
COS 511: Foundations of Machine Learning

Rob Schapire Lecture #14
Scribe: Qian Xi March 30, 2006

In the previous lecture, we introduced a new learning model, the Online Learning Model.
After seeing a concrete example in stock market, we set up the model for Learning With
Expert Advice. First of all, let’s restate the procedure of this online model formally.

N = number of experts

For t = 1, 2, ..., T trials

each expert i predicts ξi ∈ {0, 1}
learner predicts ŷ ∈ {0, 1}
observe outcome y ∈ {0, 1}

Then we looked at a particular algorithm for it, the Weighted Majority Algorithm
(WMA). In this algorithm, we maintain a set of weights over all experts. So wi is the
weight on expert i.

Initially wi = 1

on each round

q0 =
∑

i:ξi=0 wi q1 =
∑

i:ξi=1 wi

predict ŷ =

{
1 if q1 > q0

0 else

∀i : if ξi 6= y, then wi ← β · wi, where β ∈ [0, 1)

We also proved a theorem bounding the number of mistakes the learner(master) makes.

Theorem 1 The number of mistakes made by the Weighted Majority Algorithm is bounded
as:

(# mistakes of the learner) ≤ aβ · (# mistakes of the best expert) + cβ · lg N

where

aβ =
lg 1

β

lg(2

1+β
)

and cβ = 1
lg(2

1+β
)
.

1 Randomized Weighted Majority Algorithm

1.1 Some Argument About The Theorem

We talked about these constants aβ and cβ. What we really want is that aβ gets as close
as possible to 1. But instead of this, aβ → 2 as β → 1. Last time we started talking about
whether we could do better than that to make the constant aβ close to 1. So we’re looking
for how to improve this algorithm.

A student suggested an algorithm last time. The idea is that we keep track of which
expert is the best at any time, and then we make the prediction by following the expert
doing the best so far. That approach is called Follow the Leader, which recently has been
the subject of very interesting theoretical work, but we won’t talk about it in class.

1.2 Randomized Weighted Majority Algorithm

A different idea is to introduce some kind of randomization. So here we’re just doing a
straightforward majority vote. If the 51% of the experts predict a positive example, then
you predict positive. So we’re thinking about the situation that the fraction of the experts
who are predicting positive and negative, counting the weights, are quite close to 1/2.

So there’s a different variant of the Weighted Majority Algorithm, Randomized Weighted
Majority Algorithm. The predictions that are made by the algorithm are randomized. What
we do is to compute the fraction of the experts predicting positive or negative, and predict
randomly according to that fraction:

predict ŷ =

{
1 with probability q1

W

0 otherwise

where

W =
∑

i wi = q0 + q1.

One equivalent way of saying that is we choose one of the experts, expert i, with prob-
ability wi/W and we predict whatever that expert says:

choose expert i with probability wi/W , let ŷ = ξi.

We have the similar theorem bounding the number of mistakes Randomized Weighted
Majority Algorithm makes.

Theorem 2 The number of mistakes made by the Randomized Weighted Majority Algo-
rithm is bounded as:

E[(# mistakes of the learner)] ≤ aβ · (# mistakes of the best expert) + cβ · ln N

where

aβ =
ln 1

β

1−β
and cβ = 1

1−β
.

Notice that the expectation is only in terms over the randomization of the learning
algorithm. We still assume that the examples and the experts’ predictions are not random.
The only randomness is the randomness when the learner makes his own prediction.

What’s important in this algorithm is that aβ → 1 as β → 1. So by introducing the
randomization, we halve the number of mistakes this algorithm is going to make. To prove
this theorem, we use the similar technique as we used last time, which is to keep track of
the sum of the weights.
Proof: Let’s think about one particular round of the algorithm.

On round t:

l = probability of learner making a mistake =

P

i:ξi 6=y wi

W

Wnew =
∑

i:ξi 6=y wi · β +
∑

i:ξi=y wi = lWβ + (W − lW) = W (1− l(1− β)).

So at the end of T steps,

2

Wfinal = N · (1− l1(1− β)) · (1− l2(1− β)) · · · (1− lT (1− β))

= N ·
∏

t

(1− lt(1− β))

≤ N · exp(−
T∑

t=1

lt(1− β))

= N · exp(−(1− β)

T∑

t=1

lt).

Let LA =
∑T

t=1 lt, so LA = E[(# mistakes of the learner)].
We can get the lower bound of Wfinal just as we did in the proof of the previous lecture.
So ∀i:

βLi = wi ≤Wfinal ≤ N · e(−(1−β)LA).

Then it’s easy to get LA out of the inequality:

LA ≤ aβ · Li + cβ · lnN .

So

LA ≤ aβ ·mini Li + cβ · ln N

where mini Li is # of mistakes of the best expert.

1.3 Discussion About the Value of β

Let’s talk a little bit more about this bound. First of all, how do we tune β? The best way
of tuning β is to depend on the number of mistakes made by the best expert. Let’s say you
just have an upper bound on that and you know miniLi ≤ K ahead of time. Set

β = 1

1+
q

2 ln N
K

.

By plugging in β,

LA ≤ mini Li +
√

2K ln N + ln N .

It turns out that you can improve the last two constants.

As shown in Figure 1, given q1

W
=

P

i:ξi=1
wi

W
, we want to see what is the probability

of ŷ = 1. So the red line describes the Weighted Majority Algorithm, in which if q1

W
< 1

2 ,
Pr[ŷ = 1] = 0, otherwise Pr[ŷ = 1] = 1. The blue line depicts the Randomized Weighted
Majority Algorithm, in which Pr[ŷ = 1] is always equal to q1

W
. The yellow line depicts

the predictions of a different randomized algorithm for which it can be shown that we can
improve the bound to obtain:

LA ≤ mini Li +
√

K ln N + lg N
2 .

3

Figure 1: The Comparison of WMA, RWMA and the Improved Algorithm

When K = 0, there exists one perfect expert who always predicts correctly as we talked
about last time. We got the bound with lg N by Halving Algorithm. But here in fact, we
get improved by half and the bound is lg N

2 .
Another thing to do is we can suppose that K = rT , where r can be regarded as the

likely rate of the best expert making mistakes. By plugging in K and dividing both sides
of the inequality by T , we have:

LA

T
≤ mini

Li

T
+

√
r lnN

T
+ lg N

2T
.

The last two constants indicate how fast the bound is converging:

if r = o(1) converging rate ∼ 1
T

otherwise converging rate ∼
√

1
T

Let’s think about one more thing: what is the trivial bound on K? In almost any case,
K is going to be at most T/2. Why? For instance, we have one expert that always predicts
0 and another that always predicts 1. Then the number of mistakes of one of them will
never go beyond T/2. So by plugging in K ≤ T/2,

LA ≤ mini Li +
√

T ln N
2 + lg N

2 .

By giving up our assumption of random data, you might have a feeling that we are losing
something. But in fact we’re not. We’ll prove it by looking at the worst case in which the
data is random, and we also suppose every expert just guesses randomly.

ξi =

{
1 with probability 1

2
0 with probability 1

2

y =

{
1 with probability 1

2
0 with probability 1

2

For any learning algorithm,

4

E[# of mistakes of the learner] = T
2 .

This is because no matter what you predict, the chance of getting right answer is 1/2. This
holds for the experts as well:

E[Li] = T
2 .

However, the expected number of mistakes of the best expert will not be T
2 , but instead,

will be a little better than T
2 . Specifically, it can be shown that:

E[mini Li] ≈ T
2 −

√
T lnN

2 .

So for any learning algorithm,

E[LA] & E[mini Li] +
√

T ln N
2 .

By comparing the upper bound and the approximate lower bound, we can see that
they’re quite close, so we’re not losing anything.

2 The Perceptron Algorithm

Let’s come back to the Weighted Majority Algorithm first. Think about a question one stu-
dent asked last time. A set of experts are making weather predictions, and a subcommittee
of them are good. Can we do well by combining the results of these experts rather than
identifying a single good expert. So we assume that there’s some combination of the experts
that are making really good predictions and we want to do almost as well as that subset of
the experts.

Let’s formalize the thought and we’re going to change the notation a little bit just for
mathematical convenience:

N = number of experts

For t = 1, 2, ..., T trials

get xt ∈ {−1,+1}N (or more generally, xt ∈ R
N)

learner predicts ŷ ∈ {−1,+1}
observe outcome y ∈ {−1,+1}

The expert predictions are now identified with components of xt, although generally,
the vectors xt can be any points in R

N .
We assume that there’s a set of weights over the experts. The learner’s prediction is the

sign of the weighted majority sum.

∃u ∈ R
N s.t.

∀t, yt = sign(u · xt) (i.e. yt(u · xt) > 0)

5

Figure 2: The Hyperplane

Here we’re actually allowing some of the experts to have negative weights.
Think about it geometrically. Assume that we have a separating hyperplane u. The

points above are positive examples and the ones below are negative examples. We’re trying
to learn the hyperplane that best divides the positive and negative examples as shown in
Figure 2.

We’re going to talk about algorithms making weight vectors over experts.

Initialize w1

for t = 1, 2, ..., T

predict ŷt = sign(wt · xt)

update wt+1 = F (wt,xt, yt)

We update the weight vector in terms of the value of itself and the current example as
opposed to all examples we’ve received at that point.

Now we introduce an algorithm called the Perceptron Algorithm.

w1 = 0

update:

if the learner makes a mistake (yt(wt · xt) ≤ 0)

wt+1 = wt + yt · xt

else wt+1 = wt

How does the update work? Think about it geometrically again. Here is an example,
shown in Figure 3. Let’s suppose we make a mistake on this example. Making a mistake
means our algorithm predicts that xt is below the hyperplane, so it’s a negative example.
But in fact, it’s positive. So this time yt = 1. What does the update step do? It adds yt ·xt

to the new vector wt+1, which tips the direction of the hyperplane to get close to xt. So
it’s more likely to predict it correctly next time.

Next, we add some assumptions. First of all, we assume that:

6

Figure 3: An Example of the Update Step In the Perceptron Algorithm

∀t : ‖xt‖2 ≤ 1

We’re not violating generality by assuming this, because it doesn’t change the prediction of
any expert.

The second assumption is that:

∃u, δ > 0 : yt(u · xt ≥ δ > 0)

‖u‖2 = 1

We’re making a stronger assumption. It geometrically means that there exists a hyperplane
separating the examples by margin of δ as Support Vector Machine, shown in Figure 4.

Figure 4: Support Vector Machine

Given those assumptions, we have a theorem.

Theorem 3 Assume that the learner makes a mistake on every round, i.e. T = # mistakes,
we have:

7

mistakes ≤ 1
δ2 .

Suppose that we’ve already proved the theorem. In the previous lecture, with A being
a deterministic online learning algorithm, and MA(H) = maxadversary (# mistakes made
by A when learning c ∈H), we have:

VC-dim(H)≤ minA MA(H).

So:

VC-dim(H) ≤ # mistakes for any learning algorithm

≤ # mistakes for the Perceptron Algorithm

≤ 1

δ2
.

So, this shows that the VC-dimension of hyperplanes with margin at least δ is no more
than 1/δ2.

Proof: In the last proof, we picked up some function to keep track of the sum of weights.
This time we focus on a different quality: the potential function, which is the angle between
u and wt.

Φt = cos (angle between u and wt)

=
u ·wt

‖wt‖2
≤ 1.

Then we’re trying to get the lower bound of Φt.

Step 1

wT+1 · u ≥ Tδ.

Proof: The proof is pretty straightforward by plugging in definitions.

wt+1 · u = (wt + ytxt) · u
= wt · u + yt(u · xt).

Notice that by assumption, yt(u · xt) ≥ δ. So wt · u increases by at least δ on each round.
Since the base case of wt is w1 = 0, we have:

wT+1 · u ≥ Tδ.

Step 2 By keeping track of the denominator:

‖wT+1‖22 ≤ T .

8

Proof:

‖wt+1‖22 = (wt + ytxt) · (wt + ytxt)

= wt ·wt
︸ ︷︷ ︸

‖wt‖2
2

+2 yt(wt · xt)
︸ ︷︷ ︸

≤0

+ y2
t xt · xt

︸ ︷︷ ︸

≤1

≤ ‖wt‖22 + 1.

So ‖wt+1‖22 increases by at most 1 on every round and ‖w1‖22 = 0. Then:

‖wT+1‖22 ≤ T .

By plugging in the results of Step 1 and Step 2:

Tδ√
T
≤ ΦT+1 ≤ 1

T ≤ 1
δ2 .

9

