
COS 522 Complexity — Homework 4.

Boaz Barak

Total of 120 points. Due April 10th, 2006.

Exercise 1 (20 points). Suppose that there exists a polynomial-time algorithm G and a constant
c > 0 such that for any s, and any circuit C of size ≤ s, if x is chosen at random from {0, 1}c log s

then
|Pr[C(G(1s, x)) = 1]− Pr[C(Us) = 1]| < 1

10
(where if C is takes n ≤ s bits as input, then by C(y) we mean apply C to the first n bits of y.)

Prove that there exists a function f ∈ E = DTIME(2O(n)) (with one bit of output) such that
f is not computable by 2n/ log n-size circuits.

Exercise 2 (20 points). For X a random variable over {0, 1}n, we define H∞(X) (called the min-
entropy of X) to be the smallest number k such that Pr[X = x] ≤ 2−k for every x ∈ {0, 1}n.
We define H2(X) (called the two entropy of X) to be log(1/cp(X)) where cp(X) is the collision
probability of X. That is, cp(X) = Pr[X = X ′] =

∑
x∈{0,1}n(Pr[X = x])2 where X,X ′ are two

independent copies of X. Note that we can think of X as a vector of 2n non-negative numbers
summing to one, in which case cp(X) is equal to ‖x‖2

2. We say that X is a convex combination of
distributions X1, . . . , XN if there are non-negative numbers α1, . . . , αN such that

∑N
i=1 αi = 1 and

X =
∑

i αiXi (where this summation is in vector notation, alternatively one can think of choosing a
random element from X as first choosing i with probability αi and then choosing a random element
from Xi).

1. Prove that H∞(X) ≤ H2(X).

2. Prove that H2(X) = n iff X is distributed according to the uniform distribution on {0, 1}n.

3. Prove that H2(X) = n iff for every non zero vector r ∈ {0, 1}n, Pr[< X, r >= 0 (mod 2)] = 1
2 .

See footnote for hint1

4. Let k be a whole number in [n]. Prove that every X with H∞(X) ≥ k is a convex combination
of distributions X1, . . . , XN where each Xi is the uniform distribution over some set Si ⊆
{0, 1}n with |Si| ≥ 2k. (For partial credit, prove that X is of statistical distance less than
1/100 to a distribution that is such a convex combination.)

Exercise 3 (20 points + 5 points bonus). For a subset C ⊆ {0, 1}n, we say that C is a good code
if |C| ≥ 2n/100 and mindist(C) ≥ n/100 where

mindist(C) = min
x 6=x′∈C

∣∣{i ∈ [n] : xi 6= x′i}
∣∣

1Hint: (this is not the only way to do this) use the fact that the norm two of a vector is the same if the vector is expressed under a different

orthonormal basis, and consider the vector X represented in the basis {Zr}r∈{0,1}n where the xth coordinate of Zr is +2n/2 if < x, r >= 0

(mod 2) and −2n/2 otherwise.
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1. Prove that if C is a linear subspace then mindist(C) to min0n 6=x∈C |{i ∈ [n] : xi = 1}|.

2. Prove using the probabilistic method that there exists a good code C that is a linear subspace
(that is, it satisfies that if x, x′ ∈ C then x⊕ x′ ∈ C).

3. Prove that there exists no good code C with mindist(C) ≥ 0.51n. See footnote for hint2. For
5 bonus points, prove that there exists no good code C with mindist(C) ≥ n

2 −
√
n.

Exercise 4 (20 points + 15 points bonus). We can define a subspace C ⊆ {0, 1}n of dimension
≥ d by specifying a set of k = n− d linear equations that this set satisfies. That is, each equation
stipulates that the sum (mod 2) of some variables is equal to 0. We can also denote this in a
bipartite graph G = (X,Y,E) where |X| = n, |Y | = k and for every j ∈ [k] the neighbors of yj ∈ Y
correspond to the variables appearing in the jth equation. We’ll restrict ourselves into graphs where
each xi ∈ X is connected to at most 10 elements of Y (i.e., xi appears in at most 10 equations).

1. Choose G with |X| = n and |Y | = k = 0.9n at random by choosing 10 random neighbors in
Y for each x ∈ X. Prove that with probability > 0.9 it holds that for every set S ⊆ X with
|S| ≤ n/30, it holds that Γ(X) ≥ 9|S|. We call this condition (*)

2. Prove that if such a graph G satisfies the condition (*) then the corresponding code is good.
See footnote for hint3

3. (15 points bonus) Find an efficient algorithm to decode this code. That is, show a polynomial-
time algorithm A that given G satisfying (*) with corresponding code C and given y such
that there exists some x ∈ C with Hamming distance of x and y less than n/1000, manages to
find this vector x. (Although this can be solved without this, you can use also a probabilistic
algorithm if you like.) See footnote for hint4

Exercise 5 (20 points). 1. Let 3SAT10 be the variant of 3SAT where the formula is restricted
to have the condition that each variable does not appear in more than 10 clauses. Prove that
3SAT10 is NP-complete.

2. Suppose that there’s a polynomial-time algorithm A that on input a 3SAT10 formula φ,
outputs 1 if φ is satisfiable and outputs 0 if for any assignment x for φ, at least a 1/1000
fraction of the clauses are not satisfied by x. (There’s no guarantee what A does on formulas
that are not fully but are 999/1000 satisfiable). Prove if this is the case then is a polynomial-
time algorithm B that on input a standard 3SAT formula ψ (possibly with each variable
appearing in many clauses) outputs 1 if ψ is satisfiable and outputs 0 for any assignment y
for ψ, at least 0.9 fraction of the clauses are not satisfied by y. (you can use a probabilistic
algorithm B if you like, although it can be done without this.) See footnote for hint5

2Hint: Think of the codewords as vectors in Rn with +1 representing zero and −1 representing one. Then, use the fact that the distance is
related to the inner product of such vectors.

3Hint: note that if G satisfies this condition then for any such S there exist many y ∈ Γ(S) that are connected to exactly one element of S.
4Hint: For starters try to find an algorithm that transforms y that is of distance d ≤ n/1000 to the code into y′ that is of distance 0.9d to

the code.
5Hint: use expander graphs.
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