
COS 511: Foundations of Machine Learning

Rob Schapire Lecture #9
Scribe: Kevin Ko March 7, 2006

Strong Learning Weak Learning

∃ algorithm A ∃ algorithm A
∀c ∈ C ∃γ > 0
∀D ∀c ∈ C
∀ε > 0 ∀D
∀δ > 0 ∀ε ≥ 1

2 − γ
∀δ > 0

A produces h ∈ H: A produces h ∈ H:
Pr[err(h) > ε] ≤ δ Pr[err(h) > ε] ≤ δ

Table 1: Strong & Weak Learnability

In the previous lecture, we defined the notion of weak learnability for a concept class
C. Under weakly learnable conditions, the constraint on ε is loosened so that A need only
drive the error below 1/2 (ie. better than guessing). This differs from the strongly learnable
criteria of PAC, which requires that A allow the error to be made arbitrarily small. Table
1 compares the two.

Our motivating question asks whether weak learning is equivalent to strong learning.

1 A Scenario

It is educational to examine how conditions on our learning models affect the link between
weak and strong. For example, suppose we ignore the general distribution requirement and
let our learning algorithms accept a fixed C and D. Are the two models equivalent? In this
case, the answer is no; consider:

C = all functions over {0, 1}n ∪ {Z}

D(x) =

{

1/2, x = Z
1/2n+1, x ∈ {0, 1}n.

Here, the distribution D is chosen so that point Z will occur 1/2 the time and so will
be easily learnable. The remaining time, a vector in {0, 1}n will be presented uniformly at
random, making it difficult to characterize all possible elements.

Optimistically, we can assume that a reasonable A will produce an h ∈ H that correctly
classifies Z; this ensures that the overall error, with respect to D, will be no more than 1/2.
Extending this, a reasonable A should also do at least as well as random guessing when
classifying some x ∈ {0, 1}n. However, a polynomial number of examples cannot possibly
cover the input space, and so the vectors {0, 1}n will be misclassified roughly 1/2 the time.

Examining the error rate for such a “reasonable” h:

errD(h) ≈
1

2
· 0

︸ ︷︷ ︸

from Z

+
1

2
·
1

2
︸ ︷︷ ︸

from {0,1}n

=
1

4

A

A

A

2D

1D

TD

1h

2h
HD

Th

Figure 1: Diagram of generic boosting

Clearly, this instance is weakly learnable. We wish to consider the existence of a method
that will convert a weak hypothesis like h into a strong one. The polynomial constraint on
the number of examples prevents one from arbitrarily reducing the error over this choice of
D, which suggests that such a method cannot exist.

2 Boosting

At the highest level, boosting can be viewed as deriving several hypotheses from an initial set
of samples, S = 〈(x1, y1), . . . , (xm, ym)〉, and combining them into one much more powerful
hypothesis. Here, we will focus on boosting approaches that take an initial S and sample
from it according to some varying distribution.

Figure 1 illustrates this notion of boosting. D represents the initial distribution of
examples, and Dt are the distributions chosen by the method. While it is entirely possibly
for some of the Dt’s to be identical, this may not be the best approach since it could lead
to duplicate hypotheses.

Pseudo-code for this kind of boosting approach is in Figure 2. In general, boosting
algorithms are distinguished by the choice of Dt and the merging of the hypotheses ht.

3 AdaBoost

Previously, we labeled examples from the set {0, 1}. This is not always convenient from
a mathematical perspective, so in the following we use labels from {−1, 1}. Moreover, let
Dt(i) denote distribution Dt’s weighting for sample (xi, yi).

2

for t = 1, 2, . . . , T
construct distribution Dt

run (weak-learning) algorithm A on Dt

get hypothesis ht where
εt = errDt

(ht) ≤ 1
2 − γ

output H

Figure 2: Pseudo-code for generic boosting

Now, we introduce a simple, yet practically effective, boosting algorithm called Ada-
Boost. AdaBoost adheres to the intuition that a learning algorithm should focus on difficult
examples. Thus, it begins initially with all samples weighted equally. It then iteratively
revises the distribution to focus on hard (mis-classified) cases and de-emphasize easy (cor-
rectly classified) ones.

More concretely:
Initially, D1(i) = 1

m , ∀i. Then, update the distribution according to the following
template:

Dt+1(i) =
Dt(i)

Zt
·

{

exp(αt), if ht(xi) 6= yi

exp(−αt), if ht(xi) = yi

where αt > 0 and Zt is a normalizing factor to make Dt+1 a distribution.
Notice that eαt > 1 (e−αt < 1); as desired, this choice (de)emphasizes the i-th example

if it was (not) mis-classified. Performing this iterative computation T times will construct T
distributions and hypotheses. AdaBoost merges the result using a weighted majority vote:

H(x) = sign(
T∑

t=1

αtht(x))

where sign(x) =

1, x > 0
0, x = 0
−1, x < 0.

Realize that this recursive definition can lead to a cycle and that it is an open problem
whether cycles will always occur. However, cycles are not necessarily harmful in this context.
To help determine αt or Zt it will be instructive to prove the following result.

3.1 The Training Error of AdaBoost

Theorem

ˆerr(H) ≤
T∏

t=1

[

2
√

εt(1 − εt)

]

.

First, we observe a few consequences of this theorem. Since εt is the error rate of the
weak hypothesis ht on Dt, εt = 1/2 − γt ≤ 1/2 − γ ⇒ γt ≥ γ. Substituting this into the

3

right-hand expression:

ˆerr(H) ≤
T∏

t=1

√

4(1/2 − γt)(1/2 + γt) =
T∏

t=1

√

1 − 4γ2
t .

Applying our favorite exponential bound:

ˆerr(H) ≤
T∏

t=1

√

exp
(
−4γ2

t

)

=
T∏

t=1

exp
(

−2γ2
t

)

= exp

(

−2
T∑

t=1

γ2
t

)

≤ exp

(

−2
T∑

t=1

γ2

)

= exp
(

−2γ2T
)

.

Hence, this theorem implies that the training error rate falls exponentially with T .
As an interesting note, the right-hand quantity in the theorem can be rewritten in terms

of cross-entropy:

exp

(

−RE

(
1

2
||εt

))

= (2εt)
1/2 · (2(1 − εt))

1/2 = 2
√

εt(1 − εt).

Below,
∏

t will act as shorthand for
∏T

t=1 and f(x) =
∑T

t=1 αtht(x), where f(x) represents
the sum within AdaBoost’s majority vote: H(x) = sign(f(x)). The proof proceeds in three
steps.

Step 1.

DT+1(i) =
exp(−yif(xi))

m
∏

t Zt
.

Our choice of labels implies that ht(xi)yi is 1 when ht(xi) and yi agree and −1 other-
wise. As a result, the quantity exp(−αtht(xi)yi) exactly corresponds to our conditional
assignment in the recursive definition of Dt+1(i).

The rest immediately follows when unrolling the construction of Dt+1(i):

DT+1(i) =
1

m

exp(−α1h1(xi)yi)

Z1
· · ·

exp(−αT hT (xi)yi)

ZT

=
exp(−yi

∑

t αtht(xi))

m
∏

t Zt

=
exp(−yif(xi))

m
∏

t Zt
.

4

Step 2.

ˆerr(H) ≤
T∏

t=1

Zt.

Proof:

Let [[π]] =

{

1, if π holds
0, else.

Observe that the following inequality holds:

[[x ≤ 0]] ≤ exp(−x)

(at x ≤ 0, [[x ≤ 0]] = 1 = exp(0) ≤ exp(−x); when x > 0, [[x ≤ 0]] = 0 < exp(−x)).

Then,

ˆerr(H) =
1

m

m∑

i=1

[[H(xi) 6= yi]]

=
1

m

m∑

i=1

[[yif(xi) ≤ 0]]

≤
1

m

m∑

i=1

exp(−yif(xi)).

Applying the result from Step 1 and the fact that DT+1 is a distribution,

ˆerr(H) ≤
m∑

i=1

DT+1(i)
T∏

t=1

Zt

=
T∏

t=1

Zt.

Step 3.

Zt = 2
√

εt(1 − εt).

Since Zt is a normalization constant, we have

Zt =
m∑

i=1

Dt(i)exp(−αtht(xi)yi)).

Splitting the sum:

Zt =
∑

i:ht(xi)=yi

[Dt(i)exp(−αtht(xi)yi))] +
∑

i:ht(xi)6=yi

[Dt(i)exp(−αtht(xi)yi))]

=
∑

i:ht(xi)=yi

Dt(i)

︸ ︷︷ ︸

1−εt

exp(−αt) +
∑

i:ht(xi)6=yi

Dt(i)

︸ ︷︷ ︸

(error) εt

exp(αt)

= (1 − εt)exp(−αt) + εtexp(αt).

5

Recall from Step 2 that ˆerr(H) ≤
∏

t Zt. Since αt > 0 is a free-parameter we can
minimize the training error by minimizing each Zt:

d
dαt

[(1 − εt)exp(−αt) + εtexp(αt)] = 0

⇒ (1 − εt)exp(−α∗
t) = εtexp(α∗

t)

⇒ α∗
t = 1

2 ln 1−εt

εt
.

Substituting,

Zt = ((1 − ε)εt)
1/2 + (εt(1 − εt))

1/2

= 2
√

εt(1 − εt).

4 Summary

The theorem proved in lecture today provides a bound on the empirical error ˆerr(H). We
will proceed next time by viewing AdaBoost in terms of its underlying learning problem.
In particular, because H(x) = sign(

∑

t αtht(xi)), ht ∈ H, we will examine H as a member
of class G, where G = {linear threshold functions over ht ∈ H}.

Ultimately, we want to bound the true error (using dichotomies of G):

err(H) ≤ ˆerr(H) + O

√

ln(ΠG(2m)) + ln(1/δ)

m

 .

Exercise: How does one count the dichotomies of G?

6

