COS 511: Foundations of Machine Learning

Rob Schapire Scribe: Brendan Miller

1 Vapnik-Chervonenkis Dimension

1.1 Occam's Razor with the VC Dimension

Last time, we proved: with probability $\geq 1 - \delta$, $\forall h \in \mathcal{H}$, if h is consistent with a sample of size m, then

$$err_D(h) \le \frac{2}{m} \left(\log \left(\Pi_{\mathcal{H}}(2m) \right) + \log \left(\frac{1}{\delta} \right) + 1 \right).$$

The size of $\Pi_{\mathcal{H}}(2m)$ is a property of the class of functions \mathcal{H} , thereby reducing the probabilistic problem to just a combinatorial problem.

1.2 Today's Goals

Today, we will look at how big $\Pi_{\mathcal{H}}(2m)$. There are only two possible cases:

$$\Pi_{\mathcal{H}}(2m) = \begin{cases} 2^m & \text{if VC-dim } d = \infty \\ \mathbf{O}(m^d) & \text{if VC-dim } d < \infty \end{cases}$$

 \mathcal{S} is shattened by \mathcal{H} if

$$|\Pi_{\mathcal{H}}(\mathcal{S})| = 2^{|\mathcal{S}|}$$

VC-dim(\mathcal{H}) is the cardinality of the largest shattered set. A VC-dim of infinity means that an arbitrarily large set can be shattered by the class. For a finite class, the VC-dim is no greater than the log of the cardinality of the hypothesis class.

The VC-dim could be much smaller than this limit, though. For example, the VC-dim of positive half-lines is 1 (a set of two points cannot be shattered in the case of +/- labeling of the points). If the half-lines are defined by a large, but finite, number of points, then VC-dim $(\mathcal{H}) \ll \log |\mathcal{H}|$.

1.3 Sauer's Lemma

Lemma: $\forall \mathcal{H}, \text{ let } d = \text{VC-dim}(\mathcal{H}), \text{ then}$

$$\Pi_{\mathcal{H}}(m) \le \sum_{i=0}^{d} \binom{m}{i} = \Phi_d(m) = \mathbf{O}(m^d).$$

In other words, the sum of the binomial is just the number of different ways of choosing at most d items from a set of size m.

$$\binom{m}{i} = \frac{m \cdot (m-1) \cdot \ldots \cdot (m-i+1)}{i!}$$

So, the sum $\sum_{i=0}^{d} {m \choose i}$ when multiplied out becomes $\mathbf{O}(m^d)$. This has implications back with the use of the VC-dim in the PAC learning error limits: $\log (\Pi_{\mathcal{H}}(2m)) = \log (\mathbf{O}(m^d)) = \mathbf{O}(d \cdot \log(m))$.

1.3.1 Example - Intervals

In our examination of intervals, we found that the equation for the number of dichotomies possible was of the form: $\Pi_{\mathcal{H}}(m) = 1 + m + {m \choose 2}$. Or, now with Sauer's Lemma, we see that this is the exact same form as $\Phi_2(m)$.

1.3.2 Proof of Sauer's Lemma

First, a few facts and conventions will be used in the proof:

 $\binom{m}{k} = \binom{m-1}{k} + \binom{m-1}{k-1}$ This comes from Pascal's Triangle $\binom{m}{k} = 0 \quad \text{if } \begin{cases} k < 0 \\ k > m \end{cases}$ This convention is consistent with Pascal's Triangle

We will prove Sauer's Lemma by induction on m + d. Our 2 base cases (for our 2 variables) are:

> m = 0 $\Pi_{\mathcal{H}}(m) = 1$ degenerate labeling of the empty set d = 0 $\Pi_{\mathcal{H}}(m) = 1$ you cannot shatter 1 point even, so it's a single function

Induction step, $m \ge 1$ $d \ge 1$: assumes lemma holds for all m' d' for which m'+d' < m+d. We are given or already know \mathcal{H} , |S| = m, $S = \langle x_1, x_2, \ldots, x_m \rangle$, and $d = \text{VC-dim}(\mathcal{H})$. We would like to show that $|\Pi_{\mathcal{H}}(S)| \le \Phi_d(m)$.

The main step of the proof is the construction of two new hypothesis spaces \mathcal{H}_1 and \mathcal{H}_2 to which we can apply our induction hypothesis.

${\cal H}$							\mathcal{H}_1						\mathcal{H}_2				
$\mathbf{x_1},\ldots,\mathbf{x_m}$							$\mathbf{x_1}, \dots, \mathbf{x_{m-1}}$						$\mathbf{x_1}, \ldots, \mathbf{x_{m-1}}$				
h1	0	1	1	0	0	\rightarrow	h1	0	1	1	0	\rightarrow	h1	0	1	1	0
h2	0	1	1	0	1	7											
h3	0	1	1	1	0	\rightarrow	h3	0	1	1	1						
h4	1	0	0	1	0	\rightarrow	h4	1	0	0	1	\rightarrow	h4	1	0	0	1
h5	1	0	0	1	1	7											
h6	1	1	0	0	1	\rightarrow	h6	1	1	0	0						

Figure 1: Example Datasets for Proof of Sauer's Lemma

 \mathcal{H}_1 as shown in Figure 1 is defined to be \mathcal{H} restricted to the domain of the first m-1 points in the set **S**. There are as many different functions as there are possible behaviors. In other words:

$$\mathbf{X}_{1} = \{x_{1}, \dots, x_{m-1}\} = \mathbf{S}_{1}$$
$$|\Pi_{\mathcal{H}_{1}}(\mathbf{S}_{1})| = |\mathcal{H}_{1}|$$

The claim is then that the VC-dim of \mathcal{H}_1 is no greater than the VC-dim of the original \mathcal{H} (VC-dim $(\mathcal{H}_1) \leq d$). This is because all sets shattered by \mathcal{H}_1 will also be shattered by \mathcal{H} . By induction, then, $|\Pi_{\mathcal{H}_1}(\mathbf{S}_1)| \leq \Phi_d(m-1)$.

Hypotheses where the dichotomies of \mathcal{H} collapse into \mathcal{H}_1 are placed in \mathcal{H}_2 as shown in Figure 1. In the example, we see that both $x_m = 0$ and $x_m = 1$ are possible for x_1, \ldots, x_{m-1} given in h1 and h4, but not for h3 and h6 in \mathcal{H}_1 , so we only repeat h1 and h4. As for \mathcal{H}_1 , the hypotheses in \mathcal{H}_2 are restricted to the domain $\{x_1, \ldots, x_{m-1}\}$. So:

$$egin{aligned} \mathbf{X_1} = \mathbf{X_2} = \mathbf{S_1} = \mathbf{S_2} \ |\Pi_{\mathcal{H}_2}(\mathbf{S_2})| = |\mathcal{H}_2| \end{aligned}$$

The claim here is that the VC-dim of \mathcal{H}_2 is no greater than one less than the VC-dim of the original \mathcal{H} (VC-dim $(\mathcal{H}_2) \leq d-1$). This is because when we add x_m back, we will get a set that \mathcal{H} can still shatter. In other words, if **T** is shattered by \mathcal{H}_2 , then $\mathbf{T} \cup \{x_m\}$ will be shattered by \mathcal{H} . By induction, then, $|\Pi_{\mathcal{H}_2}(\mathbf{S}_2)| \leq \Phi_{d-1}(m-1)$.

$$|\Pi_{\mathcal{H}}(\mathbf{S})| = |\mathcal{H}_{1}| + |\mathcal{H}_{2}|$$

$$\leq \sum_{i=0}^{d} \binom{m-1}{i} + \sum_{i=0}^{d-1} \binom{m-1}{i}$$

$$= \sum_{i=0}^{d} \binom{m-1}{i} + \binom{m-1}{i-1}$$

$$\leq \sum_{i=0}^{d} \left[\binom{m-1}{i} + \binom{m-1}{i-1} \right]$$

$$= \sum_{i=0}^{d} \binom{m}{i}$$

$$= \Phi_{d}(m)$$

1.4 Upper Bound on Sample Complexity

Claim: $\Phi_d(m) \le (\frac{em}{d})^d$ for $m \ge d \ge 1$ Proof:

$$\begin{split} \Phi_d(m) &= \sum_{i=0}^d \binom{m}{i} \\ \Phi_d(m) \cdot \left(\frac{d}{m}\right)^d &= \sum_{i=0}^d \binom{m}{i} \left(\frac{d}{m}\right)^d \\ \left(\frac{d}{m}\right)^d \binom{m}{i} &\leq \left(\frac{d}{m}\right)^i \binom{m}{i} \\ \Phi_d(m) \cdot \left(\frac{d}{m}\right)^d &\leq \sum_{i=0}^d \left(\frac{d}{m}\right)^i \binom{m}{i} \\ &\leq \sum_{i=0}^m \binom{m}{i} \left(\frac{d}{m}\right)^i 1^{m-i} \quad (x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k} \\ &= \left(1 + \frac{d}{m}\right)^m \quad \forall x \ (1+x) \leq e^x \\ &\leq e^{\frac{d}{m} \cdot m} = e^d \\ \Phi_d(m) &\leq e^d \cdot \left(\frac{m}{d}\right)^d \\ &= \left(\frac{em}{d}\right)^d \end{split}$$

So, now from our earlier limit, $\log(\Pi_{\mathcal{H}}(2m))$ becomes roughly $d \cdot \log(\frac{2em}{d})$.

1.5 Lower Bound on Sample Complexity

Now, to get $err_D(h) \leq \epsilon$, we need $m = \mathbf{O}\left(\frac{1}{\epsilon} \cdot \left(\log \frac{1}{\delta} + d \cdot \log \frac{1}{\epsilon}\right)\right)$ number of examples, which grows linearly with the VC-dim d. This also provides the sufficient conditions for learning. We can also now give a minimum number of examples to describe a class of hypotheses, which is not true when the bound used $\log |\mathcal{H}|$, where no lower bound would be possible.

So, now we will prove the lower bound in terms of the VC-dim to be able to PAC learn. The lower bounds must be in terms of the target concept class C, not the hypothesis class \mathcal{H} (so the limit will be in terms of VC-dim(C)).

To gain some intuition on this, we can look at if $\exists x_1, \ldots, x_d$ shattened by C, and if we have d-1 points, then we cannot say what the next point d will be because both outcomes are possible.

Theorem Let d = VC-dim(C). Then \forall algorithms $A, \exists c \in C$ and $\exists D$ such that if A gets $m \leq \frac{d}{2}$ examples from D labeled by c, then

$$Pr\left[err_D(h_A) > \frac{1}{8}\right] \ge \frac{1}{8}.$$

In other words, this theorem says that you can't make ϵ and δ arbitrarily small. If $\epsilon < \frac{1}{8}$ and $\delta < \frac{1}{8}$, then you need at least $\frac{d}{2}$ examples to PAC learn. The textbook expands on this to say you need more than $\Omega(\frac{d}{\epsilon})$ examples.

1.5.1 (Bad) Argument on Lower Bound

We let D be uniform over a shattered set $T = \langle \overline{x_1}, \ldots, \overline{x_d} \rangle$, and then run the algorithm Aon $\frac{d}{2}$ of the examples from D to form S, then we will label them arbitrarily so that the algorithm will then output h_A . Now, we let $c \in \mathcal{C}$ be any concept consistent with the labels in S and such that $c_S(x) \neq h_A(x) \forall x \notin S$. Then, by this argument, $err_D(h_A) \geq \frac{1}{2}$.

But, this is not a valid argument because we cannot choose target concept c after we choose h_A . We need to choose c before we choose S. So, in this argument, we are making c a function of h_A , which is in turn a function of S, so that c is a function of S. This is wrong because we need to choose c before S. We want to be able to argue that we can choose c ahead of time and still give a lower bound on the error.

Next class, we will look at having D again be random over all T, but then choose c at random uniformly over the space of all possible dichotomies. Then, we'll finish the valid form of this argument to prove the above theorem.