn.

Assumption 2: ∃f ∈ E such that CC1/2+2−εn(f) ≥ 2εn. That is, for every large enough n
and 2εn sized circuit C,

Pr
x←R{0,1}n

[f(x) = C(x)] ≤ 1
2 + 2−εn

Define RC,f (x) = +1 if C(x) = f(x) and −1 if C(x) 6= f(x). Then, an equivalent form1 is
that

Ex←R{0,1}n [RC,f (x)] ≤ 2−εn

Theorem 1 (NW94). If Assumption 2 holds then BPP = P.

Proof was by a pseudorandom generator from c log m-long strings to m-long strings for some
constant c > 1 or equivalently from `-long strings to 2ε`-long strings for some constant 1 >
ε > 0.

Different range of parameters Define a weaker assumption:

Assumption 3: ∃f ∈ E such that CC1/2+2−nε (f) ≥ 2nε
. That is, for every large enough n

and 2nε
sized circuit C,

Ex←R{0,1}n [RC,f (x)] ≤ 2nε

Theorem 2 (NW94). If Assumption 3 holds then BPP = QuasiP = DTIME(2polylog(n)).

Proof will show this time a pseudorandom generator from `-long strings to 2`ε
-long strings or

equivalently from logc m-long strings to m-long strings.

Our goal today: Assumption 3 is still pretty strong in the sense that it says that no circuit can
guess f(x) much better than the trivial 1/2. We will show that it is implied by the seemingly
much weaker assumption that there’s some function f such that no circuit can compute f(x)
with probability 1− 1/nc for some constant c > 0.

Assumption 4: ∃f ∈ E such that CC1−n−c(f) ≥ 2nε
. That is, for every large enough n and

2nε
sized circuit C,

Ex←R{0,1}n [RC,f (x)] ≤ 1− n−c

Theorem 3 (Yao). Assumption 4 implies Assumption 3.

Yao’s XOR Lemma The proof of the theorem follows from the following lemma:
1Up to a factor of two which we can ignore.
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Lemma 4. For any f : {0, 1}n → {0, 1} let f : {0, 1}nk → {0, 1} be defined as follows:
f(x1, . . . , xk) = f(x1)⊕ f(x2)⊕ · · · ⊕ f(xk). If CC1−δ(f) ≥ S then for every ε > 2(1− δ)k

CC1/2+ε(f) ≥ ε2

100 log(1/δε)S

From this lemma, plugging in δ = 1
nc , ε = 2−nε/20 and S = 2nε

, and k = nc+1 we get the
theorem.

Proving the XOR Lemma The proof will go through an intersting characterization of functions
f that have CC1−δ(f) ≥ S.

Aside on distributions and convex combinations If X and Y are distributions over {0, 1}n
and α ∈ [0, 1] is a number then by Z = αX + (1− α)Y we denote the distribution obtained
by taking with probability α a random element of X and with probability 1 − α a random
element of Y . This is called a convex combination of X and Y . We have that for every
function f : {0, 1}n → R E[f(Z)] = αE[f(X)] + (1− α)E[f(Y )].

Note that this is not the standard linearity of expectation since αX does not denote multi-
plying the output of X by α (which makes no sense for a string) but rather if we think of X
as a vector of probabilities of 2n numbers between 0 and 1 then we multiply this vector by α
(hence making it sum up to α instead of to 1).

We can generalize this to more than two distribution and we say that Z is a convex combi-
nation of X1, . . . , Xk if there are non-negative α1, . . . , αk that sum up to one such that Z can
be thought of as choosing with probability αi to output an element of Xi. Again, thinking
of Z and X1, . . . , Xk as vectors of probabilities in R2n

we write Z = α1X1 + · · ·αkXk. Note
also that by the standard averaging argument if E[Z] ≥ µ then there exists some i such that
E[Xi] ≥ µ.

For any distribution X, we define max-pr(X) to be the largest probability that a particular
element is attained by X. Note that

• if max-pr(X1), . . . ,max-pr(Xk) ≤ ε and Z is a convex combination of X1, . . . , Xk then
max-pr(Z) ≤ ε. Indeed, for every x ∈ {0, 1}n we have that Pr[Z = x] = α1 Pr[X1 =
x] + · · ·+ αk Pr[Xk = x] and a weighted average of things smaller than ε is smaller than
ε.

• For every X, max-pr(X) ≥ 2−n. Indeed, if all elements are attained with probability
less than 2−n then the probabilities will sum up to less than one. Note that the only
distribution with max-pr = 2−n is the uniform distribution over {0, 1}n , denoted by Un.

• If max-pr(X) ≤ 1
δ 2−n then we can write Un = δX + (1 − δ)Y for some distribution Y .

Indeed, δX is a vector summing up to δ in which all numbers are between 0 and 2−n.
Thus, we can add some positive vector Y ′ to δX to form the uniform distribution. The
sum of this vector Y ′ will necessarily be 1− δ and hence Y ′ is of the form (1− δ)Y for
some probability distribution Y .
In this case we say that X has density δ in {0, 1}n. One example for such a distribution
is the uniform distribution over some subset S of size δ2n. In fact (as you’ll also see in
the exercise) this is a good example to think about as often we can restrict ourselves to
such distributions without loss of generality.

2



Impagliazzo’s hard core lemma Suppose that f is a function that is “moderately hard” for
S-sized circuits in the sense that CC1−δ(f) ≥ S. Intuitively, one can think that the functions
could be hard in two forms: (a) the hardness is sort of “spread” all over the inputs, and it
is roughly 1 − δ-hard on every significant set of inputs or (b) there’s a set H of inputs of
density roughly δ such that on H the function is extremely hard (cannot be computed better
than 1

2 + ε for some tiny ε) and on the rest of the inputs the functions may be even very easy.

Surprisingly, it turns out that we can always assume we are in the case (b):

Lemma 5. Suppose that CC1−δ(f) ≥ S and let 1 > ε > 0 be any number. Then there exists
a distribution H with density ≥ δ such that CCH

1/2+ε(f) ≥ ε2S
100 log(δε) . That is, for every S′

sized circuit where S′ ≤ ε2S
100 log(δε) we have that

Pr
x←RH

[C(x) = f(x)] ≤ 1
2 + ε

We note that it’s possible to get the same result for a distribution H that is uniform over
some set S of size at least δ2n (just choose x to be in S with probability δ2n Pr[H = x],
you can show that it will be both be of the right size and will be hard for all circuits using
Chernoff bounds and a union bound over all circuits).

Proving Yao’s XOR lemma from the hard-core lemma

Lemma 6 (Yao’s XOR lemma, restated). For any f : {0, 1}n → {0, 1} let f : {0, 1}nk →
{0, 1} be defined as follows: f(x1, . . . , xk) = f(x1) ⊕ f(x2) ⊕ · · · ⊕ f(xk). If CC1−δ(f) ≥ S
then for every ε > 2(1− δ)k

CC1/2+ε(f) ≥ ε2

100 log(1/δε)S

Proof. Let H be the δ-density distribution we get from the hard-core lemma running it with
ε/4. Thus, we know that

E[RC,f (H)] < ε/2 (1)

Write Un = δH + (1− δ)Y , then we have that Uk
n equal to α0Z0 + α1Z1 + · · ·+ αmZm where

the Zi’s are distributions of k independent copies of either H or Y and the α’s sum up to
one. We let Z0 be the distribution Y k and so α0 = (1− δ)k. We have that

m∑
i=0

αiE[RC,f (Zi)] ≥ ε

and so
m∑

i=1

αiE[RC,f (Zi)] ≥ ε− (1− δ)k ≥ ε/2

which implies that there exists some i > 0 such that

E[RC,f (Zi)] ≥ ε/2

Zi is a distribution of k independent copies Z1
i · · ·Zk

i where each of them is either H or Y
and at least one of them, say Z1

i is H. By an averaging argument there exists a string z such
that

E[RC,f (Z1
i , z)] = E[RC,f (H, z)] ≥ ε/2
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but, hardwiring the value z to the circuit C, this implies a contradiction to (1)

Proving the hard-core lemma

Lemma 7 (Impagliazzo’s hardcore lemma, restated). Suppose that CC1−δ(f) ≥ S and let
1 > ε > 0 be any number. Then there exists a distribution H with density ≥ δ such that
CCH

1/2+ε(f) ≥ ε2S
100 log(δε) . That is, for every S′ sized circuit where S′ ≤ ε2S

100 log(δε) we have that

Pr
x←RH

[C(x) = f(x)] ≤ 1
2 + ε

Proof. For every circuit C and distribution H define adv(C,H) to be E[RC,f (H)]. Fix S′

as above and think of the following game between two parties, which we’ll call Russell and
Noam.

Noam plays by presenting a circuit C of size S′. Russell plays by presenting a distribution H
of density at least δ. At the end Russell pays to Noam $adv(C,H).

Clearly, if Russell plays second then he can ensure that he never has to pay to Noam any
positive amount, since for every circuit C of size S (and in particular S′) he can find δ2n

inputs on which that circuit is wrong. However, we want to ensure that Russell can ensure
that he does not pay more than $ε even if he plays first.

Since what Russell wins in this game Noam loses and vice versa, this game is a a zero sum
game, for such games we have von-Neumman’s min-max theorem that says it does not matter
who plays first as long as we allow randomized moves. That is, consider the following variant:
Noam produces a distribution C of size-S′ circuits and Russell produces a distribution H of
distributions of δ-density, and Russell pays Noam

EC←RC,H←RH[adv(C,H)]

(in fact, since a convex combination of δ-density distributions is a δ-density distribution, we
can think of Russell as choosing a single distribution.)

In this game it does not matter who plays first. This can be viewed as follows: let A be a
matrix with columns for every possible circuit of Noam and rows for every possible distribution
of Russell.2 We let AC,H = adv(C,H). In the deterministic game Noam chose a column and
Russell chose a row. In the probabilistic game Noam and Russell each choose probability
vectors, denoted ~p and ~q respectively with non-negative entries summing up to one and the
value of the game is ~qA~p. What we need to prove is that if (*) for every probability vector
~p there exists a probability vector ~q such that ~qA~p > 0 then there exists a probability vector
~q∗ such that ~q∗A~p > 0 for every ~p. (By moving from A to aA + bI for some a 6= 0, b, this
implies the general theorem for any game). However this follows because {A~p} is a convex
set: if A~p is in this set and A~q is in this set then so is αA~p + (1− α)A~q = A(α~p + (1− α)~q).
Also note by (*), all members of the set have all coordinates non-negative. Let ~x be the
vector with smallest two-norm in that set and ~q∗ be a normalization of ~x so that it sums up
to one. We claim that for every ~y = A~p it holds that 〈~q∗, ~y〉 > 0. Indeed, it’s enough to

2We ignore the fact that there are infinitely many of them, as we can round them. In fact, we can work with finite
matrix by using the fact that the δ-density distributions are all convex combinations of uniform distributions over
sets of size δ2n.
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prove that 〈~x, ~y〉 > 0 but if 〈~x, ~y〉 ≤ 0 for some ~y in the set then for every α > 0, the vector
~z = α~x + (1−α)~y is in the set and so should satisfy that the norm of ~z is at least as large as
the norm of ~x. However, by taking the definition of the norm squared as the inner product
and taking α small enough one can derive a contradiction.

By the reasoning above we see that all we need to prove is that for any distribution C on S′-
sized circuits, Russell can come up with a distribution H on inputs such that EC←RC [adv(C,H)] ≤
ε. However, for any such distribution C construct the following circuit C: choose C1, ..., Ct

for t = O( log(δε)
ε2

) at random from the distribution and take their majority (on any input x,
C(x) will return the majority of C1(x), . . . , Ct(x). This is a circuit of size ≤ S and so we have
δ2n inputs on which it makes a mistake. We let H be the distribution over these inputs.

Suppose that EC←RC [adv(C,H)] ≥ ε. This means that for at least an ε fraction of the inputs
x ∈ H (i.e., a total of at least εδ2n inputs) EC←RC [C(x) = f(x)] ≥ ε let’s call such an x a
“surprisingly good” x (since the majority of C1, . . . , Ct made a mistake on x but a random
C ←R C actually has ε advantage on x). However, if we choose C1, . . . , Ct at random then
by the Chernoff bound for every x such that EC←RC [C(x) = f(x)] ≥ ε, the probability that
Maj(C1, . . . , Ct)(x) 6= f(x) is, say, less than εδ/10. Thus the expected number of surprisingly
good x’s is at most (εδ)2n/10 and so with probability at least 0.9 there do not exist εδ2n of
them.

5


