
Chapter 8

Complexity of counting

In an NP decision problem, we ask the question of whether there exists a
solution (a.k.a. certificate/witness) to a given instance. However, in many
contexts, one is interested to know not only if a solution exists, but also the
number of such solutions. This chapter studies #P, a complexity class that
captures this notion.

Counting problems arise in diverse fields, such as statistical estimation,
statistical physics, network design, etc. Counting problems are also studied
in a field of mathematics called enumerative combinatorics, which tries to
obtain closed-form mathematical expressions for counting problems. To give
an example, the number of spanning trees in a graph can be counted by
means of a simple determinant computation. Results in this chapter will
show that for many natural counting problems, such efficiently computable
expressions are unlikely to exist.

Here is an example that suggests how counting problems can arise in
situations having to do with estimations of probability.

Example 8.1 In the Graph− Reliability problem we are given a directed
graph on n nodes. Suppose we are told that each node can fail with prob-
ability 1/2 and told to compute the probability that node 1 has a path to
n.

A moment’s thought shows that under this simple edge failure model,
the remaining graph is uniformly chosen at random from all subgraphs of
the original graph. Thus the correct answer is

1
2n

(number of subgraphs in which node 1 has a path to n.)

We can view this as a counting version of the PATH problem.

103

104 CHAPTER 8. COMPLEXITY OF COUNTING

In the rest of the chapter, we will study the class #P, that contains the
Graph− Reliability problem and many other interesting counting problems.
We also show a surprising connection between PH and #P, called Toda’s
Theorem. Along the way we encounter related classes such as ⊕P.

8.1 The class #P

We now define the class #P, which can be viewed as the counting version
of NP. Up until now, we mostly focused our attention on decision prob-
lems, where for any given input, the output is a YES/NO (or 1/0) answer.
However, the natural way to define a counting problem is that for any given
input, the output is a number in N (representing the number of solutions).
Thus, we define #P as a subset of the functions from {0, 1}∗ to N.

Definition 8.2 (#P) #P is the set of all functions f : {0, 1}∗ → N such
that there is a polynomial time NDTM M such that for all x ∈ {0, 1}∗,

f(x) = number of accepting branches in M ’s computation graph on x

As in the case of NP, we can define #P in an equivalent way, as follows:

Definition 8.3 (#P, alternative definition) ForR ⊆ {0, 1}∗×{0, 1}∗
a relation, define #R to be a function from {0, 1}∗ to N such that for every
x ∈ {0, 1}∗,

#R(x) = |{y : (x, y) ∈ R}|
We say that f ∈ #P if f = #R for a relation R that is polynomial-time
verifiable. That is, there is a polynomial time (deterministic) TM M and a
polynomial p : N→ N satisfying:

1. For every (x, y) ∈ R, |y| ≤ p(|x|)

2. For every x, y ∈ {0, 1}∗, M(x, y) = 1 iff (x, y) ∈ R.

Remark 8.4 Similar to the case of search problems, even when studying
counting complexity, we can often restrict our attention to decision problems
in the sense that there we can define a class of decision problems PP such
that

PP = P⇔ #P = FP (1)

The class PP corresponds to the most significant bit of #P. That is, L is in
PP if there exists a polynomial-time TM M and a polynomial p : N → N
such that for every x ∈ {0, 1}∗,

x ∈ L⇔
∣∣∣{y ∈ {0, 1}p(|x|) : M(x, y) = 1

}∣∣∣ ≥ 1
2
· 2p(|x|)

8.1. THE CLASS #P 105

. You’re asked to prove the non-trivial direction of (1) in Exercise 1. It
is instructive to compare the class PP, which we believe contains problem
requiring exponential time to solve, with the class BPP, which although has
a seemingly similar definition, can in fact be solved efficiently using prob-
abilistic algorithms (and perhaps even also using deterministic algorithms,
see Chapter 19). Note that we do not know whether the class of decision
problems corresponding to the least significant bit of #P, namely ⊕P, is
also equivalent in its power to #P.

We will be interested in understanding which #P-counting problems are
in fact in FP (recall that FP is the analog of the class P for functions, that
is, FP is the set of functions computable by a deterministic polynomial-time
Turing machine).

Here are two examples for problems in #P:

• #SAT is the problem of computing, given a boolean function φ, the
number of satisfying assignments for φ.

• #CYCLE is the problem of computing, given a directed graph G, the
number of simple cycles in G. (A simple cycle is one that does not
visit any node twice.)

Clearly, if #SAT ∈ FP then SAT ∈ P and so P = NP. Thus presumably
#SAT 6∈ FP. How about #CYCLE? The corresponding decision problem
—given a directed graph decide if it has a cycle—can be solved in linear
time by breadth-first-search. The next theorem suggests that the counting
problem may be much harder.

Theorem 8.5
If #CYCLE ∈ FP, then P = NP.

Proof: We show that if #CYCLE can be computed in polynomial time, then
Ham ∈ P, where Ham is the NP-complete problem of deciding whether or
not a given digraph has a Hamiltonian cycle. Given a graph G with n nodes
in the Ham problem, we construct a graph G′ for #CYCLE such that G has
a Ham iff G′ has at least nn2

cycles.
To obtain G′, replace each edge (u, v) in G by a gadget as shown in

Figure ??. The gadget has N = n log2 n+ 1 levels. It is an acyclic digraph,
so cycles in G′ correspond to cycles in G. Furthermore, there are 2N directed
paths from u to v in the gadget, so a simple cycle of length l in G yields
(2N)l simple cycles in G′.

106 CHAPTER 8. COMPLEXITY OF COUNTING

Figure unavailable in pdf file.

Figure 8.1: Reducing Ham to #CYCLE

Notice, if G has a Hamiltonian cycle, then G′ has at least (2N)n
> nn2

cycles. If G has no Hamiltonian cycle, then the longest cycle in G has length
at most n− 1. The number of cycles is bounded above by nn−1. So G′ can
have at most (2N)n−1 × nn−1 < nn2

cycles.
2

8.2 #P completeness.

Now we define #P-completeness. Loosely speaking, a function f is #P-
complete if it is in #P and if a polynomial-time algorithm for f will imply
that #P = FP. To formally define #P-completeness, we will use the notion
of oracle TMs, defined in Chapter 4. Recall that according to the notation
used there, FPf is the set of functions that are computable by polynomial
time TMs that have access to an oracle for function f .

Definition 8.6 A function Function f is is #P-complete if it is in #P and
every g ∈ #P is also in FPf

If f ∈ FP then FPf = FP. Thus the following is immediate.

Proposition 8.7
If f is]-complete and f ∈ FP then P = NP.

Counting versions of many NP-complete languages such as 3SAT,Ham,
CLIQUE naturally lead to #P-complete problems. The reason is that the
standard reductions used to show that these languages are NP-hard preserve
the number of certificates (such a reductions are called parsimonious). For
example, the Cook-Levin reduction from an NP language L decided by an
NDTM M to 3SAT (see Section ??) transformed any input x into a formula
ϕ such that the number of satisfying assignments to ϕ is exactly equal to
the number of accepting computation branches of the machine M on the
input x, implying:

Theorem 8.8
#SAT is #P-complete

However, as we’ll see below, there are #P-complete problems for which
the corresponding decision problems are in fact in P.

8.2. #P COMPLETENESS. 107

8.2.1 Permanent and Valiant’s Theorem

Now we study another problem. The permanent of an n × n matrix A is
defined as

perm(A) =
∑
σ∈Sn

n∏
i=1

aiσ(i) (2)

where Sn denotes the set of all permutations of n elements. Recall that the
expression for the determinant is similar

det(A) =
∑
σ∈Sn

(−1)sgn(σ)
n∏

i=1

aiσ(i)

except for an additional “sign” term.1 This similarity does not translate
into computational equivalence: the determinant can be computed in poly-
nomial time, whereas computing the permanent seems much harder, as we
see below.

The permanent function can also be interpreted combinatorially. First,
suppose the matrix A has each entry in {0, 1}. It may be viewed as the
adjacency matrix of a bipartite graph G(X,Y,E), with X = {x1, . . . , xn},
Y = {y1, . . . , yn} and {xi, yj} ∈ E iff Aij = 1. Then the term

∏n
i=1 aiσ(i)

is 1 iff σ is a perfect matching (which is a set of n edges such that every
node is in exactly one edge). Thus perm(A) is simply the number of perfect
matchings in G. Thus perm(·) ∈ #P for 0, 1 matrices. If A is a {−1, 0, 1}
matrix, then perm(A) =

∣∣{σ :
∏n

i=1 aiσ(i) = 1
}∣∣ − ∣∣{σ :

∏n
i=1 aiσ(i) = −1

}∣∣,
so one can make two calls to a #SAT oracle to compute perm(A). Thus
perm(·) ∈ FP#SAT in this case. In fact one can show for general integer
matrices that computing the permanent is in FP#SAT.

The next theorem came as a surprise to researchers in the 1970s, since
it implies that if perm ∈ FP then P = NP. Thus the permanent may be
computationally much more difficult then the determinant.

Theorem 8.9 (Valiant)
perm for 0, 1 matrices is #P-complete.

1It is known that every permutation σ ∈ Sn can be represented as a composition of
transpositions, where a transposition is a permutation that only switches between two
elements in [n] and leaves the other elements intact (one proof for this statement is the
Bubblesort algorithm). If τ1, . . . , τm is a sequence of transpositions such that their com-
position equals σ, then the sign of σ is equal to +1 if m is even and −1 if m is odd. It
can be shown that the sign is well-defined in the sense that it does not depend on the
representation of σ as a composition of transpositions.

108 CHAPTER 8. COMPLEXITY OF COUNTING

Figure unavailable in pdf file.

Figure 8.2: This graph has permanent 0

Before proving Theorem 8.9, we introduce yet another way to look at the
permanent. Consider matrix A as the the adjacency matrix of a weighted
n-node digraph (with possible self loops). Then the expression

∏n
i=1 aiσ(i) is

nonzero iff σ is a cycle-cover of A (A cycle cover is a subgraph in which each
node has in-degree and out-degree 1; such a subgraph must be composed
of cycles.) We define the weight of the cycle cover to be the product of the
weights of the edges in it. As a warm-up for the proof, consider the following
example:

Example 8.10 Consider the graph in Figure 8.2. (Unmarked edges have
unit weight. We follow this convention through out this chapter.) Even
without knowing what the subgraph G′ is, we show that the permanent of
the whole graph is 0. For each cycle cover in G′ there are exactly two cycle
covers for the three nodes, one with weight 1 and one with weight −1. Any
non-zero weight cycle cover of the whole graph is composed of a cycle cover
for G′ and one of these two cycle covers. Thus the sum of the weights of all
cycle covers of G is 0.

Now we prove Valiant’s Theorem.
Proof: We shall reduce the #P-complete problem #3SAT to perm. Given
a boolean formula φ with n variables and m clauses, first we shall show how
to construct an integer matrix A′ with negative entries such that perm(A′) =
4m · (#φ). (#φ stands for the number of satisfying assignments of φ). Later
we shall show how to to get a 0-1 matrix A from A′ such that knowing
perm(A) allows us to compute perm(A′).

The main idea is that there are two kinds of cycle covers in the digraph
G′ associated with A′: those that correspond to satisfying assignments (we
will make this precise) and those that don’t. Recall that perm(A′) is the sum
of weights of all cycle covers of the associated digraph, where the weight of
a cycle cover is the product of all edge weights in it. Since A′ has negative
entries, some of these cycle covers may have negative weight. Cycle covers
of negative weight are crucial in the reduction, since they help cancel out
contributions from cycle covers that do not correspond to satisfying assign-
ments. (The reasoning to prove this will be similar to that in Example ??.)
On the other hand, each satisfying assignment contributes 4m to perm(A′),
so perm(A′) = 4m · (#φ).

8.2. #P COMPLETENESS. 109

Figure unavailable in pdf file.

Figure 8.3: The Variable-gadget

Figure unavailable in pdf file.

Figure 8.4: The Clause-gadget

To construct G′ from φ, we use three kinds of gadgets as shown in Fig-
ures ??, ?? and ??. There is a variable gadget per variable and a clause
gadget per clause. There are two possible cycle covers of a variable gad-
get, corresponding to an assignment of 0 or 1 to that variable. Assigning
1 corresponds to a single cycle taking all the external edges (“true-edges”),
and assigning 0 correspond to taking all the self-loops and taking the “false-
edge”. Each external edge of a variable is associated with a clause in which
the variable appears.

The clause gadget is such that the only possible cycle covers exclude
at least one external edge. Also for a given (proper) subset of external
edges used there is a unique cycle cover (of weight 1). Each external edge
is associated with a variable appearing in the clause.

We will also use a graph called the XOR gadget (Figure ??) which has
the following purpose: we want to ensure that exactly one of the edges uu′

and vv′ (see the schematic representation in Figure ??) is used in a cycle
cover that contributes to the total count. So after inserting the gadget, we
want to count only those cycle covers which either enter the gadget at u and
leave it at u′ or enter it at v and leave it at v′. This is exactly what the
gadget guarantees: one can check that the following cycle covers have total
weight of 0: those that do not enter or leave the gadget; those that enter at
u and leave at v′, or those that enter at v and leave at u′. In other words,
the only cycle covers that have a nonzero contribution are those that either
(a) enter at u and leave at u′ (which we refer to as using “edge” uu′) or (b)
enter at v and leave at v′ (referred to as using edge vv′). These are cycle
covers in the “schematic graph” (which has edges as shown in Figure ??)
which respect the XOR gadget.

The XOR gadgets are used to connect the variable gadgets to the corre-
sponding clause gadgets so that only cycle covers corresponding to a satis-
fying assignment need be counted towards the total number of cycle covers.
Consider a clause, and a variable appearing in it. Each has an external edge

110 CHAPTER 8. COMPLEXITY OF COUNTING

Figure unavailable in pdf file.

Figure 8.5: The XOR-gadget

Figure unavailable in pdf file.

Figure 8.6: For each clause and variable appearing in it, an XOR-gadget
connects the corresponding external edges. There are 3m such connections
in total.

corresponding to the other, connected by an XOR gadget (figure ??). If the
external edge in the clause is not taken (and XOR is respected) the external
edge in the variable must be taken (and the variable is true). Since at least
one external edge of each clause gadget has to be omitted, each cycle cover
respecting all the XOR gadgets corresponds to a satisfying assignment. (If
the XOR is not respected, we need not count such a cycle cover as its weight
will be cancelled by another cover, as we argued above). Conversely, for each
satisfying assignment, there is a cycle cover (unique, in the schematic graph)
which respects all the XOR gadgets.

Now, consider a satisfying assignment and the corresponding cycle cover
in the schematic graph. Passing (exactly one of) the external edges through
the XOR gadget multiplies the weight of each such cover by 4. Since there
are 3m XOR gadgets, corresponding to each satisfying assignment there are
cycle covers with a total weight of 43m (and all other cycle covers total to
0). So perm(G′) = 43m#φ.

Finally we have to reduce finding perm(G′) to finding perm(G), where
G is an unweighted graph. First we reduce it to finding perm(G) modulo
2N + 1 for a large enough N (but still polynomial in |G′|). For this, we
can replace -1 edges with edges of weight 2N , which can be converted to
N edges of weight 2 in series. Changing edges of (small) positive integral
weights (i.e., multiple or parallel edges) to unweighted edges is as follows:
cut each (repeated) edge into two and insert a node to connect them; add
a self loop to the node. This does not change the permanent, and the new
graph has only unweighted edges. 2details + figures

8.2.2 Approximate solutions to #P problems

Since computing exact solutions to #P-complete problems is presumably
difficult, one should try to compute approximate solutions in the sense of

8.3. TODA’S THEOREM: PH ⊆ P#SAT 111

the following definition.

Definition 8.11 Let f, g :{0, 1}∗ → N be functions and c > 1. We say that
f approximates g within a factor c if for every string x, g(x) ≤ f(x) ≤ c·g(x).

Not all #P problems behave identically with respect to this notion. Ap-
proximating certain problems within any constant factor c is NP-hard (see
Exercises). For other problems such as 0/1 permanent, there is a Fully poly-
nomial randomized approximation scheme (FPRAS), which is an algorithm
which, for any ε, δ, approximates the function within a factor 1+ε (its answer
may be incorrect with probability δ) in time poly(n, log 1/δ, log 1/ε). This
algorithm —as well as other similar algorithms for a host of #P-complete
problems—use the Monte Carlo Markov Chain technique. The result that
spurred this development is due to Valiant and Vazirani and it shows that un-
der fairly general conditions, approximately counting the number of elements
in a set (membership in which is testable in polynomial time) is equivalent
—in the sense that the problems are interreducible via polynomial-time ran-
domized reductions— to the problem of generating a random sample from
the set. We will not discuss this interesting area any further, though we will
further explore the complexity of approximation in the exercises.

8.3 Toda’s Theorem: PH ⊆ P#SAT

An important question in the 1980s was the relative power of the polynomial-
hierarchy PH and the class of counting problems #P. Both are natural
generalizations of NP, but it seemed that their features— alternation and
the ability to count witnesses, respectively — are not directly comparable
to each other. Thus it came as big surprise when in 1989 Toda showed:

Theorem 8.12 (Toda’s theorem [Tod91])
PH ⊆ P#SAT.

That is, we can solve any problem in the polynomial hierarchy given an
oracle to a #P-complete problem. Now we prove this result, following the
proof of [KVVY93].

8.3.1 The class ⊕P and hardness of satisfiability with unique
solutions.

The following complexity class will be used in the proof:

112 CHAPTER 8. COMPLEXITY OF COUNTING

Definition 8.13 A language L in the class ⊕P (pronounced “parity P”)
iff there exists a polynomial time NTM M such that x ∈ L iff the number
of accepting paths of M on input x is odd.

Thus, ⊕P can be considered as the class of decision problems corre-
sponding to the least significant bit of a #P-problem. As in the proof
of Theorem 8.8, the fact that the standard NP-completeness reduction is
parsimonious implies the following problem ⊕SAT is ⊕P-complete (under
many-to-one Karp reductions):

Definition 8.14 Define the quantifier
⊕

as follows: for every Boolean for-
mula ϕ on n variables.

⊕
x∈{0,1}n ϕ(x) is true if the number of x’s such that

ϕ(x) is true is odd.2 The language ⊕SAT consists of all the true quanti-
fied Boolean formula of the form

⊕
x∈{0,1}n ϕ(x) where ϕ is an unquantified

Boolean formula (not necessarily in CNF form).

Unlike the class #P, it is not immediately clear that a polynomial-time
algorithm for ⊕P implies that NP = P. However, we will show that such
an algorithm will imply that NP = RP.

Theorem 8.15
There’s a probabilistic polynomial-time algorithm A such that for every n-
variable Boolean formula ϕ

ϕ ∈ SAT⇒Pr[A(ϕ) ∈ ⊕SAT] ≥ 1
4n

ϕ 6∈ SAT⇒Pr[A(ϕ) ∈ ⊕SAT] = 0

Pairwise independent hash functions.

To prove Theorem 8.15 we will use the notion of pairwise independent hash
functions.

Definition 8.16 (Pairwise independent hash functions) LetHn,k be
a collection of functions from {0, 1}n to {0, 1}k. We say that Hn,k is pair-
wise independent if for every x, x′ ∈ {0, 1}n with x 6= x′ and for every
y, y′ ∈ {0, 1}k,

Pr
h∈RHn,k

[h(x) = y ∧ h(x′) = y′] = 2−2n

2Note that if we identify true with 1 and 0 with false thenL
x∈{0,1}n ϕ(x) =

P
x∈{0,1}n ϕ(x) (mod 2). Also note that

L
x∈{0,1}n ϕ(x) =

L
x1∈{0,1} · · ·

L
xn∈{0,1} ϕ(x1, . . . , xn).

8.3. TODA’S THEOREM: PH ⊆ P#SAT 113

Note that an equivalent formulation is that for every two distinct strings
x, x′ ∈ {0, 1}n the random variable 〈h(x), h(x′)〉 for h chosen at random
from Hn,k is distributed according to the uniform distribution on {0, 1}k ×
{0, 1}k. The following theorem provides a construction of an efficiently
computable pairwise independent hash functions (see also Exercise 4 for a
different construction).

Theorem 8.17 (Efficient pairwise independent hash functions)
For every function k : N → N such that k(n) is at most a polynomial in n
and is computable in poly(n) time, there exists a two-input polynomial-time
TM H such that for every n ∈ N, the collection of functions Hn,k(n) = {x 7→
H(h, x)}

h∈{0,1}2 max{n,k(n)} is a pairwise independent hash function collection.

Proof: We can assume without loss of generality that n ≥ k since we can
transform a pairwise collection with input size n′ > n into a collection with
input size n by simply padding the input with zeros. We start by assuming
k = n. Recall that we can identify the strings in {0, 1}n with elements of
the field GF(2n). That is, we have operations + and · on pairs of strings
in {0, 1}n satisfying the usual laws of commutativity, associativity and the
distributive law. There also exist additive and multiplicative units, which we
denote by 0 and 1, such that for every x ∈ {0, 1}n, x+ 0 = x and x · 1 = x,
and every element x has a unique additive inverse, denoted −x, and if x 6= 0
it also has a unique multiplicative inverse, denoted x−1. Furthermore, all
the operations of multiplication, addition and finding inverses can be done
in polynomial-time.

The collection of hash functions will be very simple: for every a, b ∈
{0, 1}n, we define the function ha,b : {0, 1}n → {0, 1}n as follows: ha,b(x) =
a · x + b. It is clearly efficiently computable, and so we need to verify that
it is a pairwise independent collection. For every x 6= x′ ∈ {0, 1}n and
y, y′ ∈ {0, 1}n we have that ha,b(x) = y and ha,b(x′) = y′ iff a, b satisfy the
equations:

a · x+ b =y
a · x′ + b =y′

which imply a·(x−x′) = y−y′ or a = (y−y′)(x−x′)−1. Since b = y−a·x,
we get that the pair 〈a, b〉 is completely determined by these equations, and
so the probability that this happens over the choice of a, b is exactly one
over the number of possible pairs, and indeed equals 1

22n .

114 CHAPTER 8. COMPLEXITY OF COUNTING

For the case k < n note that if we take a hash function from {0, 1}n
to {0, 1}n and truncate its output to the first k bits it is still a pairwise
independent hash function. This holds since the truncation of the uniform
distribution on n bits to k bits is the uniform distribution on k bits, and so
for every x 6= x′, we will have that the random variable 〈h(x), h(x′)〉 is the
uniform distribution over {0, 1}k × {0, 1}k. 2

Pairwise independent hash functions have several useful properties that
led to numerous applications in theoretical and applied computer science.
In this section, we will use the following result:

Lemma 8.18 (Valiant-Vazirani Lemma [?])
Let Hn,k be a pairwise independent hash function collection from {0, 1}n to

{0, 1}k and S ⊆ {0, 1}n such that 2k−2 ≤ |S| ≤ 2k−1. Then,

Pr
h∈RHn,k

[
∣∣∣{x ∈ S : h(x) = 0k

}∣∣∣ = 1] ≥ 1
8

Proof: For every x ∈ S, let p = 2−k be the probability that h(x) = 0k when
h ∈R Hn,k. Note that 1

4 ≤ |S|p ≤
1
2 . Let the event Ax be the event that

h(x) = 0k and h(x′) 6= 0k for every x′ ∈ S with x′ 6= x. We want to show
that Pr[A] = Pr[∪x∈SAx] ≥ 1

8 . Now the events {Ax} are disjoint and so we
have that Pr[A] =

∑
x∈S Pr[Ax]. Now, because of pairwise independence,

given that h(x) = 0k, for every x′ 6= x the probability that h(x′) = 0k is
p, and hence by the union bound the probability that there exists some
x′ 6= x with h(x′) = 0k is at most |S|p. We get that for every x ∈ S,
Pr[Ax] ≥ p(1− |S|p) and hence Pr[A] ≥ |S|p(1− |S|p). Since 1

4 ≤ |S|p ≤
1
2

we get that Pr[A] ≥ 1
8 . 2

Proof of Theorem 8.15

We’ll now use Lemma 8.18 to prove Theorem 8.15. Given a formula ϕ
on n variables, our probabilistic algorithm will choose k at random from
{2, . . . , n+ 1} and a random hash function h ∈R Hn,k and construct the
formula

ψ =
⊕

x∈{0,1}n

ϕ(x) ∧ (h(x) = 0n)

(such a formula can be found using the Cook-Levin reduction, perhaps using
some auxiliary variables.)

If ϕ is unsatisfiable then ψ is false, since we’ll have no x’s satisfying
the inner formula and zero is an even number. If ϕ is satisfiable, we let S

8.3. TODA’S THEOREM: PH ⊆ P#SAT 115

be the set of its satisfying assignments. With probability 1/n, k satisfies
2k−2 ≤ |S| ≤ 2k, which implies that with probability 1/8, we’ll have that
there is a unique x such that ϕ(x)∧ h(x) = 0n. Since one happens to be an
odd number, this implies that ψ is true. 2

Remark 8.19 (Hardness of Unique Satisfiability) Note that the proof
of Theorem 8.15 actually implied a stronger statement: that the existence of
an algorithm that can distinguish between an unsatisfiable Boolean formula
and a formula with exactly one satisfying assignment implies the existence
of a probabilistic polynomial-time algorithm for all of NP. Thus, the guar-
antee that a particular search problem has either no solutions or a unique
solution does not necessarily make the problem easier to solve.

8.3.2 Step 1: Randomized reduction from PH to ⊕P

We now go beyond NP and show that we can actually reduce any language
in the polynomial hierarchy to⊕SAT. That is, we prove the following lemma:

Lemma 8.20
Let c ∈ N be some constant. There exists a probabilistic polynomial-time
algorithm A such that for every ψ a Quantified Boolean formula with c levels
of alternations, it holds that

ψ is true⇒Pr[A(ψ) ∈ ⊕SAT] ≥ 2
3

ψ is false⇒Pr[A(ψ) ∈ ⊕SAT] = 0

Proof: Let ψ be a formula with c levels of alternating ∃/∀ quantifiers,
possibly with an initial

⊕
quantifier. We’ll transform ψ in probabilistic

polynomial-time to a formula ψ′ such that ψ′ has only c− 1 levels of alter-
nating ∃/∀ quantifiers, an initial

⊕
quantifier, and such that if ψ was false

then ψ′ will be false, and if ψ was true then ψ′ will be true with probability
1− 1

10c . We will prove the lemma by repeating this step c times.
For a (possibly partially quantified) formula ϕ on n variables let #(ϕ)

denote the number of satisfying assignments of ϕ. Before proving the lemma
let us note that given two (possibly partially quantified) formulas ϕ,ψ on
variables x ∈ {0, 1}n , y ∈ {0, 1}m we can construct in polynomial-time an
n +m variable formula ϕ · ψ and a max{n,m} + 1-variable formula ϕ + ψ
such that #(ϕ ·ψ) = #(ϕ)#(ϕ) and #(ϕ+ψ) = #(ϕ)+#(ψ). Indeed, take
ϕ ·ψ(x, y) = ϕ(x)∧ϕ(y) and ϕ+ψ(z) =

(
(z0 = 0)∧ϕ(z1, . . . , zn)

)
∨
(
(z0 =

1)∧ ψ(z1, . . . , zm)
)
. For a formula ϕ, we’ll use the notation ϕ+ 1 to denote

the formula ϕ+ψ where ψ is some canonical formula with a single satisfying

116 CHAPTER 8. COMPLEXITY OF COUNTING

assignment. Since the product of numbers is even iff one of the numbers is
even, and since adding one flips the parity of a number, we get that for every
two formulas ϕ,ψ as above(⊕

x

ϕ(x)
)
∨
(⊕

y

ψ(y)
)
⇔
⊕
x,y

(ϕ · ψ)(x, y) (3)

¬
⊕

x

ϕ(x)⇔
⊕

z

(ϕ+ 1)(z) (4)

Now let ψ be a formula of the form
⊕

xQ
1
y1
· · ·Qc

yc
ϕ(x, y1, . . . , yc), where

Q1, . . . , Qc ∈ {∃,∀} and x, y1, . . . , yc range over poly(n)-long strings whose
lengths we denote by m,m1, . . . ,mc respectively. We need to transform ψ
into a formula of the same form with at most c − 1 quantifiers. Assume
Q1 = ∃. In this case for every fixed value x ∈ {0, 1}m, the proof of The-
orem 8.15 implies that we have a way to sample a formula τ on variables
x ∈ {0, 1}m , y ∈ {0, 1}m

′
(for some m′ polynomial in n) such that if the

partially quantified formula ψ′�x(y1) = Q2
y2
· · ·Qc

yc
ϕ(x, y1, . . . , yc) is unsatis-

fiable (i.e., false for every setting of y1) then τ(x, y) is false for every y, and if
there’s some y1 such that ψ′�x(y1) is true then with probability 1

8n , there ex-
ists a unique (and in particular an odd number of) y such that τ(x, y) is true.
If we repeat this procedure k = 100cnm times, we get k formulas τ1, . . . , τk
such that if, in the notations from above, we let τ ′ = (τ1 + 1) · · · (τk + 1) + 1
be a formula taking the variables x ∈ {0, 1}m and z ∈ {0, 1}m

′′
where m′′ is

polynomial in n, then for every x ∈ {0, 1}m, we get that

• If there’s no a y1 with ψ′�x(y1) true then τ ′(x, z) is false for all z ∈
{0, 1}m

′′
.

• If there’s such a y1 then with probability 1 − 1
10c2m , there’s an odd

number of z’s such that τ ′(x, z) is true.

By taking a union bound over all the 2m possible x’s, we get that
ψ ⇔

⊕
x,z τ

′(x, z), thus completing the proof for the case that the first
quantifier is ∃. In the case the first quantifier is ∀ we use the identities
∀xϕ(x) ⇔ ¬∃x¬ϕ(x) and

⊕
x ¬ϕ(x) ⇔

⊕
z(ϕ + 1)(z) to transform it into

an ∃ quantifier. 2

8.3.3 Step 2: Making the reduction deterministic

To complete the proof of Theorem 8.12, we prove the following lemma:

8.3. TODA’S THEOREM: PH ⊆ P#SAT 117

Lemma 8.21
There is a (deterministic) polynomial-time transformation T that, for every
formula ψ that is an input for⊕SAT we have that T (ψ, 1m) is an unquantified
Boolean formula such that

ψ ∈ ⊕SAT⇒#(ϕ) = −1 (mod 2m+1)

ψ 6∈ ⊕SAT⇒#(ϕ) = 0 (mod 2m+1)

Proof of Theorem 8.12 from Lemma 8.21. Let L ∈ PH. We show
that we can decide whether an input x ∈ L by asking a single question to
a #SAT oracle. Lemma 8.20 implies that there’s a a polynomial-time TM
M such that if x ∈ L then Prr∈R{0,1}m [M(x, r) ∈ ⊕SAT] ≥ 2/3 and if x 6∈ L
then Prr∈R{0,1}m [M(x, r) ∈ ⊕SAT] = 0, wherem is the (polynomial) number
of random bits used by our reduction. For every string r ∈ {0, 1}m, denote
by ψr the formula M(x, r), and let f(r) = 0 if ψr 6∈ ⊕SAT and f(r) = −1
otherwise. For every r, y let P (r, y) denote the predicate that is true iff the
assignment y satisfies the formula T (ψr, 1m) where T is the transformation
obtained by Lemma 8.21. Since this predicate is computable in polynomial-
time, invoking the Cook-Levin transformation, we obtain a formula τ taking
variables r, y and auxiliary variables z such that for every r the number of
pairs y, z such that τ(r, y, z) is true equals #(ϕr). In particular we have
that

#(τ) =
∑

r∈{0,1}m

f(r) (mod 2m+1)

And thus if x 6∈ L then f(r) = 0 for all r then we #(τ) = 0 (mod 2m+1).
If x ∈ L then let ` denote the number of r’s such that f(r) = −1. We have
that #(τ) = −` (mod 2m+1) but 2

32m ≤ ` ≤ 2m and hence this number is
not equal to 0 (mod 2m+1). Thus, by a single query to a #SAT oracle we
can determine whether or not x ∈ L, establishing Theorem 8.12.

Proof of Lemma 8.21. Given formulas ϕ,τ recall that we defined formu-
las ϕ+τ and ϕ·τ satisfying #(ϕ+τ) = #(ϕ)+#(τ) and #(ϕ·τ) = #(ϕ)#(τ),
and note that these formulas are of size at most a constant factor larger than
ϕ, τ . Consider the formula 4τ3 +3τ4 (where τ3 for example is shorthand for
τ · (τ · τ)). One can easily check that

#(τ) = −1 (mod 22i
)⇒#(4τ3 + 3τ4) = −1 (mod 22i+1

) (5)

#(τ) = 0 (mod 22i
)⇒#(4τ3 + 3τ4) = 0 (mod 2)2

i+1
(6)

118 CHAPTER 8. COMPLEXITY OF COUNTING

Let ψ0 = ψ and ψi+1 = 4ψ3
i + 3ψ4

i . Let

ψ∗ = ψdlog(m+1)e

Repeated use of equations (5), (6) shows that if #(ψ) is odd, then #(ψ∗) =
−1 (mod 2m+1) and if #(ψ) is even, then #(ψ∗) = 0 (mod 2m+1). Also,
the size of ψ∗ is only polynomially larger than size of ψ. 2

8.4 Open Problems

• What is the exact power of ⊕SAT and #SAT ?

• What is the average case complexity of n×n permanent modulo small
prime, say 3 or 5 ? Note that for a prime p > n, random self reducibil-
ity of permanent implies that if permanent is hard to compute on at
least one input then it is hard to compute on 1 − O(p/n) fraction of
inputs, i.e. hard to compute on average (see Theorem ??).

Exercises

§1 Let f ∈ #P. Show a polynomial-time algorithm to compute f given
access to an oracle for some language L ∈ PP (see Remark 8.4). (Hint:
without loss of generality you can think that f = #CSAT, the problem
of computing the number of satisfying assignments for a given Boolean
circuit C, and that you are given an oracle that tells you if a given
n-variable circuit, has at least 2n−1 satisfying assignments or not. The
main observation you can use is that if C has at least 2n−1 satisfying
assignments then it is possible to use the oracle to find a string x such
that C has exactly 2n−1 satisfying assignments that are larger than x
in the natural lexicographic ordering of the strings in {0, 1}n.)

§2 Show that computing the permanent for matrices with integer entries
is in FP#SAT.

§3 Prove Theorem ??.

§4 Let k ≤ n. Prove that the following family Hn,k is a collection of
pairwise independent functions from {0, 1}n to {0, 1}k: Identify {0, 1}
with the field GF(2). For every k×n matrix A with entries in GF(2),
and k-length vector b ∈ GF(2)n, Hn,k contains the function hA,b :
GF(2)n → GF(2)k defined as follows: hA,b(x) = Ax+ b.

8.4. OPEN PROBLEMS 119

§5 Show that if there is a polynomial-time algorithm that approximates
#CYCLE within a factor 2, then P = NP.

§6 Show that for every g ∈ #P and every ε > 0, there is a function in
FPΣp

3 that approximates g within a factor 1 + ε. (Hint: Use hashing
and ideas similar to those in the proof of BPP ⊆ PH, where we also
needed to estimate the size of a set of strings.) Thus assuming PH
doesn’t collapse to a finite level, approximation is easier than exact
computation.

§7 Show that every for every language in AC0 there is a depth 3 circuit
of npoly(log n) size that decides it on 1 − 1/poly(n) fraction of inputs
and looks as follows: it has a single ⊕ gate at the top and the other
gates are ∨,∧ of fanin at most poly(log n).

Chapter notes and history

The definition of #P as well as several interesting examples of #P problems
appeared in Valiant’s seminal paper [Val79b]. The #P-completeness of the
permanent is from his other paper [Val79a]. Toda’s Theorem is proved
in [Tod91].

For an introduction to FPRAS’s for computing approximations to many
counting problems, see the relevant chapter in Vazirani [Vaz01] (an excellent
resource on approximation algorithms in general).

Need to list some #P-complete problems from physics.

120 CHAPTER 8. COMPLEXITY OF COUNTING

