
Harmonic Analysis and Linearity testing.

April 16, 2006

This material is described in Chapter 19.6 in the book.

Linearity testing Essentially the only thing left to prove the PCP theorem is to prove the
following theorem:

Recall that a linear function from {0, 1}n to {0, 1} is a function L satisfying L(x⊕y) = L(x)⊕
L(y) or equivalently, L(x) = 〈x, α〉 (mod 2) =

∑
i xiαi (mod 2) for some α ∈ {0, 1}n (that is,

L is the Hadamard encoding of α). Another equivalent way to describe L is L(x) =
∑

i∈α xi

(mod 2) for α ⊆ [n]. (Where [n] = {1, . . . , n}.)

Theorem 1. Let f : {0, 1}n → {0, 1} be a function, and assume p = Prx,y[f(x) ⊕ f(y) =
f(x ⊕ y)] ≥ 1

2 . Then, there exists a linear function L : {0, 1}n → {0, 1} such that Pr[f(x) =
L(x)] ≥ p.

Moving to ±1 It will be convenient to do the following transformation:

0 7→ +1
1 7→ −1
⊕ 7→ ·

For x, y ∈ {±1}n we’ll denote by x⊕ y the componentwise multiplication of x and y. That is,
(x ⊕ y)i = xiyi. We’ll now call a function L : {±1}n → {±1} linear if L(x ⊕ y) = L(x)L(y)
for all x, y. Equivalently, L is linear if L(x) = Πi∈αxi for some α ⊆ [n]. We denote the linear
function x 7→ Πi∈αxi by χα(cdot).

For functions f, g : {±1}n → {±1}, we define 〈f, g〉 = E[f(x)g(x)] = 2−n
∑

x∈{±1} f(x)g(x).
Note that

〈f, g〉 = Pr[f(x) = g(x)]− Pr[f(x) 6= g(x)] = 2 Pr[f(x) = g(x)]− 1

or in other words Pr[f(x) = g(x)] = 1
2+ 1

2〈f, g〉 and so the larger 〈f, g〉, the closer (in Hamming
distance) f and g are.

We can generalize the definition of 〈f, g〉 to functions f, g : {±1} → R and then we get that
〈f, g〉 satisfies the standard properties of an inner product: 〈f, f〉 > 0 for every non-zero f ,
〈f, g〉 = 〈g, f〉 and 〈αf + βf ′, g〉 = α〈f, g〉+ β〈f ′, g〉.

Rephrasing the theorem Another way to phrase Theorem 1 is the following

1

Theorem 2. For a function f : {±1}n → {±1} and α ⊆ [n], denote f̂(α) = 〈f, χα〉. If
f̂(α) ≤ ε for every α then

2 Pr[f(x)f(y) = f(x⊕ y)]− 1 = E[f(x)f(y)f(x⊕ y)] ≤ ε

Some linear algebra Let’s look at a function f : {±1}n → {±1} (or more generally f : {±1}n →
R) as a 2n-dimensional real vector. We can think of f as equal to

∑
z∈{±1}n f(z)ez where

ez is the standard basis vector: ez(x) = 0 for x 6= z and ez(z) = 1. That is, for every x,
f(x) =

∑
z f(z)ez(x).

However, the vectors {χα} are also a basis for R2n
. In fact, they are an orthonormal basis

under our definition of inner product:

Lemma 3. For every α, β,
〈χα, χβ〉 = δα,β (1)

, where

δα,β =

{
1 α = β

0 α 6= β

Proof. Since χα has values in {±1}, clearly 〈χα, χα〉 = 2−n
∑

x(χα(x))2 = 2−n2n = 1.

Suppose α 6= β, then
2n〈χα, χβ〉 =

∑
x

χα(x)χβ(x) = χα⊕β(x)

(where α⊕ β denotes the symmetric difference in sets and this follows from the fact that for
xi ∈ ±, x2

i = 1. Since for every nonzero γ ∈ {0, 1}n, Prr∈{0,1}n [〈γ, r〉 = 1] = 1/2, this sum
will have half the values +1 and half −1 and so will be zero.

Fourier transform: Since {χα} is a basis, we can express any function f : {±1}n → R in this
basis, in fact we have the following equation:

f =
∑
α

f̂(α)χα

Indeed, suppose f =
∑

α f ′(α)χα. Then, for every β we have that f̂(β) = 〈f, χβ〉 =∑
α f ′(α)〈χα, χβ〉 =

∑
α f ′(α)δα,β = f ′(α).

We call the value f̂(α) the αth Fourier coefficient of f .

We also have Parseval’s equality that the norm of f is invariant under change to orthonormal
basis or in other words that

〈f, f〉 = 2−n
∑

x

f(x)2 =
∑
α

f̂(α)2

In particular, if f(x) ∈ {±1} for all x then 〈f, f〉 = 1 and hence
∑

α f̂(α)2 = 1.

2

Proving Theorem 2 Suppose that f̂(α) ≤ ε for every α. We need to prove that E[f(x)f(y)f(x⊕
y)] ≤ ε. This follows from the following calculation:

Ex,y[f(x)f(y)f(x⊕ y)] = 2−2n
∑
x,y

f(x)f(y)f(x⊕ y) =
basis change

2−2n
∑
x,y

(∑
α

f̂(α)χα(x)

)∑
β

f̂(β)χβ(y)

(∑
γ

f̂(γ)χγ(x⊕ y)

)
=

linearity of χγ

2−2n
∑
x,y

(∑
α

f̂(α)χα(x)

)∑
β

f̂(β)χβ(y)

(∑
γ

f̂(γ)χγ(x)χγ(y)

)
=

reordering summations

∑
α,β,γ

f̂(α)f̂(β)f̂(γ)

(
2−n

∑
x

χα(x)χγ(x)

)(
2−n

∑
y

χβ(y)χγ(y)

)
=
(1)∑

α,β,γ

f̂(α)f̂(β)f̂(γ)δα,γδβ,γ =
∑
α

f̂(α)3 ≤
∑
α

εf̂(α)2 =
Parseval

ε · 1

Learning the Fourier coefficients of a function: Let f : {±1}n → {±1} be some function.
Because of Parseval’s equality, there can be at 1/ε2 coefficients f̂(α) satisfying f̂(α) ≥ ε. A
natural question is the following: given oracle access to f(·), can we learn these coefficients?

We’ll now show this is possible. That is, we prove the following theorem:

Theorem 4 (Goldreich-Levin 89). There’s a poly(n, 1/ε, log(1/δ)) algorithm A that with
oracle access to any f : {±1}n → {±1} such that f̂(α) ≥ ε for some α, with probability 1− δ,
Af outputs a list of size O(1/ε2) containing all the α with f̂(α) ≥ ε.

Going back from the {±1} representation to the {0, 1} representation, this means that if we
have a function f : {0, 1}n → {0, 1} that has agreement 1

2 + ε with some linear function
r 7→ 〈z, r〉 (mod 2) then we can find z with probability O(ε2). In cryptography this is used
to prove that if f(x) is a one-way permutation, then f(x, r) = f(x) ◦ r ◦ 〈x, r〉 (mod 2) is a
pseudorandom generator. (This is the well known hard-core bit theorem.)

Another way to look at this theorem is that this is local list decoding of the Hadamard code:
given oracle access to f , find the list of O(1/ε2) Hadamard codewords that are 1

2 + ε-close to
f .

Proof of Theorem 4 For k ≤ n and α ∈ {0, 1}k, we’ll denote by fα to be the sum of squares of
Fourier coefficients of f starting with α. That is, fα =

∑
β∈{0,1}n−k f̂(α ◦β)2. If f : {±1}n →

{±1} then by Parseval fλ = 1 (where λ is the empty word). Also, for every α ∈ {0, 1}k,
fα = fα0 + fα1. Think of a full binary tree with the root labeled by fλ = 1 and the two
children of a node labeled by fα are labeled by fα0 and fα1. The values at each level of the
tree sum up to 1, and the goal of the algorithm is to find the list leafs that are labeled with
values at least ε.

The outline of the algorithm will be as follows: we’ll have a procedure Estimate that given
α and oracle access to f(·), will estimate fα up to ε/4 accuracy with probability 1 − δε/n.

3

We’ll work our way from the root down, and whenever we Estimate(α) gives a value smaller
than ε/2 we will “kill” this node and will not deal with it and its subnodes. Note that, unless
the output of Estimate is more than ε/4-far from the real value (which we’ll ensure by the
union bound will happen with probability at most δ) at most 4/ε nodes will survive at any
level. The algorithm will output the 4/ε leaves that survive.

The procedure Estimate: At the heart of Estimate is the following lemma:

Lemma 5. For every α0,

fα0 = Ex,x′←R{0,1}k,y←R{0,1}n−k [f(x ◦ y)f(x′ ◦ y)χα0(x)χα0(x′)]

By simple Chernoff bounds, one can estimate this expectation using repeated sampling. Thus,
all that is left is to prove the lemma:

Proof. Before proving the lemma, let’s have some intuition for why it works. Consider the
case that α0 = 0k and suppose that fα0 = 1. This means that f can be expressed as a sum
of functions of the form χ0k◦β and hence it does not depend on its first k variables. Thus
f(x ◦ y) = f(x′ ◦ y) and we’ll get that E[f(x ◦ y)f(x′ ◦ y)] = E[f(z)2] = 1. If f0k is large then
that means that in the Fourier representation, the weight of functions not depending on the
first k variables is large and hence we expect large correlation between f(x′ ◦ y) and f(x ◦ y).
For the case α0 6= 0k, we essentially add these factors to translate it to the case α0 = 0k.
Indeed one can verify that if we define g(x ◦ y) = f(x ◦ y)χα0(x) then g0k = fα0 .

We’ll now prove the lemma:

2−n−k
∑

x,x′,y

f(x ◦ y)f(x′ ◦ y)χα0(x)χα0(x′) =
basis change

2−n−k
∑

x,x′,y

∑
α◦β

f̂(α ◦ β)χα◦β(x ◦ y)

∑
α′◦β′

f̂(α′ ◦ β′)χα′◦β′(x′ ◦ y)

χα0(x)χα0(x′) =
χα◦β(x ◦ y) = χα(x)χβ(y)

2−n−k
∑

x,x′,y

∑
α◦β

f̂(α ◦ β)χα(x)χβ(y)

∑
α′◦β′

f̂(α′ ◦ β′)χα′(x′)χβ′(y)

χα0(x)χα0(x′) =
reordering terms

∑
α,β,α′,β′

f̂(αβ)f̂(α′β′)2−k

(∑
x

χα′(x)χα0(x)

)
2−k

(∑
x′

χα(x′)χα0(x′)

)
2−(n−k)

(∑
y

χβ(y)χβ′(y)

)
=

〈χα, χα′ 〉 = δα,α′∑
β,β′

f̂(α ◦ β)f̂(α′ ◦ β′)δα,α0δα′,α0δβ,β′ =
∑
β

f̂(α0 ◦ β)2 = fα0

Testing the long-code We call a function from {±1}n to {±1} that depends on only a single
variable (i.e. f(x) = xi or f(x) = −xi) a dictatorship. We call a function that depends on at
most a constant number of variables a junta.

The long code maps a value i ∈ [n] to the function x 7→ xi in {±1}{±1}n . That is, every
codeword of the longcode is a dictatorship.

4

We’ll now present a test T that when given oracle access to a longcode codeword f succeeds
with probability 1− ρ (for some small ρ < 0), and if it succeeds with probability 1/2+ δ then
there exists α with |α| ≤ k = O(log(1/δ)/ρ) such that f̂(α) ≤ δ. Note that if we managed
to get k = 1 then we’d get the analogous result to the linearity testing - that if we pass the
test with significant advantage over half then there’s a codeword with significant correlation.
Here we get only that there’s a linear junta with significant correlation (rather than a linear
dictatorship) but it turns out to be sufficient for applications.

The test The test will be the following: pick x, y ←R {±1}n. Pick z according to the following
distribution: zi = +1 with probability 1 − ρ and zi = −1 with probability ρ. Then, check
that f(x)f(y) = f(x ⊕ y ⊕ z). Note that if f(x) = xi then with probability 1 − ρ, zi = 1 in
which case f(x)f(y) = xiyi = xiyizi = f(x ⊕ y ⊕ zi). For soundness, we prove the following
lemma:

Lemma 6. Suppose that Ex,y,z[f(x)f(y)f(x⊕ y ⊕ z)] ≥ δ then∑
α

f̂(α)3(1− 2ρ)|α| ≥ δ

Proof.

Ex,y,z[f(x)f(y)f(x⊕ y ⊕ z)] =∑
α,β,γ

f̂(α)f̂(β)f̂Ex[χα(x)χγ(x)]Ey[χβ(y)χγ(y)]Ez[χγ(z)] =
∑

γ

f̂(γ)3Ez[χγ(z)] =

∑
γ

f̂(γ)3(1− 2ρ)|γ|

where the last equality follows from the fact that

Ez[χγ(z)] = Ez[
∏
i∈γ

zi] =
independence

∏
i∈γ

Ez[zi] =
∏
i∈γ

(+1(1− ρ)− 1ρ)

Additional reading Fourier analysis has turned out to be a very useful tool to approach problems
from computer science. I’ve put some links on the web site to materials on these applications.
Another point that we haven’t touched is the relation of Fourier analysis to other notions
discussed in the course such as eigenvalues and expansion. It turns out that the characters
are exactly the eigenvectors of for the adjacency matrix of any Cayley graph on the group
{±1}n and that (up to normalization) the Fourier coefficients of the characteristic function
the generating set are the eigenvectors.1

It also turns out that certain questions about the expansion of the Boolean cube as a graph
(i.e., the graph where you connect x, y ∈ {±1}n if their Hamming distance is one) can be
answered using the tools of Fourier analysis (an example for such a question is which sets of
half the vertices in this graph expand the least, and what can we say of sets that don’t expand
too much). The answers to such questions also turn out to be useful in computer science.

1If G is a group and S ⊆ G then the Cayley graph C(G, S) is the graph where we connect u, v if there’s s ∈ S
such that u = sv. S is called the generating set of the graph: if S generates the group then the graph is connected,
if s ∈ S ⇐⇒ s−1 ∈ S then the graph is undirected, and the degree of the graph is |G|.

5

We only discussed Fourier analysis over the group {±1}n with componentwise multiplication
(or equivalently the additive group GF(2)n, that has componentwise XOR as the operation).
However, one can define the Fourier transform for any Abelian group G (i.e., group satisfying
ab = ba for all a, b ∈ G). For this we consider instead of functions χ from G to {±1},
functions from G to C (or in fact the unit circle in C) that satisfy χ(ab) = χ(a)χ(b). In fact,
one can also define a generalization of the Fourier transform for non-Abelian group– this is
called representation theory and involves moving from functions outputting a number C to
functions outputting a higher dimensional matrix.

The web page also has links for additional reading on the PCP theorem. We haven’t seen
any of the non-trivial reductions from the PCP theorem to the hardness of approximating
some NP-problems. We also haven’t seen the stronger forms of PCP that are sometimes
crucial for such applications: these include lower error PCP’s (parallel repetition, amortized
free bit complexity) and lower queries PCP’s (two and three queries PCP with close to
optimal error). There are also some open questions that are still open in the construction of
PCP’s: one is whether there’s a construction of a constant queries polynomial-sized PCP
with polynomial relation between alphabet size and soundness error (the current constructions
fail to work once the alphabet size is larger than 2(log n)1−ε

). Another is the construction of
PCP’s with certain structural properties: one form of this question is the unique games
conjecture which has received a lot of attention in recent years.

6

