
Chapter 17

Random and
Pseudo-Random Walks on
Graphs

Random walks on graphs have turned out to be a powerful tool in the design
of algorithms and other applications. In particular, expander graphs, which
are graphs on which random walks have particularly good properties, are
extremely useful in complexity and other areas of computer science. In this
chapter we will study random walks on general graphs, leading to a the ran-
domized logspace algorithm for undirected connectivity alluded to in Chap-
ter 7. We will then show the definition and constructions of expander graphs,
and their application for randomness-efficient error reduction of probabilis-
tic algorithms. Finally we will use the ideas behind that construction to
show a deterministic logspace algorithm for undirected connectivity.

The idea of a random walk is simple: let G be a graph (in this chapter
we’ll restrict ourselves to undirected graphs) and let v be a vertex in G.
A T -step random walk from v in G is the sequence of dependent random
variables X0, . . . , XT defined as follows: X0 = v with probability one, and
for 1 ≤ i ≤ t, XT is chosen at random from Γ(XT ), where for any vertex u,
Γ(u) denotes the set of neighbors of u in the graph G. That is, a random
walk involves starting at a vertex and then at each step going to a random
neighbor of this vertex. A probabilistic process of this form, where there is
a fixed distribution specifying the dependence of XT on XT−1, is also called
a Markov chain.

253



254CHAPTER 17. RANDOM AND PSEUDO-RANDOM WALKS ON GRAPHS

17.1 Undirected connectivity in randomized logspace

Recall the language PATH of the triplets 〈G, s, t〉 where G is a (directed)
graph and s and t are vertices in G with a path from s to t. In Chapter 3 we
showed that PATH is NL-complete. Consider the problem UPATH where G
is restricted to be undirected (or equivalently, we place the condition that
there is an edge from i to j in G iff there’s an edge from j to i: the adjacency
matrix is symmetric). We will show that UPATH can be computed by a log
space probabilistic TM.

Theorem 17.1 ([AKL+79])
UPATH ∈ RL.

The algorithm for the proof of Theorem 17.1 will be simple. Given an
input G, s, t to UPATH, we’ll first use an implicitly computable in logspace
reduction to ensure the graph is regular and of degree 4 (see Claim 17.1.1)
and then take a random walk of length T = 100n3 log n from s on the graph
G. We accept if at the end of the walk we reach the vertex t. Otherwise,
reject. The algorithm can be implemented in O(log n) space since it only
requires space to store the current and next vertex in the walk, and a counter.
Clearly, it will never accept if t is not connected to s. We will show in the
next section that if t is connected to s, then the algorithm will accept with
probability 1

Ω(n) (this can of course be amplified using the standard error
reduction techniques of Section 7.1.1).

Reducing to the regular constant-degree case. As mentioned above,
we start by reducing to the case that every vertex in G has degree 4 (i.e., G is
4-regular) and that every vertex has a self-loop (i.e., an edge to itself). This
claim not strictly necessary for this algorithm but will somewhat simplify
the analysis and will be useful for us later on. We note that here and
throughout this chapter all graphs may have parallel edges (i.e., more than
one edge between the same pair of vertices i, j).

Claim 17.1.1
There’s an implicitly computable in logspace function f that maps any triple
〈G, s, t〉 to a triple 〈G′, s′, t′〉 such that:

1. G′ is a 4-regular graph with a self loop at each vertex.

2. s is connected to t in G iff s′ is connected to t′ in G′.



17.2. RANDOM WALK ON GRAPHS 255

We sketch the proof, leaving verifying the details as an exercise. For
every vertex i in G, the graph G′ will have n vertices arranged in a cycle.
For every two neighbors i, j in G, we’ll connect in an edge the jth vertex from
the cycle corresponding to i, and the ith vertex from the cycle corresponding
to j. Thus, every vertex in G′ will have degree either two (if it’s only
connected to its neighbors on the cycle) or three (if it also has a neighbor
in a different cycle). We’ll add to each vertex either one or two self loops
to make the degree four. It can be seen that determining the value of the
entry corresponding to a pair of vertices in the adjacency matrix of G′ can
be computed in log space given read-only access to the adjacency matrix of
G.

17.2 Random walk on graphs

In this section we’ll study random walks on (undirected regular) graphs. As
a corollary we will obtain the proof of correctness for the above algorithm
for UPATH. We will see that we can use elementary linear algebra to relate
parameters of the graph’s adjacency matrix to the behavior of the random
walk on that graph. The following definitions and notations will be widely
used in this and later sections of this chapter:

Distributions as vectors, adjacency matrix of graphs. Let G be a
d-regular n-vertex graph. Let p be some probability distribution over the
vertices of G. We can think of p as a (column) vector in Rn where pi is
the probability that vertex i is obtained by the distribution p. Note that
the one-norm of p, defined as |p|1 =

∑n
i=1 |pi| is equal to 1 (in this case

the absolute value is redundant since pi is always between 0 and 1). Now
let q represent the distribution of the following random variable: choose a
vertex i in G according to p, then take a random neighbor of i in G. We
can compute q as a function of p: the probability qj that j is chosen is
equal to the sum over all the neighbors i of j of the probability that i is
chosen in p times 1/d (the probability that if i is chosen, the walk moves to
q). We see that in fact q = Ap, where A = A(G) which is the normalized
adjacency matrix of G. That is, for every two vertices i, j, Ai,j is equal to the
number of edges between i and j divided by d. Note that A is a symmetric
matrix, where each entry is between 0 and 1, and the sum of entries in
each row and column is exactly one (such a matrix is called a symmetric
stochastic matrix). Let {ei}ni=1 be the standard basis of Rn (i.e. ei has 1
in the ith coordinate and zero everywhere else). Then, ATes represents the



256CHAPTER 17. RANDOM AND PSEUDO-RANDOM WALKS ON GRAPHS

distribution XT of taking a T -step random walk from the vertex s. This
already suggests that considering the adjacency matrix A could be very
useful in analyzing random walks.1

Definition 17.2 (The parameter λ(G).) Denote by 1 the vector (1/n, 1/n, . . . , 1/n)
corresponding to the uniform distribution. Denote by 1⊥ the set of vec-
tors perpendicular to 1. That is v ∈ 1⊥ if 〈v,1〉 = 0 or equivalently,∑n−1

i=0 vi = 0. For a vector v ∈ Rn, we denote by ‖v‖2 the two norm of v

(i.e., ‖v‖2 =
√∑n

i=1 v2
i =

√
〈v,v〉). We call v a unit vector if ‖v‖2 = 1.

We define λ(A) (which we’ll also denote as λ(G)) to be the maximum value
of ‖Av‖2 over all unit vectors v ∈ 1⊥.

Remark 17.3 The value λ(G) is often called the second largest eigenvalue
of G. The reason is that since A is a symmetric matrix, we can find an
orthogonal basis of eigenvectors v1, . . . ,vn with corresponding eigenvalues
which we can sort to ensure |λ1| ≥ |λ2| . . . ≥ |λn|. Note that A1 = 1.
Indeed, for every i, (A1)i is equal to the inner product of the ith row of A
and the vector 1 which (since the sum of entries in the row is one) is equal
to 1/n. Thus, 1 is an eigenvector of A with the corresponding eigenvalue
equal to 1. It’s not hard to show that in a symmetric stochastic matrix
for all i, λi ≤ 1 (see Exercise 1) and hence we can assume λ1 = 1 and
v1 = 1. It’s also not hard to show that because 1⊥ = Span{v2, . . . ,vn} the
value λ above will be maximized by (the normalized version of) v2, hence
λ(G) = |λ2|. The quantity 1 − λ(G) is often called the spectral gap of the
graph. We note that some texts use un-normalized adjacency matrices, in
which case λ(G) will be a number between 0 and d.

One reason that λ(G) is an important parameter is the following lemma:

Lemma 17.4
For every regular n vertex graph G = (V,E) let p be any probability distri-
bution over V , then

‖ATp− 1‖2 ≤ λT

Proof: By the definition of λ(G), ‖Av‖2 ≤ λ‖v‖2 for every v ⊥ 1. Note
that if v ⊥ 1 then Av ⊥ 1 since 〈1, Av〉 = 〈A†1,v〉 = 〈1,v〉 = 0 (since
A = A† and A1 = 1). Thus Amaps the space 1⊥ to itself and since it shrinks
any member of this space by at least λ, we get that λ(AT ) ≤ λ(A)T . (In fact,
using the eigenvalue definition of λ it can be shown that λ(AT ) = λ(A).)

1Note that the observations above extend to the case that G is non-regular and even a
directed graph.



17.2. RANDOM WALK ON GRAPHS 257

Let p be some vector. We can break p into its components in the spaces
parallel and orthogonal to 1 and express it as p = α1 + p′ where p′ ⊥ 1
and α is some number. If p is a probability distribution then α = 1 since
the sum of coordinates in p′ is zero. Therefore,

ATp = AT (1 + p′) = 1 +ATp′

We have that ‖p‖2
2

= ‖1‖2
2
+‖p′‖2

2
and in particular ‖p′‖2 ≤ ‖p‖2 . Since

p is a probability vector we have that ‖p‖2 ≤ |p|1 ≤ 1. Hence ‖p′‖2 ≤ 1
and

‖ATp− 1‖2 = ‖ATp′‖2 ≤ λT

2

We’ll now show that every connected graph has a noticeable spectral
gap.

Lemma 17.5
For every d-regular connected G with self-loops at each vertex, λ(G) ≤
1− 1

8dn3 .

Proof:[of Lemma 17.5] Let u ⊥ 1 be a unit vector and let v = Au. We’ll
show that 1−‖v‖2

2
≥ 1

d4n3 which implies ‖v‖2
2
≤ 1− 1

d4n3 and hence ‖v‖2 ≤
1− 1

d8n3 .
Since ‖u‖2 = 1 we have that 1 − ‖v‖2

2
= ‖u‖2

2
− ‖v‖2

2
. We claim that

this is equal to
∑

i,j Ai,j(ui − vj)2 where i, j range from 1 to n. Indeed,∑
i,j

Ai,j(ui−vj)2 =
∑
i,j

Ai,ju2
i−2

∑
i,j

Ai,juivj+
∑
i,j

Ai,jv2
j = ‖u‖2

2
−2‖v‖2

2
+‖v‖2

2

where the latter equality is because the sum of each row and column in A
equals one, and because ‖v‖2

2
= 〈v,v〉 = 〈Au,v〉 =

∑
i,j Ai,juivj .

Thus we need to show
∑

i,j Ai,j(ui − vj)2 ≥ 1
d4n3 . Note that this sum is

indeed always non-negative and that it is enough to show that for some i, j,
Ai,j(ui − vj)2 ≥ 1

d4n3 . Firstly, because we have all the self-loops, and hence
Ai,i ≥ 1/d for all i, we can assume |ui − vi| < 1

2n1.5 for every 1 ≤ i ≤ n.
Now sort the coordinates of u from the largest to the smallest, and

hence assume that u1 ≥ u2 ≥ · · ·un. Since
∑

i ui = 0 it must holds that
u1 ≥ 0 ≥ un. In fact, since u is a unit vector, it holds that either u1 ≥ 1/

√
n

or un ≤ 1/
√
n and so u1 − un ≥ 1/

√
n. By looking at the n− 1 differences

between consecutive coordinates ui − ui+1, one of them must be at least
1/n1.5 and so there must be an i0 such that if we let S = {1, . . . , i0} and



258CHAPTER 17. RANDOM AND PSEUDO-RANDOM WALKS ON GRAPHS

S = [n] \ Si, then for every i ∈ S and j ∈ S, ui − uj ≥ 1/n1.5. Since G is
connected there exists an edge (i, j) between S and S. Since |vj−uj | ≤ 1

2n1.5

we get that for this choice of i, j, |ui − vj | ≥ |ui − uj | − 1
2n1.5 ≥ 1

2n1.5 . Thus
Ai,j(ui − vj)2 ≥ 1

d
1

4n3 . 2

Together, Lemmas 17.4 and 17.5 imply that our algorithm for UPATH
will accept with probability 1/Ω(n) if s is connected to t in the graph.
The reason is that by the Cauchy-Schwartz inequality |v|1√

n
≤ ‖v‖2 ≤ |v|1

for every vector v. Hence, we get that for every probability vector p and
T ≥ 10dn3 log n, ‖ATp− 1‖2 < 1

2n1.5 , implying |ATp− 1|1 < 1
2n , leading us

to the following corollary:

Corollary 17.6
Let G be a d-regular n-vertex graph with all vertices having a self-loop. Let
s be a vertex in G. Let T > 10dn3 log n and let XT denote the distribution
of the vertex of the T th step in a random walk from s. Then, for every j
connected to s, Pr[XT = j] > 1

2n .

17.3 Expander graphs and their use for error re-
duction.

Expander graphs has played a crucial role in numerous applications in com-
puter science, including routing networks, error correcting codes, hardness
of approximation and the PCP theorem, derandomization, and more. In
this chapter we will see their definition, constructions, and two applications,
including a derandomized algorithm for the problem UPATH of undirected
connectivity.

Expanders can be defined in several equivalent ways. One way is that
these are graphs where every set of vertices has a very large boundary. That
is, for every subset in the graph, the number of neighbors outside the set
will be (up to a constant factor) roughly equal to the number of vertices
inside the set. (Of course this condition cannot hold if the set is too big
and already contains too large a fraction of the vertices in the graph.) For
example, the n by n grid (where a vertex is a pair (i, j) and if it’s not on the
graph’s boundary it is connected to the four neighbors (i± 1, j ± 1)) is not
an expander, as any k by k square in this graph will only have a boundary
of size O(

√
k). Another way to define expanders is as graphs where the

random walks rapidly converges to the uniform distribution. That is, unlike
in the general case that (in regular graphs) the random walk may take a



17.3. EXPANDER GRAPHS AND THEIR USE FOR ERROR REDUCTION.259

polynomial number of steps to converge to the uniform distribution, in an
n-vertex regular expander this will only take O(log n) steps.

Given the previous section, it is not surprising that we can define ex-
pander also in an algebraic way, based on the parameter λ(G) of Defini-
tion 17.7. That is, we will say that G is an expander if λ(G) is bounded
away from 1 and satisfies λ(G) ≤ 1 − ε. By Lemma 17.4, this does indeed
imply that the random walk on G will converge to the uniform distribution
(in the sense that regardless of the starting distribution, every vertex will be
obtained with probability between 1

2n and 3
2n) within O(log n) steps. We will

also see later (Theorem 17.14) the relation between the parameter λ(G) and
the combinatorial definition of set expansion mentioned above. Formally,
we define expander graphs as follows:

Definition 17.7 (Expander graphs) If G is an n-vertex d-regular G
with λ(G) ≤ λ for some number λ < 1 then we say that G is an (n, d, λ)-
graph. For every d and λ < 1 a d, λ-expander graph family is a sequence
{Gn} of graphs where each Gn is an (n′, d, λ) and n′ = p(n) for some poly-
nomial p(·). We’ll sometimes drop the qualifier d, λ and simply call such
a family an expander graph family, referring to a particular graph in the
sequence as an expander graph.

We say that the family is explicit if there’s a polynomial-time algorithm
that on input 1n outputs the adjacency matrix of Gn. We say that the fam-
ily is strongly explicit if there’s a polynomial-time algorithm the on inputs
〈n, v, i〉 where 1 ≤ v ≤ n′ and 1 ≤ i ≤ d outputs the ith neighbor of v. (Note
that the algorithm runs in time polynomial in the its input length which is
polylogarithmic in n.)

As we’ll see below it is not hard to show that expander families exist
using the probabilistic method. In fact, there are also several explicit and
strongly explicit constructions of expander graphs. The smallest λ can be
for a d-regular n-vertex graph is Ω( 1√

d
and constructions meeting this bound

(specifically the bound is (1− o(1))2
√

d−1
d where by o(1) we mean a function

that tends to 0 as the number of vertices grows; graphs meeting this bound
are called Ramanujan graphs). However, for most applications in Computer
Science, any family with constant d and λ will suffice (see also Remark 17.8
below). Some of these constructions are very simple and efficient, but their
analysis is highly non-trivial and uses relatively deep mathematics.2 We

2An example for such an expander is the following 3-regular graph: the vertices are
the numbers 1 to p− 1 for some prime p, and each number x is connected to x + 1,x− 1
and x−1 (mod p).



260CHAPTER 17. RANDOM AND PSEUDO-RANDOM WALKS ON GRAPHS

will show in Section 17.4 a strongly explicit construction of expanders with
elementary analysis. This construction will also introduce a tool that will
be useful to derandomize the algorithm for UPATH.

Remark 17.8 One reason that the particular constants of an expander fam-
ily are not extremely crucial is that we can improve the constant λ (make it
arbitrarily smaller) at the expense of increasing the degree: this follows from
the fact, observed above in the proof of Lemma 17.4, that λ(GT ) = λ(G)T ,
where GT denotes the graph obtained by taking the adjacency matrix to
the T th power, or equivalently, having an edge for every length-T path in
G. Thus, we can transform an (n, d, λ) graph into an (n, dT , λT )-graph for
every T ≥ 1. Later we will see a different transformation called the zig-zag
product to decrease the degree at the expense of increasing λ somewhat (and
also increasing the number of vertices).

17.3.1 Using expanders to reduce error in probabilistic algo-
rithms.

Before constructing expanders, let us see one application for them in the
area of probabilistic algorithms. Recall that in Section 7.1.1 we saw that
we can reduce the error of a probabilistic algorithm from, say, 1/3 to 2−Ω(k)

by executing it k times independently and taking the majority value. If
the algorithm utilized m random coins, this procedure will use m ·k random
coins, and intuitively it seems hard to think of a way to save on randomness.
Nonetheless, we will show that using expanders we can obtain such error
reduction using only m + O(k) random coins. The idea is simple: take an
expander graph G from a very explicit family that is an (N = 2m, d, 1/10)-
graph for some constant d.3 Choose a vertex v1 at random, and take a
length k− 1 long random walk on G to obtain vertices v2, . . . , vk (note that
choosing a random neighbor of a vertex requires O(log d) = O(1) random
bits). Invoke the algorithm k times using v1, . . . , vk as random coins (we
identify the set [N ] of vertices with the set {0, 1}m of possible random coins
for the algorithm) and output the majority answer.

3In our definition of an expander family, we did not require that there is an N -vertex
graph in the family for every N , however typical constructions are quite dense (for example,
there could be an expander for every N that is of the form ck for some constant c) and
so we if we need an expander of size N , we can use an expander of size at most cN
which in this application will cost at most constantly many random bits. For simplicity
of description, we will ignore this issue below and assume we have such a 2m-vertex graph
in the family. Note that we can improve the constant λ of the family to be smaller than
1/10 as indicated above in Remark 17.8.



17.3. EXPANDER GRAPHS AND THEIR USE FOR ERROR REDUCTION.261

The analysis is also not too difficult, but to make it even simpler, we
will analyze only the case of algorithms with one-sided error. For example,
consider an RP algorithm that will never output “accept” if the input is not
in the language, and for inputs in the language will output “accept” with
probability 2/3 (the case of a coRP algorithm is analogous). For such an
algorithm the procedure will output “accept” if the algorithm accepts even
on a single set of coins vi. If the input is not in the language, the procedure
will never accept. If the input is in the language, then let B ⊆ [N ] denote the
“bad” set of coins on which the algorithms rejects. We know that |B| ≤ N

3 .
To show the procedure will output reject with at most 2−Ω(k) probability,
we prove the following lemma:

Lemma 17.9
Let G be an (N, d, λ) graph, and let B ⊆ [N ] be a set with |B| ≤ βN . Let
X1, . . . , Xk be random variables denoting a k − 1-long random walk from
X1, where X1 is chosen uniformly in [N ]. Then,

Pr[∀1≤i≤kXi ∈ B]
(∗)

≤ ((1− λ)
√
β + λ)k

Note that if λ and β are both constants smaller than 1 then so is the
expression (1− λ)

√
β + λ.

Proof: For 1 ≤ i ≤ k, let Bi be the event that Xi ∈ B. Note that the prob-
ability (∗) we’re trying to bound is Pr[B1] Pr[B2|B1] · · ·Pr[Bk|B1, . . . , Bk−1].
Let pi ∈ RN be the vector representing the distribution of Xi, conditioned
on the events B1, . . . , Bi. Denote by B̂ the following linear transformation
from Rn to Rn: for every u ∈ RN , and j ∈ [N ], B̂uj = uj if j ∈ B and
B̂uj = 0 otherwise. It’s not hard to verify that p1 = 1

Pr[B1]B̂1 (recall that
1 = (1/N, . . . , 1/N) is the vector representing the uniform distribution over
[N ]). Similarly, p2 = 1

Pr[B2|B1]
1

Pr[B1]B̂AB̂1 where A = A(G) is the adjacency
matrix of G. Since any probability vector p has |p|1 = 1, we get that

(∗) = |(B̂A)k−1B̂1|1

We’ll bound this norm by showing that

‖(B̂A)k−1B̂1‖2 ≤
(
√

(1−λ)β+λ)k

√
N

(1)

This will be sufficient since for every vector v ∈ RN , |v|1 ≤
√
N‖v‖2 .

We’ll prove Equation 1 via the following quite useful definition and
lemma:



262CHAPTER 17. RANDOM AND PSEUDO-RANDOM WALKS ON GRAPHS

Definition 17.10 (Matrix Norm) If A is an m by n matrix, then ‖A‖
is the maximum number α such that ‖Av‖2 ≤ α‖v‖2 for every v ∈ Rn.

Note that if A is a normalized adjacency matrix then ‖A‖ = 1 (as A1 = 1
and ‖Av‖2 ≤ ‖v‖2 for every v). Also note that the matrix norm satisfies
that for every two n by n matrices A,B, ‖A+B‖ ≤ ‖A‖+‖B‖ and ‖AB‖ ≤
‖A‖‖B‖.

Lemma 17.11 ([?])
Let A be a normalized adjacency matrix of an (n, d, λ)-graph G. Let J be
the adjacency matrix of the n-clique with self loops (i.e., Ji,j = 1/n for every
i, j). Then

A = (1− λ)J + λC (2)

where ‖C‖ ≤ 1.

Note that for every probability vector p = Jp is the uniform distribution,
and so this lemma tells us that in some sense, we can think of a step on a
(n, d, λ)-graph as going to the uniform distribution with probability 1 − λ,
and to a different distribution with probability λ. This is of course not
completely accurate, as a step on a d-regular graph will only go the one of
the d neighbors of the current vertex, but we’ll see that for the purposes of
our analysis, the condition (2) will be just as good.4

Proof: Indeed, simply define C = 1
λ(A − (1 − λ)J). We need to prove

‖Cv‖2 ≤ ‖v‖2 for very v. Indeed, let v = u + w where u is α1 for some
α and w ⊥ 1, and ‖v‖2

2
= ‖u‖2

2
+ ‖w‖2

2
. Since A1 = 1 and J1 = 1

we get that Cu = 1
λ(u − (1 − λ)u) = u. Now, let w′ = Aw. We have

that ‖w′‖2 ≤ λ‖w‖2 and, as we saw in the proof of Lemma 17.4, w′ ⊥ 1.
Furthermore, since the sum of the coordinates of w is zero, we have that
Jw = 0. We get that Cw = 1

λw′. Since w′ ⊥ u we get that ‖Cw‖2
2

=
‖u + 1

λw′‖2
2

= ‖u‖2
2
+ ‖ 1

λw′‖2
2
≤ ‖u‖2

2
+ ‖w‖2

2
= ‖w‖2

2
. 2

We’ll prove (1) by showing ‖B̂A‖ ≤ (1 − λ)
√
B + λ. However, since

B̂A = B̂
(
(1 − λ)J + λC

)
, we get that ‖B̂A‖ ≤ (1 − λ)‖B̂J‖ + λ‖B̂C‖.

Since J ’s output is always a vector of the form α1, we get that ‖B̂J‖ ≤
√
β.

Also we know that B̂ only zeros some parts of its input and hence ‖B̂‖ ≤ 1
implying ‖B̂C‖ ≤ 1. Thus, ‖B̂A‖ ≤ (1−λ)

√
β+λ ≤ λ+

√
β. Since B1 has

the value 1/n in |B| places, we get ‖B1‖2 =
√

β√
n

establishing (1).

4Algebraically, the reason (2) is not equivalent to going to the uniform distribution in
each step with probability 1− λ is that C is not necessarily a stochastic matrix, and may
have negative entries.



17.3. EXPANDER GRAPHS AND THEIR USE FOR ERROR REDUCTION.263

2

As mentioned above, there is a stronger version of this lemma showing
that with exponentially high probability, the number of vertices of the ran-
dom walk in B will be close to the expected βk. This stronger lemma can be
used to show the correctness of the error reduction procedure for algorithms
with two-sided error.

17.3.2 Combinatorial expansion and existence of expanders.

We describe now a combinatorial criteria that is roughly equivalent to Def-
inition 17.7. One advantage of this criteria is that it makes it easy to prove
that a non-explicit expander family exists using the probabilistic method.
It is also quite useful in several applications.

Definition 17.12 (Combinatorial expansion) An n-vertex d-regular graph
G = (V,E) is called an (n, d, c)-combinatorial expander if for every subset
S ⊆ V with |S| ≤ n/2, |E(S, S)| ≥ c|S|, where for subsets S, T of V , E(S, T )
denotes the set of edges (s, t) with s ∈ S and t ∈ T .

Note that in this case the bigger c is the better the expander. We’ll
loosely use the term expander for any (n, d, c)-combinatorial expander with
c a positive constant. Using the probabilistic method, one can prove the
following theorem: (Exercise 2 asks you to prove a slightly weaker version)

Theorem 17.13 (Existence of expanders)
Let ε > 0 be some constant. Then there exists d = d(ε) and NinN such
that for every n > N there exists an (n, d, (1− ε)d)-combinatorial expander.

The following theorem related combinatorial expansion with our previous
Definition 17.7
Theorem 17.14 (Combinatorial and algebraic expansion)

1. If G is an (n, d, λ)-graph then it is an (n, d, d(1− λ)/2)-combinatorial
expander.

2. If G is an (n, d, c)-combinatorial expander then it is an (n, d, 1− c2

2d)-
graph.

Proof: We leave the first part as Exercise 3. Second part: to be completed.
2



264CHAPTER 17. RANDOM AND PSEUDO-RANDOM WALKS ON GRAPHS

17.4 The zig-zag construction of expander graphs.

We will now show a strongly explicit construction of an expander graph
family. This construction will be based on the zig-zag graph product. The
zig-zag product will enable us to reduce the degree of a large expander graph
without considerably harming its expansion, by taking its product with a
smaller graph. Since we can always find a constant-sized expander graph
using a brute-force search, this notion naturally suggest an approach for a
recursive construction of larger graphs based on smaller graphs, and this is
indeed what we will do. The zig-zag product is also used in the deterministic
logspace algorithm for UPATH of the next section.

Graphs as rotation maps. One can view an n-vertex degree-d graph G
as a function Ĝ from [n]× [d] to [n] that given a pair 〈v, i〉 outputs u where
the ith neighbor of v in G. In fact, it will be convenient for us to have Ĝ
output an additional value j ∈ [d] where j is the index of v as a neighbor
of u. Given this definition of Ĝ it is clear that we can invert it by applying
it again, and so it is a permutation on [n] × [d]. We call Ĝ the rotation
map of G. To give a very explicit construction for G is equivalent to give
a polynomial (in log n) time algorithm for computing Ĝ. Note that given
a vertex v, we can go to a random neighbor of v by choosing i at random
from [d] and computing Ĝ(v, i). For starters, one may think of the case that
Ĝ(u, i) = (v, i) (i.e., v is the ith neighbor of u iff u is the ith neighbor of v).
In this case we can think of Ĝ as operating only on the vertex. However, we
will need the more general notion of a rotation map later on.

A graph product is an operation that takes two graphs G1, G2 and out-
puts a graph G. Typically we’re interested in the relation between properties
of the graphs G1, G2 to the properties of the resulting graph G. In this chap-
ter we will mainly be interested in three parameters: the number of vertices
(denoted n), the degree (denoted d), and the 2nd largest eigenvalue of the
normalized adjacency matrix (denoted λ). We will now describe three graph
products:

Matrix Product We’ve already seen this product in the form of graph
squaring. For two n vertex graphs G,G′ with adjacency matrices A,A′,
the graph G′G will be the graph described by the adjacency matrix
A′A. That is a graph with an edge (u, v) for every length 2-path from
u to v where the first step in the path is taken on en edge of G and
the second is on an edge of G′. Typically we will be interested in the
case G = G′, in which case we call this product graph squaring. Since



17.4. THE ZIG-ZAG CONSTRUCTION OF EXPANDER GRAPHS. 265

both A1 and A2 preserve orthogonality to the uniform distribution we
get that if G was an (n, d, λ) graph and G′ an (n, d′, λ′) graph then
G′G is an (n, dd′, λλ′) graph.

Tensor product Given two graphs G,G′ we denote their tensor product
by G⊗G′. If G was an (n, d, λ)-graph and G′ an (n′, d′, λ′)-graph then
G⊗G′ will be an (n · n′, d · d′,max{λ, λ′})-graph (see Lemma 17.16).
The simplest way to describe the tensor product is in the language
of rotation maps: we have that ˆG⊗G′ is a permutation over ([n] ×
[n′]) × ([d] × [d′]) and the ˆG⊗G′(〈u, v〉, 〈i, j〉) = 〈u′, v′〉, 〈i′, j′〉 where
(u′, i′) = Ĝ(u, i) and (v′, j′) = Ĝ′(v, j). That is, the vertex set of
G ⊗ G′ is pairs of vertices, one from G and the other from G′, and
taking a the step 〈i, j〉 on G ⊗ G′ from the vertex 〈u, v〉 is akin to
taking two independent steps: move to the pair 〈u′, v′〉 where u′ is the
ith neighbor of u in G and v′ is the ith neighbor of v in G′.

In terms of adjacency matrices, the tensor product is also quite easy
to describe. If A is the n × n adjacency matrix of G and A′ is the
n′ × n′ adjacency matrix of G′, then the adjacency matrix of G⊗G′,
denoted as A⊗A′, will be an nn′×nn′ matrix that in the 〈i, i′〉th row
and the 〈j, j′〉 column has the value Ai,j ·A′i′,j′ .

The tensor product can also be described in the language of graphs as
having a cluster of n′ vertices in G ⊗ G′ for every vertex of G. Now
if, u and v are two neighboring vertices in G, we will put a bipartite
version of G′ between the cluster corresponding to u and the cluster
corresponding to v in G. That is, if (i, j) is an edge in G′ then we’ll
put an edge between the ith vertex in the cluster corresponding to u
and the jth vertex in the cluster corresponding to v.

Zig-zag product In both the above products, the degree of the resulting
graph is larger than the degree of the input graphs. The following
product helps us actually reduce the degree of one of the graphs. Given
two graphsG,H satisfying the following condition: G is an (n,D, 1−ε)-
graph, and H is an (D, d, 1 − ε′)-graph (i.e., the size of H is equal to
the degree of G), we denote the zig-zag product of G,H by G©z H. It
will be an (n ·D, d2, 1− εε′2)-graph (see Lemma 17.17). Again, it will
be simpler to describe the product in terms of the rotation maps: on
input (〈u, v〉, 〈i′, j′〉) the map will do the following:



266CHAPTER 17. RANDOM AND PSEUDO-RANDOM WALKS ON GRAPHS

Input: G vertex H vertex H 1st index H 2nd index
u ∈ [n] v ∈ [D] i ∈ [d] j ∈ [d]

Step 1: ↓ Ĥ ↓ Ĥ
(v′, i′) = Ĥ(v, i) v′ i′

Step 2: ↓ Ĝ ↓ Ĝ
(u′, v′′) = Ĝ(u, v′) u′ v′′

Step 3: ↓ Ĥ ↓ Ĥ
(v′′, j′) = Ĥ(v′, j) v′′ j′

Output: u′ v′′ i′ j′

The zig-zag product can also be described directly in terms of the
resulting graph. The vertex set is the same set as in G ⊗ H. That
is, it will contain a D-sized cluster of vertices for every vertex in G.
However, the degree will be significantly smaller. In the tensor product
a vertex in the cluster is connected to D distinct clusters, and in each
of them to d vertices in the cluster, leading to degree D · d. In the
zig-zag product, each edge corresponds to choosing one of the d edges
to move within the same cluster, using the label of that vertex to
deterministically move to a corresponding vertex in another cluster,
and then choosing one of the d edges to make another move within
that second cluster, leading to degree d2. The“zig-zag” shape of this
path lends the product its name.

Remark 17.15 (Intuition behind the zig-zag product.) We will un-
derstand the zig zag product better once we see its analysis. However, the
high level intuition is the following. We think of the input graph G1 as a
good expander whose only drawback is that it has a too high degree D. This
means that a k step random walk on G1 will require O(k logD) random bits.
However, as we saw in Section 17.3.1, sometimes we can use fewer random
bits if we use an expander. So a natural idea is to generate the edge labels
for the walk by taking a walk on an expander with D vertices and degree
d � D (e.g., d = 3). We will lose something in the mixing properties of
the expander, but we can ensure that the drop in the degree size is more
dramatic than the loss in expansion, so we can regain what we lost in expan-
sion by taking a square of the graph (or a higher power), while still keeping
the degree small. If we try to carry this intuition through, it will lead as to
a somewhat simpler product than the zig-zag product, which is called the
replacement product (denoted ©R ): under the same parameters, the graph
G1©R G2 has n ·D vertices but degree only d, and its rotation map is that
on input 〈u, v〉, i it applies (v′, i′) = Ĝ2(v, i) and (u′, v′) = Ĝ1(u, v). The



17.4. THE ZIG-ZAG CONSTRUCTION OF EXPANDER GRAPHS. 267

replacement product is tightly connected to the zig-zag product and can be
used in its place in all the construction below, although with slightly more
complicated analysis.5

We now prove that while, unlike the matrix product, the zig-zag and
tensor products do not improve the expansion, they do not harm it too
significantly:

Lemma 17.16 (Tensor product preserves expansion)
Let λ = λ(G) and λ′ = λ(G′) then λ(G⊗G′) ≤ max{λ, λ′}.

Proof: Given some basic facts about tensor products and eigenvalues this
is immediate since if λ1, . . . , λn are the eigenvalues of A (where A is the
adjacency matrix of G) and λ′1, . . . , λ

′
n′ are the eigenvalues of A (where A′ is

the adjacency matrix of G′), then the eigenvalues of A⊗A′ are all numbers
of the form λi · λ′j , and hence the largest ones are of the form 1 · λ(G′) or
λ(G) · 1 (see also Exercise 4).

However, we will show a different proof, that does not assume these
facts, for a somewhat weaker bound that λ(G ⊗ G′) ≤ λ + λ′. The weaker
bound suffices for our applications, and the proof will provide some intuitions
helpful in analyzing the zig-zag product. The adjacency matrix of G⊗G′ is
A⊗A′, where the 〈i, j〉, 〈i′, j′〉 position in A⊗A′ is Ai,i′A

′
j,j′ . By Lemma 2,

A = (1− λ1)J + λ1C and A = (1− λ1)J ′ + λ1C
′ where J is the n× n with

all entries 1/n and J ′ is the n′ × n′ matrix with all entries 1/n′ , and C,C ′

are matrices with norm at most one of the corresponding dimensions. it’s
not hard to verify that the tensor operation is bilinear (i.e., for every three
matrices A,B,C, (A+B)⊗ C = A⊗ C +B ⊗ C), and so we get that

A⊗A′ =
(
(1− λ)J + λC

)
⊗
(
(1− λ′)J ′ + λ′C ′

)
However, this matrix is of the form (1−λ)(1−λ′)J1⊗J2+

(
1−(1−λ)(1−λ′)

)
D

where D is some matrix with ‖D‖ ≤ 1 (one can verify that ‖A ⊗ B‖ ≤
‖A‖‖B‖ for example by showing A⊗B = (A⊗I)(I ′⊗B) where I, I ′ are the
identity matrices of the appropriate dimension). Since J⊗J ′ is the nn′×nn′
matrix with all entries 1/(nn′), we get that any vector v ⊥ 1 will be zeroed
out by that function and hence we will have ‖A⊗A′‖2 ≤ (λ+λ′)v where the
latter term comes from the fact that

(
1−(1−λ)(1−λ′) = λ+λ′−λλ′ ≤ λ+λ′.

2

5Because G1©z G2 is a subgraph of (G1©R G2)
3 the fact that G1©z G2 is an expander

implies that G1©R G2 is also an expander, albeit with worse parameters.



268CHAPTER 17. RANDOM AND PSEUDO-RANDOM WALKS ON GRAPHS

Lemma 17.17 (Zig-zag product preserves expansion)
Let G be an (n,D, 1− ε)-graph, and H an (D, d, 1− ε′)-graph.Then G©z H
is an (n ·D, d2, 1− εε′2)-graph

Proof: Recall that the rotation map of G is a permutation on [n] × [D].
This permutation can be thought of as a linear function Â over Rn·D, where
Âeu,v = eĜ1(u,v) (we denote by eu,v the n · D-dimensional vector that is 1
in the (u, v)th position and zero everywhere else). It is important not to
confuse the permutation Â, which is an nD × nD matrix with each row
and column containing a single 1 and the rest are 0, with the normalized
adjacency matrix A of G, which is an n× n matrix with rows and columns
containing D entries with 1/D and the rest are 0.

Let B denote the adjacency matrix of H. Now, a vertex in G©z H can
be thought of as a pair 〈u, v〉 with u ∈ n and v ∈ [D]. If we take a random
step in G©z H then the first operation in ignores u and takes a random step
on v. In terms of adjacency this corresponds to the matrix I⊗B, where I is
the n× n identity matrix. This is also what happens in the last operation,
while in the middle we apply the permutation Ĝ on 〈u, v〉. We get that the
adjacency matrix of G©z H is in fact

(I ⊗B)Â(I ⊗B) (3)

(The reader can also verify this directly that (3) agrees with the adjacency
matrix of G©z H on the standard basis.)

We now apply Lemma 17.11 to express this matrix as(
I ⊗

(
ε′J + (1− ε′)C

))
Â
(
I ⊗ ε′J + (1− ε′)C

)
(4)

where J is the D ×D matrix with all entries 1/D and C has norm at most
1. We’ll open up the parenthesis and get that the matrix is ε′2(I ⊗ J)Â(I ⊗
J) + (1− ε′2)E where E is a matrix with norm at most one.

The key observation is that

(I ⊗ J)Â(I ⊗ J) = A⊗ J (5)

where A is the actual n × n adjacency matrix of G. Both the left hand
side and right hand side of this equation are stochastic matrices which are
adjacency matrices of some graph. We will show that it is the same graph.

Let GR be the graph corresponding to the matrix A ⊗ J in right hand
side of (5). It is not hard to describe: take the graph G and transform each
vertex into a full clique (with self-loops), and for every edge (u, u′) in G



17.4. THE ZIG-ZAG CONSTRUCTION OF EXPANDER GRAPHS. 269

place the complete bipartite clique between the clique corresponding to u
and the clique corresponding to v.6

Let GR be the graph corresponding to the matrix (I ⊗ J)Â(I ⊗ J) in
the left hand side of (5). It is the matrix product of three graphs H1H2H3.
Both the graphs H1 and H3 correspond to the matrix I ⊗ J , and contain n
isolated cliques (with self loops) each of size D. The graphH2 corresponding
to Â has in-degree and out-degree 1, and has an edge between two vertices
〈u, v〉 and 〈u′, v′〉 if Ĝ1(u, v) = (u′, v′). An edge in the graph GR corresponds
to a length-3 path where the first step is taken in H3, the second in H2, and
the third in H3.

To show that GR = GL we need to show that any GR edge is in GL and
vice versa (we ignore the possibility of parallel edges/edge weights here but
this can be verified as well). However, in both graphs we can get from 〈u, v〉
to 〈u′, v′〉 if and only if the edge (u, u′) is in G.

Once we have (5) we’re basically done since by (4)

λ(G©z H) ≤ ε′2λ(G⊗ J) + (1− ε′2)λ(E)

but λ(E) ≤ 1 since E has norm at most one, and λ(G1 ⊗ J) ≤ 1 − ε by
Lemma 17.16. 2

Given the products above, it is not hard to see the construction of a
strongly explicit expander family:

• Let H be a (D = d8, d, 0.1)-graph, which we can find using brute force
search. (We choose d to be a large enough constant that such a graph
exists)

• Let G1 be a (4D, d4, 1/2)-graph, which we can find using brute force
search.

• For k > 1, let Gk = ((Gk−1 ⊗Gk−1)©z H)4.

The following claim can be shown by induction, using the properties of
the three graph products (in particular Lemmas 17.16 and 17.17):

Claim 17.17.1
For every k ≥ 1, Gk is a (22k

Dk, d4, 1/2)-graph.

6This discussion assumes that G is unweighted and with all the self-loops, but it gener-
alizes to weighted graphs as well. We note that one can also verify the identity of the two
matrices by considering their evaluations on all the standard basis vectors eu,v ∈ Rn·D.



270CHAPTER 17. RANDOM AND PSEUDO-RANDOM WALKS ON GRAPHS

Let T (k) denote the time to compute the rotation map on Gk, then
T (k) ≤ 10T (k − 1) + O(1). We see that T (k) = 2O(k) which is indeed
poly-logarithmic in the size of Gk. Thus we have the following theorem:

Theorem 17.18 (Explicit construction for expanders)
There exists a strongly-explicit λ, d-expander family for some constants d
and λ < 1.

Remark 17.19 There is a variant of the construction supplying a denser
family of graphs (i.e., an n-vertex graph for every n that is a power of c
for some constant c > 1). As mentioned above, there are also constructions
of expanders (typically based on number theory) that are more efficient in
terms of computation time and relation between degree and the parameter
λ than the zig-zag. However, the proofs for these constructions are more
complicated and require deeper mathematical tools. The zig-zag product
has found applications beyond the above construction of expander graphs.
One such application is the deterministic logspace algorithm for undirected
connectivity described in the next section. Another application is a con-
struction of combinatorial expanders with greater expansion that what is
implied by the parameter λ. (Note that even for λ = 0, Theorem 17.1.1 im-
plies combinatorial expansion only d/2 while it can be shown that a random
d-regular graph has combinatorial expansion close to d.)

17.5 Deterministic logspace algorithm for undirected
connectivity.

The zig-zag theorem above has a surprising consequence: a deterministic
algorithm to determine whether two vertices are connected in a graph using
only logarithmic space.

Theorem 17.20 (Reingold’s theorem [?])
UPATH ∈ L.

Proof:When proving Theorem 17.20, we can assume without loss of gen-
erality that the graph has constant degree since there’s an implicitly com-
putable in logspace function mapping to this case (see Claim 17.1.1. One un-
derlying intuition behind the algorithm is that checking that s is connected
to t in a constant-degree expander graph G is indeed is easy. Since the ran-
dom walk from any vertex of G converges in O(log n) steps by Lemma 17.4,
we get that for every two vertices s, t there’s a path of length O(log n) from s
to t (in other words, the graph has diameter O(log n)). Thus, there’s a value



17.5. DETERMINISTIC LOGSPACE ALGORITHM FOR UNDIRECTED CONNECTIVITY.271

` = O(log n) such that to check that s is connected to t we can enumerate
over all `-length walks from s (which takes storing ` indices of neighbors,
each of them of constant size) and check if we hit t. Thus, the idea of the
algorithm will be to transform the graph G (in an implicitly computable
in logspace way) to a graph G′ such that every connected component will
become an expander, but two vertices that were not connected will stay
unconnected. This transformation will be reminiscent of the expander con-
struction of the previous section. Once we have this transformation, we will
check connectivity of s and t in the graph G′.

Let G be a graph of n vertices and constant degree with self loops on all
vertices. We will assume the graph is of degree d8 for some constant d that
is sufficiently large so that there exists a (d8, d, 0.1)-graph H. Assume for
starters that G is connected and consider the following sequence of graphs:

• Let H be a (D = d8, d, 0.1)-graph, which we can find using brute force
search.

• Let G0 = G.

• For k ≥ 1, we define Gk = (Gk−1©z H)4.

Our main claim is the following:
Claim 17.20.1
For every k, Gk is a (nDk, d8,max{0.8, 1− 2k

8dn3 })-graph.

Proof: Since we assume thatG is connected, thenG0 is indeed a (n, d10, 1−
1

8dn3 )-graph by Lemma 17.5. Using the properties of zig-zag and squaring
products (in particular Lemma 17.17) it’s not hard to verify inductively that
the condition for Gk holds. 2

Thus, after k = O(log n) iterations, Gk will be an expander graph with
λ(Gk) ≤ 0.8. As mentioned above, on Gk it’s easy to verify connectivity
since it’s a constant degree graph with O(log n) diameter. Note that both
the squaring and zig-zag products do not create edges between unconnected
vertices. Thus, the transformation works separately on each ofG’s connected
components. Since each of them had initially at most n vertices and hence
the parameter λ at most 1− 1

8dn3 , we see that they’ll all become expanders
within k = O(log n) steps, and that s is connected to t in G = G0 iff there’s
an O(log n)-length path from s to t in Gk.7

7Recall that when performing the zig-zag product Gk−1 ©z H we convert each vertex
of Gk−1 to a cluster of vertices in Gk. We will identify the original vertex with the first
vertex of the cluster, and hence think of s and t as valid vertices in all the graphs Gk for
k ≥ 0.



272CHAPTER 17. RANDOM AND PSEUDO-RANDOM WALKS ON GRAPHS

The space required to enumerate over ` length walks from some vertex
s in Gk is O(`) bits to store ` indices and the space to compute the rotation
map of Gk. To finish the proof, we’ll show that we can compute this map
in O(k+log n) space. This map’s input length is O(k+log n) and hence we
can assume it is placed on a read/write tape, and will compute the rotation
map “in-place” changing the input to the output. Let sk be the additional
space (beyond the input) required to compute the rotation map of Gk. Note
that s0 = O(log n). We’ll give a recursive algorithm to compute Gk, that
will satisfy the equation sk = sk−1 + O(1). In fact, the algorithm will be a
pretty straightforward implementation of the definitions of the zig-zag and
matrix products.

The input to Ĝk is a vertex in (Gk−1©z H) and five labels of edges in the
graph. If we can compute the rotation map of Gk−1©zH in sk−1+O(1) space
then we can do so for Ĝk, since we can simply make five consecutive calls to
this procedure, each time reusing the space.8 Now, to compute the rotation
map Ĝ′k where G′k = (Gk−1©zH) we again simply follow the definition of the
zig-zag product. Given an input of the form u, v, i, j (which we think of as
read/write variables), we can transform it to Ĝ′k(〈u, v〉, 〈i, j〉) by transform-
ing v, i into Ĥ(v, i) (can be done in constant space), then transforming u, v
into Ĝk−1(u, v) using a recursive call (at cost of space sk−1, note that u, v
are conveniently located consecutively at the beginning of the input tape),
and then transforming v, j into Ĥ(v, j).

2

Chapter notes and history

Problems

§1 Let A be a symmetric stochastic matrix: A = A† and every row and
column of A has non-negative entries summing up to one. Prove that
‖A‖ ≤ 1. (Hint: first show that ‖A‖ is at most say n2. Then, prove
that for every k ≥ 1, Ak is also stochastic and ‖A2kv‖2 ≥ ‖Akv‖2

2

using the equality 〈w, Bz〉 = 〈B†w, z〉 and the inequality 〈w, z〉 ≤
‖w‖2‖z‖2 .)

8One has to be slightly careful while making recursive calls, since we don’t want to
lose even the O(log log n) bits of writing down k and keeping an index to the location in
the input we’re working on. However, this can be done by keeping k in global read/write
storage and since storing the identity of the current step among the five calls we’re making
only requires O(1) space.



17.5. DETERMINISTIC LOGSPACE ALGORITHM FOR UNDIRECTED CONNECTIVITY.273

§2 Let a n, d random graph be an n-vertex graph chosen as follows: choose
d random permutations π1, ldots, πd from [n] to [n]. Let the the graph
G contains an edge (u, v) for every pair u, v such that v = πi(u) for
some 1 ≤ i ≤ d. Prove that a random n, d graph is an (n, 2d, 2

3d)
combinatorial expander with probability 1− o(1) (i.e., tending to one
with n). (Hint: for every set S ⊆ n with |S| ≤ n/2 and set T ⊆ [n]
with |T | ≤ (1 + 2

3d)|S|, try to bound the probability that πi(S) ⊆ T
for every i).

§3 Prove the first part of Theorem 17.14: show that if S is any subset of
at most half the vertices in a multigraph G = (V,E) then the number
of edges

∣∣E(S, S)
∣∣ going from S to S is at least d(1 − λ(G)) |S| /2.

(Hint: try to find a vector v ⊥ 1 that corresponds to the set S. You
can also try to prove a weaker version with 2 replaced with a bigger
constant, possibly depending on d but not on n.)

§4 Let A be an n×n matrix with eigenvectors u1, . . . ,un and correspond-
ing values λ1, . . . , λn. Let B be an m × m matrix with eigenvectors
v1, . . . ,vm and corresponding values α1, . . . , αm. Prove that the ma-
trix A⊗B has eigenvectors ui ⊗ vj and corresponding values λi · αj .

§5 (Expander Mixing Lemma) Let S, T be any two subsets of nodes in
a d-regular n-node graph G. Then the set of edges E(S, T ) with one
endpoint in S and the other in T satisfies:∣∣∣∣|E(S, T )| − d |S| |T |

n

∣∣∣∣ ≤ λ(G)d
√
|S| |T |.

(Motivation: IfG were a random d-regular graph then we would expect
|E(S, T )| to be d |S| |T | /n. The Lemma shows that an expander “looks
like” a random graph.)



274CHAPTER 17. RANDOM AND PSEUDO-RANDOM WALKS ON GRAPHS


