
COS 511: Foundations of Machine Learning

Rob Schapire Lecture #21
Scribe: Umar Syed April 27, 2006

1 Recap Of Last Time

Last time, we covered Bayes’ Algorithm for online learning of probability distributions, and
its analysis. Recall the setting: at each time t, we must predict a distribution for variable
xt. We are given N experts, where expert i predicts distribution pt,i(x) at time t. Our goal
is to constuct a “master” distribution qt(x) that has log-loss over the training examples (in
hindsight) not much worse than the log-loss of the best expert distibution.

Here is Bayes’ algorithm.

1. Initialize w1,i = πi, where πi ≥ 0 and
∑

i πi = 1.

2. For t = 1, . . . , T

3. Expert i predicts distribution pt,i(x).

4. Master predicts qt(x) =
∑

i wt,ipt,i(x).

5. Observe xt.

6. Update wt+1,i as follows:

wt+1,i ←
wt,ipt,i(xt)

Zt+1

where Zt+1 is a normalizing constant so that
∑

i wt+1,i = 1.

We showed that

−

T∑

t=1

log qt(xt)

︸ ︷︷ ︸

(1)

≤ min
i

[

−

T∑

t=1

log pt,i(xt)

︸ ︷︷ ︸

(2)

− log πi

]

.

Note that (1) is the log-loss of the master, and (2) is the log-loss of expert i.
Recall that we “pretended” the xt’s were generated by the following probabalistic pro-

cess:

1. Choose expert i∗ according to Pr [i∗ = i] , πi.

2. Choose xt according to Pr
[
x | xt−1

1 , i∗ = i
]

, pt,i(x).1

Then we defined qt(x) , Pr
[
x | xt−1

1

]
, and used Bayes’ Rule to derive the above al-

gorithm and bound. Importantly, the analysis of the algorithm did not require that a
probabilistic process actually generated the data; it applies even when the xt’s are chosen
arbitrarily (even adversarially).

1We write x
t−1

1
to denote the sequence x1, . . . , xt−1

2 Switching Experts

Now suppose that different experts do better on different parts of the sequence of xt’s. For
example, expert 3 may be the best for the first 277 steps, followed by expert 7 for the next
173 steps, and so on. It is natural to ask whether we can construct a qt that predicts almost
as well as the best sequence of experts, i.e. the best sequence e1 · · · eT , where expert et

predicts the distribution at time t.
How often should the ‘current’ expert be allowed to change during the sequence? If we

allow a change at every time step, then it’s possible for only two experts — one that always
predicts 0 with probability 1, and another that always predicts 1 with probability 1 — to
predict any sequence of xt’s with no log-loss (this is assuming the xt’s are binary variables).
More generally, if the xt’s come from a set X , and if we allow a change every step, then
an arbitrary switching sequence over |X | experts can predict any sequence with no log-loss.
We cannot hope to bound the log-loss of qt in this case.

So we will allow only k switches during the sequence, where k remains fixed even as T

grows. The approach is to define a ‘meta-expert’ for each possible switching sequence of
experts. If there are N experts and T time steps, then a simple combinatorial argument
shows that there are M =

(
T
k

)
Nk+1 possible switching sequences.

Now we can just apply Bayes algorithm and its analysis. If we use a uniform prior over
the meta-experts (i.e. πi = 1

M
for all i), then we have

−
T∑

t=1

log qt(xt) ≤ min
i

[

−
T∑

t=1

log pt,i(xt) + log M

]

,

where log M ≈ (k+1) log N +k log T
k
. This is a reasonable bound; the trouble is that the

algorithm now requires time exponential in k to compute qt. A better approach is needed.

3 Switching Experts (Reprise)

The new approach will be to define a prior over the meta-experts that allows for efficient
computation of qt. Let e = e1 · · · eT denote a meta-expert, where et is the expert predicting
at time t. Note that we allow all possible switching sequences. The prior Pr [e∗ = e] , π(e)
is defined as

Pr [e∗

1 = i] = 1
N

Pr
[
e∗

t+1 = i | e∗

t = j
]

=

{
1− α if i = j

α
N−1 otherwise

Note that the probability of choosing an expert at time t depends only on the expert
chosen at time t− 1. In other words, the sequence of experts is a Markov chain.

Again, we assume that a fictitious probabilistic process generates the data:

1. Choose meta-expert e
∗ according to Pr [e∗ = e] , π(e) (defined above).

2. Choose xt according to Pr
[
x | xt−1

1 , e∗

t = i
]

, pt,i(x).

As before, to derive Bayes’ algorithm, we need a way to compute qt(x) , Pr
[
x | xt−1

1

]
.

But before doing so, we can directly apply the bound:

−

T∑

t=1

log qt(xt) ≤ min
i

[

−

T∑

t=1

log pt,i(xt)− log π(e)

]

.

2

It’s easy to see from its definition that

− log π(e) = − log

[

1

N

(
α

N − 1

)k

(1− α)T−k−1

]

,

where k is the number of times the expert switches in e. Minimizing this over α yields
α = k

T−1 , which gives us

− log π(e) = log N + k log

[
(N − 1)(T − 1)

k

]

−(T − k − 1) log

(

1−
k

T − 1

)

︸ ︷︷ ︸

(1)

.

The quantity labeled (1) is less than k, and so this bound is similar to the one for the first
meta-experts Bayes algorithm (see previous section).

How do we compute qt(x)? Here’s how.

qt(x) , Pr
[
xt | x

t−1
1

]

=
∑

i

Pr
[
e∗

t = i | xt−1
1

]
Pr

[
xt | x

t−1
1 , e∗

t = i
]

=
∑

i

Pr
[
e∗

t = i | xt−1
1

]

︸ ︷︷ ︸

wt,i

pt,i(x)

So we just need a way to compute wt,i. We know that w1,i = 1
N

. Also

wt+1,i = Pr
[
e∗

t+1 = i | xt
1

]

(1) =
∑

j

Pr
[
e∗

t = j | xt
1

]
Pr

[
e∗

t+1 = i | e∗

t = j, xt
1

]

(2) =
∑

j

Pr
[
e∗

t = j | xt
1

]
Pr

[
e∗

t+1 = i | e∗

t = j
]

=
∑

j

Pr
[
e∗

t = j | xt
1

]
·

{
1− α if i = j

α
N−1 otherwise

}

=
∑

j

Pr
[
e∗

t = j | xt−1
1 , xt

]
·

{
1− α if i = j

α
N−1 otherwise

}

(3) =
∑

j

Pr
[
xt | xt−1

1 , e∗

t = j
]
Pr

[
e∗

t = j | xt−1
1

]

Pr
[
xt | x

t−1
1

] ·

{
1− α if i = j

α
N−1 otherwise

}

(4) =
∑

j

pt,j(xt)wt,j

qt(xt)
︸ ︷︷ ︸

Cj

·

{
1− α if i = j

α
N−1 otherwise

}

Equality (1) holds by the Law of Total Probability. Equality (2) holds by the Markov
property of the sequence of experts. Equality (3) is from Bayes’ Rule, and equality (4) is
just the application of several definitions.

By naively applying the last equality above, we can compute all the weights in O(N2)
time. Actually, we can do better than this, since the last equality can be re-written

wt+1,i =
α

N − 1

(∑

j

Cj

)

︸ ︷︷ ︸

(1)

+
(

1− α−
α

N − 1

)

Ci,

3

where the quantity labeled (1) is independent of i. So we can actually compute all weights
in only O(N) time. (Moreover, it was pointed out after class that

∑

j Cj = 1, making the
calculation even simpler.)

4 A Technical Comment For Next Time

So far, for Bayes’ algorithm, we’ve assumed that all the expert distributions sum to 1 (i.e.
they are probability distributions), which has meant that the ‘master’ distribution also sums
to 1. In other words,

∀t, i
∑

x

pt,i(x) =
∑

x

qt(x) = 1.

However, if all the pt,i distributions summed to some constant C instead, so would qt.
Moreover, Bayes’ algorithm would not change at all (the C’s would cancel in the derivation),
nor would the bound from the analysis (a log C term would cancel from both sides of the
bound). This fact will be useful for the next lecture.

4

