
Lecture 2 - NP-completeness, coNP, P/poly and polynomial

hierarchy.

Boaz Barak

February 10, 2006

Universal Turing machine A fundamental observation of Turing’s, which we now take for granted,
is that Turing machines (and in fact any sufficiently rich model of computing) are program-
mable. That is, until his time, people thought of mechanical computing devices that are
tailor-made for solving particular mathematical problems. Turing realized that one could
have a general-purpose machine MU , that can take as input a description of a TM M and x,
and output M(x). Actually it’s easy to observe that this can be done with relatively small
overhead: if M halts on x within T steps, then MU will halt on M,x within O(T log T) steps.

Of course today its harder to appreciate the novelty of this observation, as in some sense the
20th century was the century of the general-purpose computer and it is now all around us,
and writing programs such as a C interpreter in C is considered a CS-undergrad project.

Enumeration of Turing machines To define properly the universal Turing machine, we need to
specify how we describe a Turing machine as a string. Since a TM is described by its collection
of rules (of the form on symbol a, move left/right, write b), it can clearly be described as
such a string. Thus, we assume that we have a standard encoding of TM’s into strings that
satisfies the following:

• For every α ∈ {0, 1}∗, there’s an associated TM Mα. Note that in the most natural
representations there will be strings that are invalid as a representation of a TM, but we
can just map all these strings to, say, the trivial TM that halts immediately and outputs
zero.

• For every TM M , there’s an infinite number of strings α that encode it. This will
probably happen in any natural encoding, but we can enforce it using padding - say that
if α encodes M , then so does α#0k for every k.1 This is analogous to the “comments”
mechanism (i.e., // or /* .. */) in programming languages such as C or Java.

Since every string can be also considered as a natural number in binary notation, this concept
is often called an numeration of Turing machines. Thus, when saying something as the αth

Turing machine Mα, we mean the machine represented by the string/number α.

Furthermore, we’ll sometimes identify the machine M with its description as a string, and so
say things like M ′(M) (which means executing the machine M ′ on the string encoding the
machine M).

1We’ll often use symbols such as # to denote separators etc., pretending for a second that we have an alphabet
larger than {0, 1}. Of course, everything can be encoded in {0, 1}. In a similar way, we’ll assume that we have some
way to encode pairs of strings 〈y, z〉 as a single string, and when we say M(x, y) we mean the output of M when
executed on the encoding of 〈x, y〉.

1

NP-completeness Recall our definition of a search problem as a relation π where given x, the
goal is to find y such that (x, y) ∈ π (or in other notation, y ∈ π(x)). The problem π is in NP
if given x, y we can check in poly-time whether or not (x, y) ∈ π, and it is also in P if given
x we have a poly-time algorithm to compute y ∈ π(x) if π(x) 6= ∅ or outputs ⊥ otherwise.

Somewhat informally, an NP-complete relation is a relation π that is (1) in NP and (2)
has the property that if π ∈ P then NP ⊆ P (the condition (2) is called being NP-hard).
That is, such a relation is the “hardest in NP” in the sense that we can prove that if even
one problem in NP doesn’t have a polynomial-time algorithm then π doesn’t have such an
algorithm as well. A-priori, it’s not at all clear that such relations should exist. However,
we’ll presently see one example for such a relation:

Lemma 1. The following relation TMSAT is NP-complete:

〈M ◦ 1t, y〉 ∈ TMSAT ⇐⇒ M(y) = 1 within t steps

where M is a string describing a Turing machine and ◦ encodes concatenation.2

Proof. TMSAT is polynomial-time verifiable from the existence of a universal Turing machine.

We now turn to proving that TMSAT is NP-hard. Suppose that there exists a poly-time
algorithm A for TMSAT. Let π be any NP-relation. We’ll show a poly-time algorithm B
for π. Since π is an NP-relation, it is polynomial-time verifiable, and hence there exists a
constant c and a Turing machine Mπ such that for every x, y , M(x, y) = 1 within |x|c steps
iff 〈x, y〉 ∈ π.

For every x, we can define the machine Mx to be the machine with x “hardwired” as the first
input. Now, the algorithm B will simply do the following: on input x, it will compute the
string Mx ◦ 1|x|

c
(◦ denotes concatenation) and feed it to A (note that this can be easily done

in polynomial, even linear time). If A outputs ⊥, B will conclude that π(x) =, if A outputs
y 6= ⊥ then B will output y as a solution for x.

Karp/Levin reduction Note that the structure of the algorithm B was very simple: given an
input x from π it converted it into an input Mx ◦ 1t for TMSAT and fed this input to A.
Then, in the case A outputted a non-⊥ value, B converted it into a witness for x w.r.t the
problem π (in fact, in this case no conversion is necessary). Such a reduction is called a
Karp (or sometimes Levin, in the context of search problems) reduction, and we say that the
proof shows that TMSAT is in fact NP-hard through a Karp-reduction. This is often the
case. In fact, in many sources (including the textbook) the definition of NP-hardness and
NP-completeness requires that the reduction will be of this form.

More NP complete problems The problem TMSAT does not seem very natural, so the next
question is whether some natural problems are also NP-complete. On the way, we’ll use a
problem that also does not seem very natural, but will be a useful step to get to more natural
problems.

Transitivity of reduction The key observation is that once we proved a problem π0 to be NP-
hard, we can prove a problem π1 to be NP hard by simply showing a reduction from π0 to
π1 (rather than showing a reduction from every possible π ∈ NP to π1).

2We can assume for simplicity this encoding always ends with zero. Alternatively, we can define the relation by
M#1t, where # encodes a separator. This is the sort of detail we’ll gloss over in the future, but please stop me
whenever such a point bothers you and you are not absolutely clear how it can be resolved.

2

Boolean circuits A Boolean circuit is a another model of computation, using gates such as
AND,OR and NOT to compute an output from the input.

Boolean circuits - formal definitions:

Definition 1 (Boolean circuit). A Boolean circuit with n inputs and m outputs is a
directed acyclic graph (DAG) with labels on the vertices. Each vertex is labeled in one
of the following labels: {in1, . . . , inn,∨,∧,¬, out1, . . . , outm}. For every label of the type
{in1, . . . , inn, out1, . . . , outm} there is exactly one vertex with this label. The vertices labeled
in1, . . . , inn must be sources (i.e., have in-degree = 0), the vertices labeled out1, . . . , outm
must be sinks (i.e., have out-degree = 0). Vertices labeled ∧ or ∨ must have in-degree =
2, while vertices labeled ¬ must have in-degree = 1.
The size of a Boolean circuit is the number of vertices it contains.

If C is a Boolean circuit with n inputs and m outputs, the function C computes is a function
f : {0, 1}n → {0, 1}m defined in the following way:let x ∈ {0, 1}n be some string. For every
vertex v in C we define the value of v with respect to x to be: (1) xi, if v is labeled ini

(2) a∧ b, if v is labeled ∧ and the values of the vertices u, u′ with edges into v are a and b

respectively. (3) a ∨ b, if v is labeled ∨ and the values of the vertices u, u′ with edges into
v are a and b respectively. (4) 6= a, if v is labeled ¬ and the value of the vertex u with
edge into v is a. The function f maps x into y ∈ {0, 1}m where yj is the value (w.r.t. x)
of the vertex labeled outj in the circuit.

It turns out that a t-step computation of any Turing machine can be simulated using a
Boolean circuit of size roughly t2. This appears in the book, and you will also prove this in
the exercises, thus establishing

Lemma 2. The search problem CSAT is defined as follows: let C be a Boolean circuit with
n-bit input and one-bit (i.e., binary) output, CSAT(C) is the set of inputs x ∈ {0, 1}n such
that C(x) = 1. CSAT is NP-complete.

3SAT We now define the problem 3SAT, which is in some sense “the mother of all NP-complete
problems”, since it was the first problem to be proven NP-complete and was used countless
times since then to prove the NP-completeness of many natural problems.

Definition 2. A 3CNF formula φ on n variables is an expression of the following form:
φ(x1, . . . , xn) = C1 ∧ C2 ∧ · · · ∧ Cm, where each Ci (called “clause”) is an expression of the
form `1 ∨ `1 ∨ `3, where each `j (called “literal”) is either a variable xk or its negation ¬xk.

We evaluate the formula according to the standard rules of logic, and say that φ(x1, . . . , xn) =
1 if it evaluates to “true” on x1, . . . , xn and φ(x1, . . . , xn) = 0 otherwise.

Lemma 3. Define 3SAT to be the following problem: for every 3CNF formula φ, 3SAT(φ)
is the set of x’s such that φ(x) = 1 (3SAT(φ) = ∅ is φ does not have a satisfying assignment).
Then 3SAT is NP complete.

Proof. TBC.

From 3SAT, we (or more accurately, you in the exercises) can finally prove that Hamiltonian
cycle is NP-complete:

Lemma 4. HAM is NP-complete.

3

Non-deterministic Turing machine Another way to define NP (typically the decision version)
is using the concept of a non-deterministic Turing machine. The idea is a Turing machine
that on every step can make more than one choice of how to proceed on from its current
state (without loss of generality, we can assume that each step it makes exactly two choices).
Assume that the machine M can output a binary output — either zero or one. Now, if the
machine runs for T steps (and hence makes T choices among two options), then it has 2T

possible computation paths. We say that the machine accepts the input if it outputs one in at
least one of these paths, and rejects the input otherwise (if it outputs zero in all these possible
paths). The language corresponding to a non-deterministic Turing machine M , denoted by
L(M), is the set of all x’s that M accepts. We define NP′′ to be the class of L(M) for all
polynomial-time non-deterministic Turing machines. It’s not hard to see that TMSAT is in
NP′′ (a non-deterministic algorithm for TMSAT is given a Turing machine M and 1t, make
n choices to guess an input x ∈ {0, 1}n and output one iff M(x) = 1 within t steps). It’s also
not hard to see that any language in NP′′ can be reduced to TMSAT. Thus, the class NP′′

actually coincides with the class NP we defined above (for decision problems).

NP as a proof system Recall the definition of NP as a class of decision problems:

• L ∈ NP if there’s a polynomial-time verifiable relation π such that x ∈ L ⇐⇒ π(x) 6= ∅.
• Equivalently, L ∈ NP if there’s a polynomial-time TM M such that x ∈ L ⇐⇒
∃y s.t. M(x, y) = 1. (In the non-deterministic TM formulation we can think of y as the
non-deterministic choices.)

Intuitively, we can think of decision problems in NP as problems that we might not be
able to solve, but have short and efficient proofs/certificates. That is, we might not have a
polynomial-time algorithm to find a Hamiltonian cycle in a graph, but there’s a way for me
to prove to you that a graph G is Hamiltonian, by presenting the cycle.

The class coNP If NP is the class of statements that have short proofs, then coNP is the class
of statements that have short refutations. That is, L ∈ coNP if there is a poly-time TM M
such that x 6∈ L ⇐⇒ ∃y s.t. M(x, y) = 1. Equivalently, L ∈ coNP if there’s a poly-time M
such that x ∈ L ⇐⇒ ∀yM(x, y) = 0. Of course we can flip the output of M to get poly-time
M ′ such that x ∈ L ⇐⇒ ∀yM(x, y) = 1.

Thus, naturally we have the following coNP-complete problem UN3SAT: A 3CNF formula
φ is in UN3SAT iff for all x, φ(x) = 0. That is, there’s a Karp reduction from any language
in coNP to UN3SAT.

More generally, we have that for every L ∈ NP , L̄ = {0, 1}∗ \L is in coNP and this charac-
terizes exactly the languages in coNP. If L is NP-complete, then by the same reduction L̄
is coNP-complete. A slightly more natural coNP-complete problem than UN3SAT is TAUT:
φ ∈ TAUT iff ∀x, φ(x) = 1.

Note that coNP is not the complement of NP. In particular, there are languages in the
intersection of NP and coNP. In fact all languages in P are in this intersection. It is
believed (although not known) that P (NP ∩ coNP.

(Insert figure of world view)

Polynomial hierarchy To recap, NP is the class of problems reducible to the problem of deciding
truth of statements of the form ∃xφ(x) = 1. coNP is the class of problems reducible to

4

deciding truth of statements of the form ∀xφ(x) = 1. What about statements of the form
∃x∀yφ(x, y) = 1, ∀x∃y∀xφ(x, y, z) = 1?

We can define classes Σ1,Σ2,Σ3, . . . and Π1,Π2,Π3 capturing these classes. We define the
polynomial hierarchy PH to be the union of all these classes. What we know is that:

• If P = NP then Σ1 = Σ2 = · · · = Π1 = Π2 = · · · = P. (See exercise).

• If NP = coNP then Σ1 = Σ2 = · · · = Π1 = Π2 = · · · = NP = coNP.

• More generally, if Σi = Πi then Σi = Σi+1 = · · · = Πi = Πi+1 = · · · . In this case we say
that the polynomial hierarchy collapses to its ith level.

• It is conjectured that the polynomial hierarchy does not collapse. While we seem to have
some intuition and evidence for the lower level of the hierarchy (and particularly for the
conjecture that P 6= NP and NP 6= coNP), the conjecture that the hierarchy does not
collapse at all seems, at least to me, to be mostly for aesthetic reasons. In any case, this
assumption has been often used (typically for relatively low levels of the hierarchy), and
so far had not been contradicted.

P/poly, non-uniformity We can use Boolean circuits as a different model of computation: If
f : {0, 1}∗ → {0, 1}∗ is a function, we denote by fn the restriction of f to {0, 1}n. We say
that f ∈ P/poly if there are constants c, d such that for every n, fn is computable by a circuit
of size cnd.

Every machine can be simulated by a circuit (in a similar way to the fact that CSAT is
NP-complete) and so we have

Lemma 5. P ⊆ P/poly

Proof. Exercise

Machines with advice Let f : {0, 1}∗ → {0, 1}∗ be a function in P/poly. This means that
there is a family of circuits {Cn}n∈N where Cn computes fn = f�{0,1}n . Note that for every
n, the circuit Cn can be completely different, and there need not be a uniform rule to obtain
all these circuits. This is opposed to computing f by a Turing machine, in which case there’s
a single machine that computes f on all input length. For this reason Turing machines are
often called a uniform model of computation, while circuits are called a non-uniform model
of computation, and can in fact compute more functions. Thus, we have the following result:

Lemma 6. P 6= P/poly

We can also capture non-uniformity by Turing machines, if we allow them to take a string,
often called advice for each input length.

Definition 3 (Computing with advice). Let f : {0, 1}∗ → {0, 1}∗ be a function, and let
T, a : N → N be two functions. We say that f ∈ DTIME(T)/a if there exists a Turing machine
M , and a sequence of strings {αn}n∈N with |αn| ≤ a(n) such that for every x ∈ {0, 1}∗, if
n = |x| then M(x, αn) outputs f(x) within T (n) steps.

5

I leave it to you to verify that the class P/poly is equal to the union of DTIME(nc)/nd for
all constants c, d > 0.

Note: As before, many texts define P/poly as a class containing only decision problems (i.e.,
functions with one-bit output).

NP ⊆ P/poly implies PH collapses If P = NP then we know that polynomial hierarchy col-
lapses. If NP ⊆ P/poly then this does not mean that P = NP since it may be hard to find
that circuit. However, finding this circuit can be posed as a Σ2-search problem, and once we
have it, we can solve Π2-problems in Σ2.

Practical and philosophical implications of P = NP etc.. As far as we know, it may be the
case that P = NP and that there’s even a truly efficient algorithm for 3SAT (say linear or
quadratic, with a reasonable constant). This will immediately mean that we can solve all
search problems essentially in the same time we can verify a solution. Such search prob-
lems include not only the Hamiltonian cycle problem and seating people in dinner parties,
but a great many problems arising in scheduling/operation research, computational biology,
economics and game theory, physics, and many other areas of human endeavors (there are
thousands of NP and NP-complete problems in all kinds of applications3). Another well
known application is that such an algorithm will enable breaking not just all currently used
encryption and signature schemes, but all possible encryption scheme.

However, because such an algorithm will imply that actually P = PH, such an algorithm
will have even more dramatic consequences.4 For example, many questions arising in science
and other applications, have the following form: given a set of observations, find the simplest
theory/equation/rules that explain these observations. This may sound simple, but even in a
relatively “clean” science such as physics, where eventually the theories are described by few
simple equations, it took centuries to find the right ones (and we’re still not done). When
trying to understand DNA, develop drugs, or the human brain, the space we search in is much
larger, and hence, unsurprisingly, we still have a lot more to go. However this search problem
is either in NP or Σ2 (depending on what whether checking for a good theory means takes
polynomial-time or takes enumerating over an exponential space) we’ll now be able to solve
it automatically. It means that it is likely that we’ll be able to use such an algorithm not
only to resolve unsolved mathematical questions, find the unified theory of physics, and cure
cancer, but also find the software that does just as well as the human brain in various tasks
(visual perception, language recognition). Since as our hardware keeps improving, it seems
the main barrier for such simulations is software, we may get to the point where computer
can actually simulate a human brain (or maybe many brains). At that point a computer may
be able to not just recognize English but also write novels and symphonies...

Of course, it’s very likely that NP 6= P and hence we won’t have this science fiction fantasy
world.5 However, the fact that we cannot rule out such ridiculous possibilities is outrageous.
This demonstrates how deep is our ignorance about computation. I personally believe that,

3In a 1997 survey paper, Papadimitriou notes that in a search he found 6000 papers each year with the term
“NP-complete” in the title, abstract or keywords. The term was more popular than terms such as “compiler” ,
“operating system”, “database”, “neural network” and “expert”.

4Note that the proof that P = PH will turn a quadratic algorithm for 3SAT into a roughly n2c

algorithm for
Σc−3SAT. However, most of the applications below require relatively low levels of the hierarchy, and also note that
as far as we know at the moment, there may be a linear or quadratic algorithm for all of PSPACE.

5Although we will fulfill some fantasies: if we do manage to prove good lower bounds on computation of problems
in NP, we’ll have provably unbreakable cryptography, and universal simulation of all randomized algorithms.

6

just as it was with Geometry in the 19th century and physics in the 20th century, as we
resolve this shame and learn more about computation, there will be unexpected and far
reaching consequences.

7

