COS 511: Foundations of Machine Learning

Rob Schapire Lecture # 15
Scribe: Qing Wang April 4, 2006

1 Perceptron Algorithm (continued)

1.1 Review

The goal of the Perceptron algorithm is to find a combination of expert predictions such
that the performance of the learner is as close as possible to the best combination/sub-
committee of experts. It is a conservative algorithm in the sense that it ignores samples
that it classifies correctly. Given N experts, the algorithm works as follows:

Perceptron Algorithm:
e wi =0

o fort=1,...,T
get Xy
predict ¢ = sign(wy - x¢)
observe outcome y; = {1, -1}

Wi+ yiXe, if yp # G

update w1 = { .y olse

For the Perceptron algorithm we have the following upper bound on the number of mistakes
in terms of the margin o:
Assumptions:

o [Ixifl2=1
e JucRY, 6>0,st. y(u-x)>6>0, forvVt=1,...,T
° [[ufz=1

Theorem 1 # mistakes made by the perceptron algorithm < 1/62.

1.2 Example: Committee of Experts

Suppose we have N experts and a subcommittee of K experts give perfect predictions
(meaning that the majority vote on these K experts always gives correct predictions).

x; will have the form x; = \/—lﬁ(—l—l, —1,—1,+1,...,+1) (constant for normalization) and

u will have the form u = #(O, 0,1,1,...,0) (constant for normalization), where u; = 1 if
i-th expert is on the perfect subcommittee; u; = 0 otherwise.

Suppose K is an odd number. We have y;(w; - x¢) > ﬁ Then, with 6 = ﬁ , all
of the assumptions for Theorem 1 are met. Therefore, if we use the Perceptron Algorithm

to learn u, by Theorem 1, we can be assured that

mistakes < KN.

Weakness of the bound: We can view the experts as features or attributes. In
practice, there are usually a large number of features available for classification purpose.
An efficient learning algorithm is designed such that it will choose the most important or
discriminant features (eg perfect sub-committee as in this example) and usually we should
have K < N and N can be very large. Then the above bound is not good since it is linear
in N. Another problem is that the bound on the number of mistakes should depend on the
initial condition ||w; —ul|2. Consider the extreme case: K = N. If we set wy = (1,1,...,1),
then # mistakes=0, whereas the bound KN = N2.

2 Winnow Algorithm

Similar to Perceptron algorithm, Winnow algorithm is another conservative algorithm for
learning a linear separating hyper-plane. The meaning of “winnow” is to get rid of some-
thing undesirable or unwanted. Winnow algorithm is designed such that we could get down
quickly to the desired weight vector in spite of the astronomical size of the available fea-
tures. As commented briefly in the previous section, a good learning algorithm should be
immune to the increasing size of the feature library. In this respect, Winnow algorithm is
more efficient than Perceptron algorithm.

Updating rule: One major difference between Perceptron and Winnow is in the up-
dating step. Recall that in the Perceptron algorithm, w,;; = w, if there is no mistake;
otherwise, w11 = w; 4+ y;x;. In other words, we add weight to expert ¢ if expert i gives
correct prediction. In Winnow algorithm, the weight is updated multiplicatively instead of
additively. Namely, if no mistake, w1 = wy; otherwise, wyi1; = wy;e™t®i /7, for Vi,
where parameter 17 > 0 is the learning rate. In this algorithm, we punish incorrect experts
and boost correct experts. To be more precise, Winnow algorithm works as follows:

Winnow Algorithm:
e Initialize: wy; = 1/N

e Update

if no mistake, w11 = wy;

) nyrey . ..
else, Vi, w1 = wy Z-BT, where Z; is the normalization factor.

)

Remarks: If z;; € {—1,1}, we have

677, if Tti = Yt

w i OC Wt 4 _
t+17’l t{l{ e 777 else.

L, if oy =y
W1 X Wi g _ ’
t+1,4 te { ﬁ —e 277’ else.

So Winnow algorithm is equivalent to weighted majority algorithm (WMA) with 8 = =27
(note that €7 — 1, e — (). This updating rule also reminds us of Boosting. In
fact, AdaBoosting was derived from WMA and Winnow algorithm. The “examples” in
Boosting correspond to “experts” in Winnow and the “examples” in Winnow act as “weak
hypotheses” in Boosting.

2.1 Performance Analysis
For Winnow, we make the following new assumptions:
o [IXefle <1
e JucRY, 6§>0,st. y(u-x)>6>0, forvVt=1,...,T
o [lufi =1
e u; > 0 (can be removed)

Remarks: Different from Perceptron algorithm, in Winnow algorithm, L; and L.
(dual of Ly) norms are used instead of Ly norm.

Theorem 2

In N
n6 + In (Wr%) ‘

mistakes made by the Winnow Algorithm <

Choosing n to minimize the upper bound yields

2InN 1 1+6
mistakes < ;—2, achieved when n = 3 In <1——f(5> . (2)

Let us now apply Winnow Algorithm to the Example in Section 1.2. Note that ¢ will
be changed due to the change in norms. x; will have the form x; = (+1, -1, —1,+1,...,+1)
and u will have the form u = +(0,0,1,1,...,0), such that |x;]oc <1 and [lulj; = 1. Then
ye(wy - x¢) > 1/K. Using 1/K as 6, we apply Theorem 2 and obtain that

mistakes made by Winnow Algorithm < 2K21In N.

Note that this bound is logarithmic in N for the Winnow Algorithm as compared to linear
in N in the Perceptron Algorithm. In the case where K <« N, the Winnow Algorithm is
much better than the Perceptron Algorithm. Another thing to note that, similar to Theo-
rem 1, (1) does not take into account the initial condition, either. A tighter bound could be
expressed in terms of RE(u||lwy) the relative entropy between u and w; (not Ly distance).
Here both u and wy are normalized vectors, so they could be considered as probability
distributions.

Proof of Theorem 2:

Assume we make a mistake every trial. The idea of the proof is to keep track of the
potential function
@t = RE(uHWt)

First, we are going to show that ®; = RE(u||lwy) < In N. Then we prove that the decrease
in potential every mistake is at least a constant c.

Step 1: & = RE(uljw;) = > u;In(u;N) <> u;ln N =InN.

Step 2: Now let us consider the drop in the potential (for simplicity W/ = w11, w = wy
and we drop all subscripts t):

by -0, = Zuz ln Zu, ln—
= Zuilnui—Zuilnwi—Zuilnui+Zuilnwi
= Zulln—'
= Zuilne"y%
= Zul InZ — Zumyazi

= InZ-—ny(u-x¢)
——

>6
< InZ-—nb

Now we are to bound Z =), w;e™* by using our favorite bound on the exponential
function (see Figure 1).

[
n
T

(1+v)e2+(1-v)e 2~

Figure 1: Upperbound an exponential on the range [-1,1] by a linear.

Then we obtain

Z < Zwi (+2y$l el + 2ymle_">

)

el +e" e’ —e "
- 5 () S5 e
i —
N—_——— >0
=1 =y(w-x)<0,

el +e M

N4 e
Therefore, @311 — &; < In (%) —nb = —c (4)

Considering the fact that @741 > 0, we get the bound (1). O

More comments: The bound (1) could be problematic in the sense that the denom-
inator is negative when 7 is large enough. Also we could improve the bound by replacing
In N with ®4.

2.2 Balanced Winnow Algorithm

In previous analysis, we assume that all the components of u are non-negative. But what
if for some ¢, u; < 07 One “quick and dirty” approach is to double N. See the following
example:

x =(1,-.7,32) — x,=(1,-.7,32] —1,.7,—-.32)
u=(1,2,—-2) — u' =(1,.2,0]0,0,.2)

Then u} > 0 for each 7 and u-x; = u’-x}. Also note that||x;||c = [|X}||cc and ||ulj; = [[u'[1.
The algorithm can be formulated as below:

Balanced Winnow Algorithm:
e Initialize: wf’i =wp,; = ﬁ

e Predict: 3 = sign(Wzr ‘Xt — Wy X¢)

e Update
. . e
if no mistake, w;\ | = w;", w, | = w;;
else
Lo e

Wi, = Wi~ 7,
— et
Wyy1; = Wyy™7 -

2.3 Comparison

To compare Winnow /WMA and Perceptron, we find that there are two major differences.
One is in the updating rule. Perceptron updates the weight vector additively while Winnow
multiplicatively. The other is that different pairs of norms are used. In Perceptron, we use
L5 norm for both x and u; whereas in Winnow, we use Lo, norm and Lj norm respectively.
It is also interesting to note that Perceptron algorithm is analogous to Support Vector
Machines while Winnow /WMA is similar in spirit to Boosting algorithms. These differences
are summarized in the following table.

Perceptron Winnow/WMA

additive update | multiplicative update

[1x¢|2 [1%¢]]o0
a2 [allx
SVM’s Boosting

3 Regression

Now we are going to start something rather different. Previously, we focus on how to
minimize the number of mistakes, which is equivalent to 0 — 1 loss. Now we are going to
generalize the loss function to different forms. In other words, the previous goal was to
minimize the probability of making a mistake. Now the question could be how to estimate
the probability of a given prediction. Let’s first look at an example.

A TV station was trying to hire a meteorologist to predict the weather. There were
two applicants. During the interview, applicant A predicted that there was a 70% chance
of rain the next day while applicant B predicted 80%. It did rain the next day. How could
you decide whom to hire? The difficulty is that the actual probability of rain is not known.

We can form the following model for the above example:

e 1: weather conditions

oy — 1 ifrain
y= 0 else

e (z,y) ~D.

e The goal is to estimate
p(z) = Prly = 1]z] = Ely|x]. (5)

In fact, y can take real values, for example, how much rain tomorrow. Therefore, this
is a “regression” problem, i.e. to estimate the expected value of a variable conditioned on
another variable.

Assume applicant A uses hj(x) to estimate p(x) and applicant B uses ha(x). Now the
problem is converted to how to choose hj(x), which is closest to p(x). To measure closeness,
we need to define a loss function to penalize the difference between hj;(z) and p(z). More
will be discussed at next lecture.

