Note on the averaging and hybrid arguments and prediction vs. distinguishing.

March 30, 2006

Averaging argument Let f be some function. The averaging argument is the following claim: if we have a circuit C such that C(x, y) = f(x) with probability at least ρ where x is chosen at random and y is chosen independently from some distribution Y over $\{0, 1\}^m$ (which might not even be efficiently sampleable) then there exists a single string $y_0 \in \{0, 1\}^m$ such that $\Pr_x[C(x, y_0) = f(x)] \ge \rho$.

Indeed, for every y define p_y to be $\Pr_x[C(x, y) = f(x)]$ then

$$\Pr_{x,y}[C(x,y) = f(x)] = \mathbb{E}_y[p_y]$$

and then this reduces to the claim that for every random variable Z, if $\mathbb{E}[Z] \ge \rho$ then $\Pr[Z \ge \rho] > 0$ (this holds since $\mathbb{E}[Z]$ is the weighted average of Z and clearly if the average of some values is at least ρ then one of the values must be at least ρ .

Hybrid argument The hybrid argument is the following: suppose that you have m distributions H_1, \ldots, H_m (say over $\{0, 1\}^n$) and some function $D : \{0, 1\}^n \to \{0, 1\}$. Then there exists i between 1 and m - 1 such that

$$|\Pr[D(H_i) = 1] - \Pr[D(H_{i+1}) = 1]| > \frac{|\Pr[D(H_1) = 1] - \Pr[D(H_m) = 1]|}{m}$$

As we saw in class this follows by defining $p_i = \Pr[D(H_i) = 1]$ and noting that

$$|p_1 - p_m| = |p_1 - p_2 + p_2 \dots - p_{m-1} + p_{m-1} - p_m| \le |p_1 - p_2| + \dots + |p_{m-1} - p_m|$$

Prediction vs. distinguishing Suppose that X is some distribution over $\{0,1\}^n$ and $D: \{0,1\}^n \rightarrow \{0,1\}$ such that $\Pr[D(X) = 1] - \Pr[D(U_n) = 1] \ge \epsilon$ then there exists P of comparable effi-

ciency to D and i between 0 and n-1 such that

$$\Pr[P(X_{[1,i]}) = x_{i+1}] \ge \frac{1}{2} + \frac{\epsilon}{n}$$

To prove this we define H_i to be the distribution where the first *i* bits are chosen from X and the rest are chosen uniformly (denote $H_i = X_{[1,i]}U_{n-i}$), and by the hybrid argument ther's an *i* such that

$$\Pr[D(X_{[1,i+1]}U_{n-i-1}) = 1] - \Pr[D(X_{[1,i]}U_{n-i}) = 1] \ge \frac{\epsilon}{n}$$

(we can get rid of the absolute value by possibly negating D).

By the averaging argument there exists a fixing y_0 of the last n - i - 1 bits of the uniform distribution such that

$$\Pr[D(X_{[1,i+1]}y_0) = 1] - \Pr[D(X_{[1,i]}U_1y_0) = 1] \ge \frac{\epsilon}{n}$$

Our algorithm to compute x_{i+1} from $x_{[1,i]}$ will be the following: guess b at random from $\{0, 1\}$ and run $D(x_{[1,i]}by_0)$ if the result is 1 then output b and otherwise output the complement of b, \overline{b} .

Define now p to be $\Pr[D(X_{[1,i+1]}y_0) = 1]$, $r = \Pr[D(X_{[1,i]}U_1y_0) = 1]$ (and so r) and define <math>q to be $\Pr[D(X_{[1,i]}\overline{X_{i+1}}y_0) = 1]$ (that is, the $i + 1^{th}$ bit of X is flipped). Since a uniform bit will equal to X_i with probability half and $\overline{X_i}$ with probability half, we have that

$$r = \frac{1}{2}p + \frac{1}{2}q$$

which implies

$$\frac{1}{2}p + \frac{1}{2}q \le p - \frac{\epsilon}{n}$$

or

$$q \le p - \frac{2\epsilon}{n}$$

If $b = x_{i+1}$ our algorithm will answer the right answer if $D(x_{[1,i]}by_0) = 1$ and if $b = \overline{x_{i+1}}$ then our algorithm will provide the right answer if $D(x_{[1,i]}by_0) \neq 1$ and so the overall probability that we answer the right answer is

$$\frac{1}{2}p + \frac{1}{2}(1-q) \ge \frac{1}{2}p + \frac{1}{2}(1-p + \frac{2\epsilon}{n}) \ge \frac{1}{2} + \frac{\epsilon}{n}$$