
Lecture 3 - Diagonalization, time hierarchy.

Boaz Barak

February 13, 2006

Diagonalization While the general-purpose computer is a very useful and practical object, Turing
also used this fact for negative results, following Godel in using the universality of a system
to prove its limitations. This method is useful also in computational complexity, although its
use seems to be more limited in this context (and in fact, there are even some proofs of its
limitations).

Time hierarchy theorem One annoying possibility is that in fact there’s not really such thing as
the inherent complexity of problems. I mean by that for every problem there is an algorithm
that solves it in time 2n, a more complicated algorithm that solves it in time 2

√
n, an even

more complicated nlog n algorithm, even more complicated n100 algorithm, and so on and so
on until an immensely complicated O(n)-time algorithm (and maybe even here the constant
can be improved). Note that the algorithms have to be more and more complicated since if
there’s an infinite sequence of improving algorithms then they must also grow in description
size (i.e., their description size must also tend to infinity).1 This turns out to actually be the
case for some artificial problems with very unnatural hardness (this is called Blum’s speed-up
theorem). However, the question is whether this happens for all problems, and for example
DTIME(n) = DTIME(n10) or even DTIME(n) = DTIME(2n).

While from the point of view of algorithms designers, this might be an attractive possibility
since they always have room for improvement (although it kind of takes the fun and beauty
out of algorithm design as one gets to algorithms with extremely long description full of
tweaks and special cases). However, from the point of view of complexity theorists this is
somewhat depressing, as it seems that there’s not a lot of point to study the hardness of
computational problems.

It turns out that this is not the case, and we can actually prove that for example DTIME(n2) 6=
DTIME(n4). Note that this is somewhat surprising, since we don’t even know how to show
that a problem like Hamiltonian cycle is not in DTIME(n) (even though we believe it’s not
in DTIME(2

√
n). Indeed, the hierarchy theorems (that you can do more stuff with more

resources) are one of the very few cases where we can actually prove a separation between
complexity classes.

Theorem 1. For every c ≥ 1, DTIME(nc) (DTIME(nc+1).

Proof. Define the following language L: x ∈ L iff the xth machine Mx outputs 0 on x within
|x|c+0.1 steps.

1This discussion demonstrates why I believe “complexity” is actually a bad name for what we’re studying — for
example CSAT is not a very complicated problem and we don’t believe that it’s optimal algorithm is very complicated.
Rather we believe that the very simple brute force algorithm is roughly the best possible for it, and it’s not complicated
— just inefficient.

1

TBC

Non-deterministic time hierarchy There exists a similar hierarchy theorem for non-deterministic
time. Although previously we defined only the class NP it is clear that this definition can be
generalized to NTIME(T) for any function T : N → N:

Definition 1. Let T : N → N and let L ⊆ {0, 1}∗. We say that L ∈ NTIME(T) if there
exists a Turing machine M such that for every x ∈ L and y ∈ {0, 1}∗, M(x, y) halts in cT (|x|)
steps for some constant c > 0 and

x ∈ L ⇐⇒ ∃y∈{0,1}∗ s.t. M(x, y) = 1

We have the following theorem:

Theorem 2. For any c ≥ 1, NTIME(nc) (NTIME(nc+1).

Proof. TBC

P/poly, non-uniformity We can use Boolean circuits as a different model of computation: If
f : {0, 1}∗ → {0, 1}∗ is a function, we denote by fn the restriction of f to {0, 1}n. We say
that f ∈ P/poly if there are constants c, d such that for every n, fn is computable by a circuit
of size cnd.

Every machine can be simulated by a circuit (in a similar way to the fact that CSAT is
NP-complete) and so we have

Lemma 3. P ⊆ P/poly

Proof. Exercise

Machines with advice Let f : {0, 1}∗ → {0, 1}∗ be a function in P/poly. This means that
there is a family of circuits {Cn}n∈N where Cn computes fn = f�{0,1}n . Note that for every
n, the circuit Cn can be completely different, and there need not be a uniform rule to obtain
all these circuits. This is opposed to computing f by a Turing machine, in which case there’s
a single machine that computes f on all input length. For this reason Turing machines are
often called a uniform model of computation, while circuits are called a non-uniform model
of computation, and can in fact compute more functions. Thus, we have the following result:

Lemma 4. P 6= P/poly

We can also capture non-uniformity by Turing machines, if we allow them to take a string,
often called advice for each input length.

Definition 2 (Computing with advice). Let f : {0, 1}∗ → {0, 1}∗ be a function, and let
T, a : N → N be two functions. We say that f ∈ DTIME(T)/a if there exists a Turing machine
M , and a sequence of strings {αn}n∈N with |αn| ≤ a(n) such that for every x ∈ {0, 1}∗, if
n = |x| then M(x, αn) outputs f(x) within T (n) steps.

2

I leave it to you to verify that the class P/poly is equal to the union of DTIME(nc)/nd for
all constants c, d > 0.

Note: As before, many texts define P/poly as a class containing only decision problems (i.e.,
functions with one-bit output).

NP ⊆ P/poly implies PH collapses If P = NP then we know that polynomial hierarchy col-
lapses. If NP ⊆ P/poly then this does not mean that P = NP since it may be hard to find
that circuit. However, finding this circuit can be posed as a Σ2-search problem, and once we
have it, we can solve Π2-problems in Σ2.

3

