COS 522 Complexity — Homework 4.

Boaz Barak

Total of 120 points. Due April 10th, 2006.

Exercise 1 (20 points). Suppose that there exists a polynomial-time algorithm G and a constant c > 0 such that for any s, and any circuit C of size $\leq s$, if x is chosen at random from $\{0,1\}^{c \log s}$ then

$$|\Pr[C(G(1^s, x)) = 1] - \Pr[C(U_s) = 1]| < \frac{1}{10}$$

(where if C is takes $n \leq s$ bits as input, then by C(y) we mean apply C to the first n bits of y.)

Prove that there exists a function $f \in \mathbf{E} = \mathbf{DTIME}(2^{O(n)})$ (with one bit of output) such that f is not computable by $2^{n/\log n}$ -size circuits.

Exercise 2 (20 points). For X a random variable over $\{0,1\}^n$, we define $H_{\infty}(X)$ (called the minentropy of X) to be the smallest number k such that $\Pr[X = x] \leq 2^{-k}$ for every $x \in \{0,1\}^n$. We define $H_2(X)$ (called the two entropy of X) to be $\log(1/cp(X))$ where cp(X) is the collision probability of X. That is, $cp(X) = \Pr[X = X'] = \sum_{x \in \{0,1\}^n} (\Pr[X = x])^2$ where X, X' are two independent copies of X. Note that we can think of X as a vector of 2^n non-negative numbers summing to one, in which case cp(X) is equal to $||x||_2^2$. We say that X is a convex combination of distributions X_1, \ldots, X_N if there are non-negative numbers $\alpha_1, \ldots, \alpha_N$ such that $\sum_{i=1}^N \alpha_i = 1$ and $X = \sum_i \alpha_i X_i$ (where this summation is in vector notation, alternatively one can think of choosing a random element from X as first choosing i with probability α_i and then choosing a random element from X_i).

- 1. Prove that $H_{\infty}(X) \leq H_2(X)$.
- 2. Prove that $H_2(X) = n$ iff X is distributed according to the uniform distribution on $\{0, 1\}^n$.
- 3. Prove that $H_2(X) = n$ iff for every non zero vector $r \in \{0, 1\}^n$, $\Pr[\langle X, r \rangle = 0 \pmod{2}] = \frac{1}{2}$. See footnote for hint¹
- 4. Let k be a whole number in [n]. Prove that every X with $H_{\infty}(X) \ge k$ is a convex combination of distributions X_1, \ldots, X_N where each X_i is the uniform distribution over some set $S_i \subseteq \{0,1\}^n$ with $|S_i| \ge 2^k$. (For partial credit, prove that X is of statistical distance less than 1/100 to a distribution that is such a convex combination.)

Exercise 3 (20 points + 5 points bonus). For a subset $C \subseteq \{0,1\}^n$, we say that C is a good code if $|C| \ge 2^{n/100}$ and mindist $(C) \ge n/100$ where

$$\mathsf{mindist}(C) = \min_{x \neq x' \in C} \left| \{i \in [n] : x_i \neq x'_i\} \right|$$

¹**Hint:** (this is not the only way to do this) use the fact that the norm two of a vector is the same if the vector is expressed under a different orthonormal basis, and consider the vector X represented in the basis $\{Z^r\}_{r \in \{0,1\}^n}$ where the x^{th} coordinate of Z_r is $+2^{n/2}$ if $\langle x, r \rangle = 0$ (mod 2) and $-2^{n/2}$ otherwise.

- 1. Prove that if C is a linear subspace then $\operatorname{mindist}(C)$ to $\min_{0^n \neq x \in C} |\{i \in [n] : x_i = 1\}|$.
- 2. Prove using the probabilistic method that there exists a good code C that is a linear subspace (that is, it satisfies that if $x, x' \in C$ then $x \oplus x' \in C$).
- 3. Prove that there exists no good code C with $\operatorname{mindist}(C) \ge 0.51n$. See footnote for hint^2 . For 5 bonus points, prove that there exists no good code C with $\operatorname{mindist}(C) \ge \frac{n}{2} \sqrt{n}$.

Exercise 4 (20 points + 15 points bonus). We can define a subspace $C \subseteq \{0, 1\}^n$ of dimension $\geq d$ by specifying a set of k = n - d linear equations that this set satisfies. That is, each equation stipulates that the sum (mod 2) of some variables is equal to 0. We can also denote this in a bipartite graph G = (X, Y, E) where |X| = n, |Y| = k and for every $j \in [k]$ the neighbors of $y_j \in Y$ correspond to the variables appearing in the j^{th} equation. We'll restrict ourselves into graphs where each $x_i \in X$ is connected to at most 10 elements of Y (i.e., x_i appears in at most 10 equations).

- 1. Choose G with |X| = n and |Y| = k = 0.9n at random by choosing 10 random neighbors in Y for each $x \in X$. Prove that with probability > 0.9 it holds that for every set $S \subseteq X$ with $|S| \le n/30$, it holds that $\Gamma(X) \ge 9|S|$. We call this condition (*)
- 2. Prove that if such a graph G satisfies the condition (*) then the corresponding code is good. See footnote for hint³
- 3. (15 points bonus) Find an efficient algorithm to decode this code. That is, show a polynomialtime algorithm A that given G satisfying (*) with corresponding code C and given y such that there exists some $x \in C$ with Hamming distance of x and y less than n/1000, manages to find this vector x. (Although this can be solved without this, you can use also a probabilistic algorithm if you like.) See footnote for hint⁴
- **Exercise 5** (20 points). 1. Let $3SAT_{10}$ be the variant of 3SAT where the formula is restricted to have the condition that each variable does not appear in more than 10 clauses. Prove that $3SAT_{10}$ is NP-complete.
 - 2. Suppose that there's a polynomial-time algorithm A that on input a 3SAT_{10} formula ϕ , outputs 1 if ϕ is satisfiable and outputs 0 if for any assignment x for ϕ , at least a 1/1000 fraction of the clauses are not satisfied by x. (There's no guarantee what A does on formulas that are not fully but are 999/1000 satisfiable). Prove if this is the case then is a polynomial-time algorithm B that on input a standard 3SAT formula ψ (possibly with each variable appearing in many clauses) outputs 1 if ψ is satisfiable and outputs 0 for any assignment y for ψ , at least 0.9 fraction of the clauses are not satisfied by y. (you can use a probabilistic algorithm B if you like, although it can be done without this.) See footnote for hint⁵

²Hint: Think of the codewords as vectors in \mathbb{R}^n with +1 representing zero and -1 representing one. Then, use the fact that the distance is related to the inner product of such vectors.

³Hint: note that if G satisfies this condition then for any such S there exist many $y \in \Gamma(S)$ that are connected to exactly one element of S. ⁴Hint: For starters try to find an algorithm that transforms y that is of distance $d \le n/1000$ to the code into y' that is of distance 0.9d to be code.

the code. ${}^{5}\mathrm{Hint:}$ use expander graphs.