
COS 511: Foundations of Machine Learning

Rob Schapire Lecture #23
Scribe: Yingying Fan 5 May 2006

1 Game Theory

Let us first consider the game that every child knows, called Paper-Scissors-Rock. To refresh
our memory, this is a two-person game in which at the count of three each player declares
either Paper, Scissors, or Rock. If both players declares the same object, then the round is
a draw. But Paper loses to Scissors (since scissors can cut a piece of paper), Scissors loses
to Rock (since a rock can dull scissors), and finally Rock loses to Paper (since a piece of
paper can cover up a rock). For convenience, we are going to refer the first player as the
row player and second player as the column player. We say that the loss of the row player
is 1 if he loses, 1/2 is it is a draw and 0 if he wins. Clearly, for this game if we enumerate
the actions of declaring Rock, Paper, or Scissors as 1,2,3, respectively, then the loss matrix
of the row player is

1/2 1 0
0 1/2 1
1 0 1/2

 .

With this matrix, neither player has a deterministic (pure) winning strategy. If the row
player were always to declare Paper, then the column player could counter by always declar-
ing Scissors and guaranteeing himself a win in every round. In fact, if the row player were to
stick to any specific declaration, then the column player would eventually get wise to it and
respond appropriately and guarantee that he wins. Of course, the same logic applies to the
column player. Hence, we should use a mixed strategy, which is also called a randomized
strategy. More generally, in a two-person, zero-sum game, we use the following notation:

• i: pure row strategy

• j: pure column strategy

• P : mixed row strategy

• Q: mixed column strategy

In each round, row player chooses strategy i with probability P (i) and column player choose
strategy j with probability Q(j). So the expected loss of the row player in this round is

∑

i,j

M(i, j)P (i)Q(j) = P ′MQ = M(P,Q),

where P ′ above means the transpose of P .

2 The Minimax Theorem

Suppose row player plays first and he adopts strategy P . Then the column player’s best
defense is to use the strategy Q which achieves the following maximum:

max
Q

M(P,Q).

Since for any given P the column will adopt the above Q, it follows that the column player
should employ a strategy P ∗ that attains the following minimum:

min
P

max
Q

M(P,Q). (1)

In other words, this is the loss of row player if two players play sequentially with row player
plays first. If instead, column player plays first, then the loss of the row player is

max
Q

min
P

M(P,Q). (2)

It is clear that going second is better than going first. So

max
Q

min
P

M(P,Q) ≤ min
P

max
Q

M(P,Q). (3)

But in fact we have a stronger result, which says the above two losses (1) and (2) are
actually equal to each other.

Theorem 1 (Von Neumann’s Minimax theorem)

max
Q

min
P

M(P,Q) = min
P

max
Q

M(P,Q).

Before we see the proof, let’s look at what this means intuitively. Define v ≡ maxQ minP M(P,Q)
= minP maxQ M(P,Q). Then v is often called the “value” of the game. Theorem 1 tells us
that

• there exists P ∗ such that for every Q, the expected loss M(P ∗, Q) ≤ v; thus, v is the
highest loss the column player can force, even knowing that the row player is playing
P ∗;

• furthermore, this is the best possible since there exists Q∗ such that for every P
(including P ∗), the expected loss M(P,Q∗) ≥ v.

Now we are going to use a machine learning algorithm to play repeated games and also
to prove theorem 1. Consider the following learning scenario for repeated play of a matrix
game M :

For t = 1, · · · , T

row (learner) chooses Pt

column (environment) chooses Qt (knowing Pt)
learner suffers loss M(Pt, Qt).

2

The total loss of row player is
∑T

t=1 M(Pt, Qt). But if we fix P in each round above, then

the total loss is
∑T

t=1 M(P,Qt). So our goal is to make

∑

t

M(Pt, Qt) ≤ min
P

∑

t

M(P,Qt) + small amount.

To this end, we introduce a simple algorithm for the set up above (n is the number of choices
of row player)

Initially P1(i) = 1/n for i = 1, · · · , n
On each round

row (learner) chooses Pt+1(i) = Pt(i)β
M(i,Qt)/normalization

column (environment) chooses Qt (knowing Pt)
learner suffers loss M(Pt, Qt).

This is just a direct generalization of earlier algorithms we have seen for learning with
expert advice. By using the similar methods as before, we can prove that the total loss of
the above algorithm satisfies

∑

t

M(Pt, Qt) ≤ aβ min
P

∑

t

M(P,Qt) + cβ ln n,

where aβ = ln 1/β
1−β and cβ = 1

1−β . By choosing proper β, we can change the above inequality
to

1

T

∑

t

M(Pt, Qt) ≤ min
P

1

T

∑

t

M(P,Qt) + ∆T , (4)

where ∆T = O(
√

ln n/T).
To apply this algorithm to the proof of the minimax theorem, we are going to choose

Qt = argmaxQ M(Pt, Q). Moreover, we define

P̄ =
1

T

∑

t

Pt, Q̄ =
1

T

∑

t

Qt.

We need to prove

max
Q

min
P

M(P,Q) ≥ min
P

max
Q

M(P,Q) (5)

3

This together with (3) leads to the minimax theorem. Notice that

min
P

max
Q

P ′MQ ≤ max
Q

P̄ ′MQ

= max
Q

1

T

∑

t

P ′
tMQ

≤
1

T

∑

t

max
Q

P ′
tMQ

=
1

T

∑

t

P ′
tMQt

≤
1

T
min

P

∑

t

P ′MQt + ∆T (by (4))

= min
P

P ′MQ̄ + ∆T

≤ max
Q

min
P

P ′MQ + ∆T .

Since both minP maxQ P ′MQ and maxQ minP P ′MQ are independent of T and ∆T → 0 as
T → ∞, we get the inequality (5) by setting T → ∞. This completes the proof.

3 On-line Learning Model

The algorithm for on-line learning model is

For t = 1, · · · , T

Observe xt ∈ X
predict ŷt ∈ {0, 1}
observe c(xt)
mistake if ŷt 6= c(xt).

We have the following result for this algorithm

Mistakes ≤ min
h∈H

(# mistakes using h) + small amount.

This result can be obtained by applying the algorithm defined before. We index the rows
of M by using the hypotheses h and the columns of M by using the samples x, and define
M as

M(h, x) =
{ 1, if h(x) 6= c(x)

0, else.

Then the above error bound can be easily obtained.

4

4 Boosting Setting

The algorithm for Boosting is

For t = 1, · · · , T

construct Dt over X
get ht ∈ H
Prx∼Dt

(ht(x) 6= c(x)) ≤ 1
2 − γ.

We define the matrix M the same as that in the on-line learning model, but change the
roles of row and column players (since boosting chooses distribution over rows). Define

M̃ , 1 − M ′.

Then

M̃(x, h) =
{ 1, if h(x) 6= c(x)

0, else.

So with this new matrix, we go back to the boosting setting.

On round t

compute Pt

use Dt = Pt

Let Qt be pure strategy concentrated on ht.

Then

M̃(Pt, Qt) = M̃(Pt, ht) =
∑

x

Pt(x)M̃ (x, ht)

= Prx∼Pt
[ht(x) = c(x)] ≥

1

2
+ γ.

Hence,

1

2
+ γ ≤

1

T

∑

t

M̃(Pt, ht) ≤ min
P

1

T

∑

t

M̃(P, ht) + ∆T = min
x

1

T

∑

t

M̃(x, ht) + ∆T .

Therefore, for any x, if T is large enough

1

T

∑

t

M̃(x, ht) ≥
1

2
+ γ − ∆T >

1

2
.

This implies that majority voting of h1, · · · , hT has training error 0.

5

