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1 Vapnik-Chervonenkis Dimension

1.1 Occam’s Razor with the VC Dimension

Last time, we proved: with probability ≥ 1 − δ, ∀h ∈ H, if h is consistent with a sample of
size m, then

errD(h) ≤
2

m

(

log (ΠH(2m)) + log

(
1

δ

)

+ 1

)

.

The size of ΠH(2m) is a property of the class of functions H, thereby reducing the
probabilistic problem to just a combinatorial problem.

1.2 Today’s Goals

Today, we will look at how big ΠH(2m). There are only two possible cases:

ΠH(2m) =

{
2m if VC-dim d = ∞
O(md) if VC-dim d < ∞

S is shattered by H if

|ΠH(S)| = 2|S|

VC-dim(H) is the cardinality of the largest shattered set. A VC-dim of infinity means
that an arbitrarily large set can be shattered by the class. For a finite class, the VC-dim is
no greater than the log of the cardinality of the hypothesis class.

The VC-dim could be much smaller than this limit, though. For example, the VC-dim
of positive half-lines is 1 (a set of two points cannot be shattered in the case of +/– labeling
of the points). If the half-lines are defined by a large, but finite, number of points, then
VC-dim(H) � log |H|.

1.3 Sauer’s Lemma

Lemma: ∀H, let d = VC-dim(H), then

ΠH(m) ≤

d∑

i=0

(
m

i

)

= Φd(m) = O(md).

In other words, the sum of the binomial is just the number of different ways of choosing
at most d items from a set of size m.

(
m

i

)

=
m · (m − 1) · . . . · (m − i + 1)

i!

So, the sum
∑

d

i=0

(
m

i

)
when multiplied out becomes O(md). This has implications back

with the use of the VC-dim in the PAC learning error limits: log
(
ΠH(2m)

)
= log

(
O(md)

)
=

O
(
d · log(m)

)
.



1.3.1 Example - Intervals

In our examination of intervals, we found that the equation for the number of dichotomies
possible was of the form: ΠH(m) = 1+m+

(
m

2

)
. Or, now with Sauer’s Lemma, we see that

this is the exact same form as Φ2(m).

1.3.2 Proof of Sauer’s Lemma

First, a few facts and conventions will be used in the proof:
(
m

k

)
=

(
m−1

k

)
+

(
m−1

k−1

)
This comes from Pascal’s Triangle

(
m

k

)
= 0 if

{
k < 0
k > m

This convention is consistent with Pascal’s Triangle

We will prove Sauer’s Lemma by induction on m + d.
Our 2 base cases (for our 2 variables) are:

m = 0 ΠH(m) = 1 degenerate labeling of the empty set
d = 0 ΠH(m) = 1 you cannot shatter 1 point even, so it’s a single function

Induction step, m ≥ 1 d ≥ 1: assumes lemma holds for all m′ d′ for which m′+d′ < m+d.
We are given or already know H, |S| = m, S = 〈x1, x2, . . . , xm〉, and d = VC-dim(H).

We would like to show that |ΠH(S)| ≤ Φd(m).
The main step of the proof is the construction of two new hypothesis spaces H1 and H2

to which we can apply our induction hypothesis.

H
x1, . . . ,xm

h1 0 1 1 0 0
h2 0 1 1 0 1
h3 0 1 1 1 0
h4 1 0 0 1 0
h5 1 0 0 1 1
h6 1 1 0 0 1

→
↗
→
→
↗
→

H1

x1, . . . ,xm−1

h1 0 1 1 0

h3 0 1 1 1
h4 1 0 0 1

h6 1 1 0 0

→

→

H2

x1, . . . ,xm−1

h1 0 1 1 0

h4 1 0 0 1

Figure 1: Example Datasets for Proof of Sauer’s Lemma

H1 as shown in Figure 1 is defined to be H restricted to the domain of the first m − 1
points in the set S. There are as many different functions as there are possible behaviors.
In other words:

X1 = {x1, . . . , xm−1} = S1

|ΠH1
(S1)| = |H1|

The claim is then that the VC-dim of H1 is no greater than the VC-dim of the original
H (VC-dim(H1) ≤ d). This is because all sets shattered by H1 will also be shattered by H.
By induction, then, |ΠH1

(S1)| ≤ Φd(m − 1).
Hypotheses where the dichotomies of H collapse into H1 are placed in H2 as shown in

Figure 1. In the example, we see that both xm = 0 and xm = 1 are possible for x1, . . . , xm−1

given in h1 and h4, but not for h3 and h6 in H1, so we only repeat h1 and h4. As for H1,
the hypotheses in H2 are restricted to the domain {x1, . . . , xm−1}. So:
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X1 = X2 = S1 = S2

|ΠH2
(S2)| = |H2|

The claim here is that the VC-dim of H2 is no greater than one less than the VC-dim
of the original H (VC-dim(H2) ≤ d− 1). This is because when we add xm back, we will get
a set that H can still shatter. In other words, if T is shattered by H2, then T ∪ {xm} will
be shattered by H. By induction, then, |ΠH2

(S2)| ≤ Φd−1(m − 1).

|ΠH(S)| = |H1| + |H2|

≤
d∑

i=0

(
m − 1

i

)

+
d−1∑

i=0

(
m − 1

i

)

︸ ︷︷ ︸

=
P

d

i=0 (m−1

i−1
) because ( x

−1
)=0

≤
d∑

i=0

[(
m − 1

i

)

+

(
m − 1

i − 1

)]

=
d∑

i=0

(
m

i

)

= Φd(m)

1.4 Upper Bound on Sample Complexity

Claim: Φd(m) ≤ (em

d
)d for m ≥ d ≥ 1

Proof:

Φd(m) =
d∑

i=0

(
m

i

)

Φd(m) ·

(
d

m

)d

=

d∑

i=0

(
m

i

)(
d

m

)d

(
d

m

)d (
m

i

)

≤

(
d

m

)i (m

i

)

Φd(m) ·

(
d

m

)d

≤

d∑

i=0

(
d

m

)i (
m

i

)

≤

m∑

i=0

(
m

i

)(
d

m

)i

1m−i (x + y)n =

n∑

k=0

(
n

k

)

xkyn−k

=

(

1 +
d

m

)m

∀x (1 + x) ≤ ex

≤ e
d

m
·m = ed

Φd(m) ≤ ed ·
(m

d

)d

=
(em

d

)d
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So, now from our earlier limit, log
(
ΠH(2m)

)
becomes roughly d · log(2em

d
).

1.5 Lower Bound on Sample Complexity

Now, to get errD(h) ≤ ε, we need m = O
(

1

ε
· (log 1

δ
+ d · log 1

ε
)
)

number of examples, which
grows linearly with the VC-dim d. This also provides the sufficient conditions for learning.
We can also now give a minimum number of examples to describe a class of hypotheses,
which is not true when the bound used log |H|, where no lower bound would be possible.

So, now we will prove the lower bound in terms of the VC-dim to be able to PAC learn.
The lower bounds must be in terms of the target concept class C, not the hypothesis class
H (so the limit will be in terms of VC-dim(C)).

To gain some intuition on this, we can look at if ∃ x1, . . . , xd shattered by C,
and if we have d − 1 points, then we cannot say what the next point d will be because both
outcomes are possible.

Theorem Let d = VC-dim(C). Then ∀ algorithms A, ∃ c ∈ C and ∃ D such that if A
gets m ≤ d

2
examples from D labeled by c, then

Pr

[

errD(hA) >
1

8

]

≥
1

8
.

In other words, this theorem says that you can’t make ε and δ arbitrarily small. If ε < 1

8

and δ < 1

8
, then you need at least d

2
examples to PAC learn. The textbook expands on this

to say you need more than Ω(d

ε
) examples.

1.5.1 (Bad) Argument on Lower Bound

We let D be uniform over a shattered set T = 〈x1, . . . , xd〉, and then run the algorithm A
on d

2
of the examples from D to form S, then we will label them arbitrarily so that the

algorithm will then output hA. Now, we let c ∈ C be any concept consistent with the labels
in S and such that cS(x) 6= hA(x) ∀x /∈ S. Then, by this argument, errD(hA) ≥ 1

2
.

But, this is not a valid argument because we cannot choose target concept c after we
choose hA. We need to choose c before we choose S. So, in this argument, we are making c
a function of hA, which is in turn a function of S, so that c is a function of S. This is wrong
because we need to choose c before S. We want to be able to argue that we can choose c
ahead of time and still give a lower bound on the error.

Next class, we will look at having D again be random over all T, but then choose c at
random uniformly over the space of all possible dichotomies. Then, we’ll finish the valid
form of this argument to prove the above theorem.
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