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1 Last Lecture

Last lecture we looked at the AdaBoost algorithm. This lecture we will analyze the gen-
eralization error of AdaBoost:

Pseudocode for AdaBoost:
given (x1, y1),...,(xm, ym) yi ∈ {−1,+1}

for t = 1,..,T
construct Dt

train ht on Dt

εt = errDt
(ht) ≤ 1

2 − γ

output

H(x) = sign

(∑
t

αtht(x)

)

2 Analyzing the generalization error of AdaBoost

The main thing we are interested in is the form of H(x):

H(x) = sign

(
T∑

t=1

αtht(x)

)
(1)

H(x) is a linear threshold function.
Suppose h1,..,hT ∈ H where H is finite. Let G = { linear threshold functions over H }
We want to determine the growth function ΠG(m).
Let’s fix h1,...,hT . Given S = {x1,..,xm}, how many dichotomies are there on these m

points? We know that the VC-dimension of a linear combination with T variables is T (see
problem 2 on Homework 2), therefore the number of dichotomies over m points is at most

(em

T

)T

There are |H|T choices for h1, .., hT , therefore we can bound the growth function as follows:

ΠG(m) ≤ |H|T ·
(em

T

)T

(2)

By taking the logarithm, we get:

ln ΠG(2m) ≤ T
(
ln
(em

T

)
+ ln |H|

)
(3)



We know that with probability at least 1 − δ:

err(H) ≤ êrr(H) + O





√
ln(ΠG(2m)) + ln(1

δ
)

m



 (4)

Putting together equation (3) and equation (4):

err(H) ≤ êrr(H) + O





√
T ln |H| + T ln m

T
+ ln 1

δ

m



 (5)

3 Overfitting

The equation that we derived in the previous section predicts overfitting. As T increases,
êrr(H) decreases, but the O(·) term increases and we expect the true error to increase as
well. The expected behaviour is depicted in Figure 1.
However, overfitting often does not happen with AdaBoost. Let’s take a look at an actual
typical run. Figure 2 depicts the error curves for boosting C4.5 on the letter dataset. C4.5
is a weak learner. As T increases, the learned rules get increasingly complicated. However,
even after 1000 rounds, the test error does not increase, and actually continues to drop even
after the training error is zero. Therefore Occam’s razor wrongly predicts that simpler rules
are better.
Explanation:
Consider the confidence of each prediction, instead of whether the prediction is right or
wrong. The increasing confidence on the training set translates to better performance on
the test set. How can we measure confidence? We can consider each weak hypothesis as
a voter.The classifier H(x) is a weighted majority vote. Let’s define the margin to be the
difference between the weighted number of hypotheses voting for the right label and the
weighted number of hypotheses voting for the wrong label.
Let’s rewrite H(x) as follows:

H(x) = sign

(
T∑

t=1

atht(x)

)
(6)

where at ≥ 0,
∑
t

at = 1

We have normalized the αt’s without changing the predictions.

Let f(x) =
T∑

t=1
atht(x). Let’s note that f(x) is a linear combination of weak hypotheses.

We define the margin as follows:

margin(x, y) = y· f(x) (7)

= y·
T∑

t=1

atht(x) (8)

=
T∑

t=1

atyht(x) (9)

=
∑

t:ht(x)=y

at −
∑

t:ht(x)6=y

at (10)
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The margin is positive if and only if H is correct. Also, |yf(x)| = |f(x)| represents the
confidence in the vote.
Figure 3 shows the cumulative distribution of the margins of the training examples after
5, 100, and 1000 rounds of boosting on the C4.5 algorithm on the letter dataset. We can
see that the margins are pushed to the right by boosting, and this is correlated with the
drop of the test error.

4 The margin distribution

First, let’s introduce some notation:
H = the space of the weak hypotheses (we assume that H is finite)
co(H) = the convex hull of H

co(H) = { f of the form f(x) =
T∑

t=1
atht(x), where at ≥ 0,

∑
at = 1, ht ∈ H }

PrD[·] = the probability with respect to the true distribution D
PrD[H(x) 6= y] = generalization error
PrS [·] = the probability with respect to the uniform distribution on the training set S

PrS [H(x) 6= y] = the training error

Theorem 4.1.

PrS [y· f(x) ≤ θ] ≤
T∏

t=1

(
2
√

εt
1−θ(1 − εt)1+θ

)

If εt ≤ 1
2 − γ:

PrS [y· f(x) ≤ θ] ≤
(√

(1 − 2γ)1−θ(1 + 2γ)1+θ

)T

If θ < γ: √
(1 − 2γ)1−θ(1 + 2γ)1+θ < 1

Therefore:

lim
T→∞

(√
(1 − 2γ)1−θ(1 + 2γ)1+θ

)T

= 0

and
PrS [y· f(x) ≤ θ] → 0

Putting it all together, the theorem tells us that if εt ≤ 1
2 − γ, then

lim
T→∞

min
i

yif(xi) ≥ γ
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Theorem 4.2. With probability at least 1 − δ, ∀f ∈ co(H),∀θ > 0:

PrD[yf(x) ≤ 0] ≤ PrS [yf(x) ≤ θ] + O



 1√
m

√
ln m· ln |H| + ln 1

δ

θ2





Let’s note that the O(·) term is independent of T .
Proof:
Let:
f(x) =

∑
atht(x)

gj = randomly chosen ht

Pr[gj ≡ ht] = at

g(x) = 1
N

N∑
j=1

gj(x)

CN = {g of the form g(x) = 1
N

N∑
j=1

gj(x), where gj = ht for some t }

That is, we construct g(x) by randomly choosing N elements from the set of the ht’s, where
each ht is chosen with probability at. We claim that g(x) will be a good approximation of
f(x) when the margin is large.
Before continuing with the proof, let’s note that if we fix x, then:

Eg[gj(x)] =

T∑

t=1

atht(x) (11)

= f(x) (12)

We will now give the outline of the proof, and we will prove the theorem next lecture.
We want to show the following equivalences:

PrD[yf(x) ≤ 0] ≈ PrD[yg(x) ≤ θ

2
] ≈ PrS[yg(x) ≤ θ

2
] ≈ PrS [yf(x) ≤ θ] (13)

We will obtain the first approximation using Chernoff bounds, the second approximation
using uniform convergence, and the third approximation using Chernoff bounds.
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Figure 1: Expected generalization error due to overfitting.

Figure 2: Error curves for boosting C4.5 on the letter dataset. (Robert E. Schapire, ”The
boosting approach to machine learning: An overview”)

Figure 3: Cumulative distribution of margins for boosting C4.5 on the letter dataset.
(Robert E. Schapire, ”The boosting approach to machine learning: An overview”)
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