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Abstract
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as the first and second price auction, which are not revenue maximizing and generally not
efficient when bidders’ shares are asymmetric. Finally, we show that standard auctions
may perform particularly poorly when they are used to raise money for a public good.
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1. Introduction

There are many situations in which losing bidders in an auction benefit from driving up

the winner’s price. Consider, for instance, a wine auction in which several local wine

merchants participate. All merchants would prefer their rivals pay a higher price in the

auction so that they cannot be as competitive in the aftermarket. Alternatively, when bid-

ders participate in a series of auctions such as the recent European “spectrum auctions,”

losers benefit from a higher winning bid if they know the winner faces some aggregate

budget constraint. In this paper we consider auctions in which each bidder has an in-

centive to drive up the price because they receive a fixed share of the auction’s revenue.

In takeover situations, for example, losing bidders who own some of the target’s shares

(“toeholds”) receive payoffs proportional to the sales price (e.g. Singh, 1998). In a “char-

ity auction” (Engers and McManus, 2000), altruistic bidders receive benefits proportional

to the amount of money raised. In “knockout auctions” (Graham and Marshall, 1987;

McAfee and McMillan, 1992) every member of a bidding ring receives a payment in direct

proportion to the winning bid, etc.1 We analyze such auctions from the point of view of

the seller who receives what is left of the revenue after all bidders are paid their shares.

In our model, bidders’ shares are not necessarily equal, i.e. we allow for asymmetries,

and bidders’ information about the object’s value may have private and common value

elements. Bulow, Huang, and Klemperer (1999) have shown that in the case of pure

common values, asymmetries in bidders’ shares can have a dramatic effect on equilibrium

bidding behavior in an ascending auction (and less so in a sealed-bid auction).2 For

example, a bidder with a larger share has a significantly higher probability of winning,

even when she does not have the highest signal. In particular, a bidder with a zero share

has zero probability of winning. Moreover, bidders with smaller shares face a stronger

winner’s curse which suppresses their (and consequently others’) bid and leads to low

revenues. Bulow, Huang, and Klemperer (1999) suggest that in some cases the seller may

benefit from giving free shares to “smaller bidders” to “level the playing field.”

In this paper we follow an alternative approach. Instead of changing the distribution

of shares to enhance revenues, we propose a different auction format in which all bidders

1Other examples include creditors bidding in bankruptcy auctions (Burkart, 1995) and heirs bidding
for a family estate (Engelbrecht-Wiggans, 1994).

2See also Bikhchandani (1988); Bulow and Klemperer (1999); and Klemperer (1998).
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pay a weighted sum of all bids: the all-pay-all auction. We show that the all-pay-all

rules transform the auction in which bidders receive shares of the revenue into a standard

all-pay auction in which bidders receive no shares. As a result, the all-pay-all auction is

efficient, i.e. it assigns the object to the highest-signal bidder, even when bidders’ shares

are asymmetric and both private and common value elements play a role. Moreover, the

all-pay-all auction results in the highest possible payoff to the seller and her payoff is

independent of the size of her and others’ shares.

The all-pay-all rules are akin to those proposed by Cramton, Gibbons, and Klemperer

(1987) to dissolve a partnership. In their model, bidder i has a private value, vi, for

an object of which she currently owns a share, ri. They show that a bidding game in

which bidders’ payments are based on all bids and owners of larger shares are reimbursed

through side-payments, can be used to efficiently dissolve a dissolvable partnership. Not

all partnerships are dissolvable because of an “individual rationality” constraint: bidders’

expected equilibrium profits in the bidding game cannot be less than their initial “wealth”

level rivi. Our model differs from theirs in several respects. First, bidders in our model do

not face an individual rationality constraint (other than non-negative expected equilibrium

payoffs in the auction); all shareholders are willing to sell their share at the highest

price. This assumption is common in the literature on takeover bidding. Indeed, the

individual rationality constraint is generally not satisfied in the standard first price auction

or ascending auction discussed in Singh (1998) and Bulow, Huang, and Klemperer (1999).

Second, each bidder’s payment in the all-pay-all auction is non-negative and depends on

her own and others’ shares (and there are no side-payments). Finally, we single out one

of the shareholders, the “seller,” and ask the question which auction format is revenue-

maximizing from her point of view.3

We apply the all-pay-all model to the case when an auction is used to raise money for

a public good (see also Engers and McManus, 2000). We assume a symmetric situation

in which each bidder values $1 given to the public good at $α. The benefits that bidders

receive from the auction’s revenue do not diminish its value nor is the sum of bidders’

shares necessarily less than one (since one bidder’s benefit does not affect another’s). In

3This issue is not addressed by Cramton, Gibbons, and Klemperer (1987) who treat all shareholders
equally and determine circumstances under which an efficient dissolvement is possible without maximizing
the payoff to a particular shareholder. A final (technical) extension is that our model includes both private
and common values.
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fact, when one or more outside parties match the auction’s revenue, α can be greater

than one. We show that the best way to raise money for the public good is by means

of an all-pay-all auction or a simple “lowest price” all-pay auction. In addition, we

demonstrate that standard auctions may perform rather poorly in terms of raising money.

In the first price auction, for example, a bidder who is indifferent between keeping $1 for

herself or giving it to the public good bids only the object’s expected value. These low bids

are caused by a strong “free rider” effect when bidders prefer to lose and receive their

share of another’s bid rather than win the object. Stated differently, due to the positive

externalities of a high bid, all bids are kept low. This free rider effect is even stronger in

a second price auction where bids are always finite even when bidders value $1 given to

the public good at more than $1. Asking for voluntary contributions would therefore be

better than conducting a second price (or ascending) auction in this case.

Our derivation of the bidding functions for the first and second price auctions follows

Engelbracht-Wiggans (1994) who considers the special case of two bidders. In a very

interesting paper, Engers and McManus (2000) consider “charity auctions” in which al-

truistic bidders receive benefits proportional to the amount of money raised. They also

extend Engelbrecht-Wiggans’ analysis to the case of an arbitrary number of bidders. In

addition, they prove that the second price auction raises more money than a first price

auction under fairly general conditions.4 Proposition 5 can be seen as a generalization

of their result to allow for the possibility that the auction’s revenue is matched by one

or more outside parties. We show that auctions in which only the winner pays, e.g. a

kth price auction for k = 1, 2, . . ., all yield the same revenue when α = 0 or α = 1 (see

Proposition 6). We conjecture that a kth price auction raises more (less) money than a

(k + 1)th price auction when α > 1 (α < 1).

Finally, our work is related to that of Jehiel, Moldovanu, and Stacchetti (1996). They

consider auctions in which the winning bidder imposes an individual-specific negative

externality on losing bidders. In this case, it may be in a bidder’s best interest not to

participate in the auction (Jehiel and Moldovanu, 1996). Our approach differs in two

ways. First, we consider the case when the winning bidder imposes a positive externality

on others. More importantly, however, externalities are exogenously specified in Jehiel,

4Engers and McManus (2000) also provide useful comparisons of alternative auction formats in the
limit as the number of bidders tends to infinity.
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Moldovanu, and Stacchetti (1996) while we allow them to be endogenously determined,

i.e. their magnitudes increase with the auction’s revenue.

This paper is organized as follows. The next section presents a simple example of

two bidders with equal shares whose values for the object are private, independent, and

uniformly distributed. Section 3 generalizes the example and shows that the all-pay-

all auction is efficient and results in the highest possible payoff to the seller, even when

bidders’ shares are unequal. In section 4 we apply our results to the case where an auction

is used to raise money for a public good. Section 5 concludes. All proofs can be found in

the Appendix.

2. An Example

The owners of three adjacent parcels of land, “Left,” “Middle,” and “Right,” face the

following dilemma. Left contains oil but its owner, L, needs to acquire all three parcels to

build a pipeline. Right, however, is owned by a real-estate developer, R, who needs the

other parcels to plan a residential area. Finally, Middle’s owner, M , has no use for her

own land nor for the others’. Since M is the only one not interested in obtaining more

land, she is chosen to design an auction in which L and R can bid for all three parcels

(sold as one unit). The proceeds of the auction are split among the owners in proportion

to the size of their land: L and R each receive an α share while M receives the remaining

(1 − 2α) part, where α < 1
2
. Which auction format is profit maximizing from M ’s point

of view?

In many situations, the answer to this optimality question is simply “it doesn’t mat-

ter, all auction formats yield the same revenue.” One of the assumptions underlying this

revenue equivalence result, however, is that the different formats assign the same (zero)

expected payoff to a bidder with the lowest possible valuation. To show that this as-

sumption is not valid in the above example, we compare a standard first and second price

auction. In what follows we refer to M as the “seller” and to L and R as “bidders.”

Suppose owning all three parcels is worth vi to bidder i = L,R, where vi is private

information and independent of vj, j 6= i. For simplicity, we take the vi to be uniformly

distributed on [0, 1]. It is straightforward to verify that the optimal bids in the first price
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auction are given by B1(v) = v/(2 − α), see Engelbrecht-Wiggans (1994).5 Since the

lowest-value bidder loses for sure, her expected payoff is simply the expected value of the

other’s bid: π1(0) = α/(4− 2α). In the second-price (or ascending) auction optimal bids

are given by B2(v) = (v + α)/(1 + α), see Singh (1998).6 The payoff to the lowest-value

bidder now follows from the observation that her bid B2(0) = α/(1 + α) is the second-

highest bid for sure, so her expected payoff is π2(0) = α2/(1+α). Note that π1(0) > π2(0)

for all 0 < α < 1
2
, i.e. bidders are better off when a first price auction is used than when

a second price auction is used.

An auction that is better for the bidders is often worse for the seller. Comparing the

revenues of the first and second price auctions shows this is also true in the above example.

The expected revenue raised by the second price auction, R2 = (1+3α)/(3+3α), exceeds

that of a first price auction, R1 = 2/(6−3α), for all 0 < α < 1
2
. Can we conclude that the

second price auction is revenue maximizing in this case (ignoring reserve prices and/or

entry fees)? To show that the second price auction is not optimal in general, consider the

first price all-pay auction. In this case, both the winning and the losing bidder have to pay

their bid. It is straightforward to verify that the optimal bids are BAP (v) = 1
2
v2/(1− α)

and that the resulting revenue is RAP = 1/(3 − 3α).7 Note that RAP is less than R2 for

α < 1
3

but that RAP exceeds R2 for 1
3

< α < 1
2
.

What is needed is a mechanism that yields a zero expected payoff for the lowest-value

bidder. To accomplish this, a payment has to be extracted from the losing bidder as in

a standard first price all-pay auction. However, to ensure that the expected payoff of the

lowest-value bidder is zero, this payment has to be based on both the winner’s and the

loser’s bid.8 To this end, consider the following rules:

5Consider a bidder with value v who bids as if she has value w and who faces a rival that bids according
to B1(·). The bidder’s probability of winning is w and her expected payment if she wins is B1(w). Hence,
her expected payoff is: πe(B1(w)|v) = (v−B1(w))w+α(B1(w)w+B1((1+w)/2)(1−w)). The first-order
condition for profit maximization yields: ∂wπe(B1(w)|v) = v − w = 0, so it is optimal for a bidder with
value v to bid B1(v).

6Suppose the rival bids according to this solution and a bidder with value v bids B2(w). Her probability
of winning is w and her expected payment if she wins is B2(w/2). Hence, her expected payoff is:
πe(B2(w)|v) = (v − B2(w/2))w + α(B2(w/2)w + B2(w)(1 − w)). The first-order condition for profit
maximization yields: ∂wπe(B2(w)|v) = v−w = 0, so it is optimal for a bidder with value v to bid B2(v).

7A bidder with value v who bids as if she has value w and who faces an opponent that bids according
to BAP (·) has expected payoffs πe(BAP (w)|v) = vw− (1−α)BAP (w) + α/(6− 6α), where the final term
is α times the rival’s expected bid. The first order condition for profit maximization dictates that w = v.

8Indeed, the expected payoff of the lowest-value bidder in a standard first price all-pay auction (where
the loser’s payment is proportional to the loser’s bid) is πAP (0) = α/(6− 6α). Note that πAP (0) > π2(0)
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1. The highest bidder obtains the land.

2. Both bidders pay 1−α
1−2α

times their own bid plus α
1−2α

times the other’s bid.

These rules may seem to violate the participation constraint that requires non-negative

expected equilibrium payoffs for the bidders. However, this is not the case as we now

show. First, a bidder can ensure a zero payoff by bidding zero: she then pays α
1−2α

times

the other’s bid and receives α( 1−α
1−2α

+ α
1−2α

) times the other’s bid. More generally, let

B(·) denote the optimal bidding function given the above rules, then a bidder’s expected

payoffs can be written as:

πe(b|v) = vB(−1)(b)− 1− α

1− 2α
b− α

1− 2α
E(B)

+ α
(

1− α

1− 2α
b +

α

1− 2α
E(B) +

1− α

1− 2α
E(B) +

α

1− 2α
b
)

, (2.1)

where E(B) =
∫ 1
0 B(y) dy is the rival’s expected bid. Combining the terms on the right

side of (2.1) yields

πe(b|v) = vB(−1)(b)− b. (2.2)

In other words, bidders’ expected payoffs under the above rules are the same as those of a

standard first price all-pay auction! A bidder’s net payment, which includes the payments

she makes in the auction and her share of the auction’s revenue, is therefore equal to her

bid. The optimal bidding function for the all-pay auction is given by B(v) = 1
2
v2, and

equilibrium payoffs are πe(B(v)|v) = 1
2
v2. Hence, bidders’ expected equilibrium payoffs

are non-negative and zero for the lowest-value bidder.

The auction’s revenue follows by adding bidders’ expected payments:

RAPA = 2
1− α

1− 2α

1

6
+ 2

α

1− 2α

1

6
=

1

3− 6α
. (2.3)

Note that the all-pay-all auction yields higher revenues than the other auctions considered

so far and that its revenue tends to infinity when α tends to 1
2
.9 The payments that accrue

to the seller, M , are (1 − 2α)RAPA = 1
3
, independent of the size of the parcels! Figure 1

for 0 < α < 1
3 and πAP (0) < π2(0) for 1

3 < α < 1
2 .

9In this limit, the all-pay-all auction turns into a standard second price all-pay auction, or “war-of-
attrition,” in which the highest bidder wins and both bidders pay the loser’s bid. When α = 1

2 , the loser
can afford to bid an arbitrary high amount, b, since she pays b but also receives 1

2 (b + b).
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alpha
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0.3

Seller’s Payoff

Figure 1: The seller’s payoff in an all-pay-all auction (thick solid
line), an all-pay auction (long dashes), a first price auction (short
dashes), and a second price auction (thin solid line) for α ≤ 1/2.

shows the seller’s profit in the different auction formats for 0 ≤ α ≤ 1
2
. The all-pay-all

auction is the only format that gives M a non-zero profit as α → 1
2
, keeping M ’s payoff

and L and R’s combined payoffs at 1
3
.

3. The General Model

Consider n ≥ 2 bidders who compete for a single object. Each bidder i = 1, · · · , n
receives a signal, si, about the object’s value. Bidders’ signals are independent and

distributed according to the (commonly known) distribution function F (·).10 Without

loss of generality, we can normalize the signals such that they have support [0, 1], i.e.

F (0) = 0 and F (1) = 1. Bidder i’s value for the object, vi, will in general depend on all n

10Our results readily extend to the case of affiliated signals (Milgrom and Weber, 1982).
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signals. Following Milgrom and Weber (1982) we assume that vi = u(si, {sj}j 6=i) for all i,

where u(·, ·) is increasing in its first argument and non-decreasing in its second argument.

Note that each bidder’s value is a symmetric function of others’ signals. For later use we

define v(x, y) = E(vi|si = x, yi = y) where yi = maxj 6=i sj is the maximum signal of all

bidders different from i. Since the joint distribution of bidders signals is symmetric, the

definition of v(x, y) is independent of i.11

Let xi denote the payment that bidder i = 1, · · · , n makes in the auction and let

αi denotes bidder i’s share in the auction’s revenue R =
∑n

i=1 xi. We will not put any

restrictions on the αi except that 0 ≤ αi < 1 and
∑n

i=1 αi < 1. The remainder α0 =

1 − ∑n
i=1 αi is the fraction of the revenue kept by the seller. Note that bidder i’s net

payment, which incorporates the αi share she receives from the auction’s revenue, is given

by xi − αi
∑n

j=1 xj. The auction format determines the link between bids and payments

in the auction. For instance, in a first price auction only the highest bidder makes a

payment equal to her bid, while in an all-pay auction all bidders make payments equal to

their bids. Consider the following rules:12

1. The object is assigned to the highest bidder.

2. Each bidder pays her own bid plus αi/α0 times the sum of all bids.

In other words, all bidders pay a non-negative fraction of all bids: the all-pay-all auction.

As in the example of the previous section, a zero bid results in a zero payoff under the

above rules. To see this, let B−i =
∑

j 6=i bj denote the sum of all others’ bids. A zero bid

leads to a net payment of

αi

α0

E(B−i)− αi

(
E(B−i) +

n∑

j=1

αj

α0

E(B−i)
)

=
αi

α0

E(B−i)− αi

(
1 +

1− α0

α0

)
E(B−i) = 0.

Proposition 1 shows that the optimal bids in the all-pay-all auction, in which bidders

receive part of the revenue, are simply those of a standard all-pay auction in which

bidders receive no share of the revenue.

11The case of independent private values corresponds to vi = si, i = 1, · · · , n, which yields v(x, y) = x.
Similarly, a common value results when vi =

∑
j vj , in which case v(x, y) = x + y + (n− 2)E(z|z ≤ y).

12As noted in the Introduction, Cramton, Gibbons, and Klemperer (1987) propose similar rules to
dissolve a partnership.

9



Proposition 1. The symmetric Nash equilibrium of the all-pay-all auction is given by

B(s) =
∫ s

0
v(y, y) dF (y)n−1. (3.1)

Bidders’ expected equilibrium payoffs satisfy π∗(s) ≥ 0 for all s ∈ [0, 1] with π∗(0) = 0.

Note that the optimal bidding function is independent of bidders’ shares and increasing in

the signal. Hence, the all-pay-all auction awards the object to the bidder with the highest

signal even when bidders’ shares are asymmetric.

This property contrasts sharply with those of standard auction formats. Bulow,

Huang, and Klemperer (1999), for instance, consider the case of two bidders and a pure

common value (which is nested in our model), and show that small asymmetries in bid-

ders’ shares can have a dramatic effect on equilibrium behavior in an ascending auction.

In particular, the bidder with a (slightly) larger share has a significantly higher chance

of winning even when her signal is not the highest. (A similar phenomenon occurs in the

first price sealed-bid auction, although the effect of share asymmetries is less pronounced

in this case.) Efficiency is not an issue in a pure common value setup but these results

suggest that the outcome of a standard auction will not be efficient when private values

are introduced (as in our model). In contrast, the outcome of the all-pay-all auction is

independent of bidders’ shares and is always efficient.

To determine the seller’s payoff from the auction, note that the expected bid that

follows from (3.1) is given by E(B) = E(v(Y2, Y2))/n where Y2 is the second-highest of

all signals.13 The ex ante expected payoff to the seller, π0 = α0
∑n

i=1 E(xi), can thus be

13Using (3.1) the expected bid E(B) =
∫ 1

0
B(s) dF (s) can be written as

E(B) =
∫ 1

0

∫ s

0

v(z, z) dF (z)n−1dF (s) =
∫ 1

0

∫ 1

z

v(z, z) dF (s) dF (z)n−1,

where we changed the order of integration. The term on the far right side equals

E(B) = (n− 1)
∫ 1

0

v(z, z) f(z) (1− F (z)) F (z)n−2 dz = E(v(Y2, Y2))/n,

since the density of the second-highest order statistic is: fY2(z) = n(n − 1)f(z)(1 − F (z))F (z)n−1, see
Mood, Graybill, and Boes (1963).
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worked out as

π0 = α0

n∑

i=1

{E(B) + (αi/α0) nE(B)} = E(v(Y2, Y2)). (3.2)

Since the lowest type has zero expected equilibrium payoffs the revenue raised by the

all-pay-all auction, RAPA = E(v(Y2, Y2))/α0, is the maximum possible revenue when the

seller does not exclude (low-signal) bidders, i.e. when no reserve price or entry fee is used.

Proposition 2. In the absence of reserve prices and/or entry fees, the all-pay-all auction

is efficient and yields the highest possible payoff to the seller: π0 = E(v(Y2, Y2)), indepen-

dent of the sizes of the bidders’ and seller’s shares. The payoff to the winning bidder is

E(v(Y1, Y2)− v(Y2, Y2)).

To compare the revenue from an all-pay-all auction with that of a standard auction, recall

that the lowest-signal bidder has strictly positive payoffs in a first or second price auction.

These formats therefore yield lower payoffs to the seller (who earns nothing when her share

tends to 0). Moreover, for the case of pure common values, Bulow, Huang, and Klemperer

(1999) show that (small) asymmetries in bidders’ shares substantially reduce the revenue

from an ascending auction (and less so from a sealed bid first price auction). They point

out that in this case the target firm may benefit from “leveling the playing field” by sell-

ing a cheap toehold to a “white knight.” In contrast, an all-pay-all auction automatically

levels the playing field and maximizes revenue independent of the distribution of shares.

In the special case of private values, i.e. when v(x, y) = x, it is straightforward to

include a reserve price in the above analysis to obtain an “optimal” all-pay-all auction.

It is well known that with independent, symmetric signals the seller can maximize her

payoff by choosing a cut-off signal, or “screening level,” s∗, below which it does not pay

to bid. The optimal screening level satisfies

s∗ =
1− F (s∗)

f(s∗)
. (3.3)

for all auctions in which the object is assigned to the highest bidder (including the all-

pay auction) and is independent of the number of bidders (Riley and Samuelson, 1981;

Myerson, 1981). Since the all-pay-all rules transform the auction with shares into a
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standard all-pay auction without shares, we can use (3.3) to determine the optimal all-

pay-all auction. To ensure a zero expected payoff for the bidder with value s∗ (i.e. the

lowest type that finds it worthwhile to bid), the seller can simply announce a reserve price

r∗ = s∗F (s∗)n−1.14 The introduction of this optimal reserve price increases the auction’s

revenue but lowers its efficiency, since the object may go unsold when all bidders’ signals

are less than s∗.15

4. How (Not) To Raise Money For A Public Good

In this section we compare the revenue properties of alternative auction formats in the

symmetric case when all bidders receive a common benefit equal to α times the revenue.

Engers and McManus (2000) studied such auctions under the pretense that bidders receive

a “warm-glow” or altruistic utility proportional to the auction’s proceeds. Consider, for

instance, an auction that is used to raise money for a charity whose work is valued by the

bidders. In contrast to Engers and McManus, we discuss cases where standard auctions,

in which only the winner pays, are dominated by other mechanisms such as lotteries,

voluntary contributions, and especially the all-pay-all auction.

We will drop the restriction that α < 1/n. Consider, for instance, the case when the

auction’s revenue is used to finance a public good and all bidders value $1 contributed to

the public good at $α. A natural assumption would be that α lies between 0 and 1 (and

is independent of the number of bidders). Suppose, however, that the auction’s revenue

is matched by a third party. Such a matching is equivalent to a doubling of α, which

could thus be as high as 2.16 To allow for the possibility of revenue matching by one or

more parties, we will not impose an upper bound on α. Consequently, bidders’ shares do

14Bidders’ optimal strategies now become

B(s) = r∗ +
∫ s

s∗
y dF (y)n−1,

when s ≥ s∗ and zero otherwise. Bidders who bid zero have zero expected payoffs in the all-pay-all
auction, while bidders with signals s ≥ s∗ have expected equilibrium payoffs π∗(s) =

∫ s

s∗(s−z) dF (z)n−1.
15Total expected surplus with a reserve price, r∗ = s∗F (s∗)n−1, is given by E(Y1|Y1 ≥ s∗) (1−FY1(s

∗))
and expected revenue is R = E(Y2|Y2 ≥ s∗) (1− FY2(s

∗)) + nr∗(1− F (s∗)).
16More generally, a third party’s contribution proportional to the auction revenue is equivalent to a

rescaling of α.
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not necessarily add up to 1, which is natural since the benefit one bidder receives from

the public good does not affect another’s. In addition, the auction’s revenue can be fully

allocated to the public good (i.e. bidders’ benefits from the auction’s revenue do not

diminish its value).

First, consider the case α < 1/n. The all-pay-all rules then become: 1) the highest

bidder receives the object, and 2) all bidders pay their own bid plus α/(1 − nα) times

the sum of all bids. Proposition 2 guarantees that (in the absence of reserve prices and

entry fees) the all-pay-all auction is revenue maximizing. The amount of money raised is

RAPA = E(v(Y2, Y2))/(1 − nα), which diverges to infinity as α → 1/n.17 Of course, this

divergence occurs because of the assumption that bidders’ benefits from the public good

are linear in the amount of money raised. A more realistic model would incorporate some

decreasing marginal utility for the public good, which would result in a finite revenue.

In this section we keep the linear-payoff assumption, however, to show how much worse

other auction formats can be in terms of raising money.

We start with the all-pay auction in which each bidder pays her own bid. In this case,

the expected benefit a bidder receives from others’ bids is independent of her own bid.

Hence the benefits bidders receive from the public good merely reduces the cost of their

bid by a factor (1 − α). Optimal bids, therefore, are inflated by 1/(1 − α) and so is the

auction’s revenue: RAP = E(v(Y2, Y2))/(1 − α). Notice that the all-pay revenue is finite

when α = 1/n but diverges when α = 1, i.e. when bidders value $1 given to the public

good at $1. This result seems intuitive and one would expect the same to occur in a first

and second price auction. This, however, is not the case as we now show.

Proposition 3. The amount of money raised by a first price auction is increasing in α

with R1(α = 0) = E(v(Y2, Y2)) and R1(α = 1) = E(v(Y1, Y1)).

So even when bidders are indifferent between keeping $1 for themselves or giving it to

the public good, they only bid a finite amount. More precisely, when α = 1, a bidder

with signal s bids the object’s expected value assuming the highest of the others’ signals

is also s. To see this, consider bidder 1 with signal s1 and let y1 denote the highest of

the others’ signals as before. When s1 ≥ y1, bidder 1’s expected payoff when she bids

17When α ≥ 1/n, a simple “lowest price all-pay auction,” in which the highest bidder wins and everyone
pays the lowest price, will result in an infinite revenue.
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v(s1, s1) is E(v(s1, y1)|y1 ≤ s1). In fact, this is her payoff for all bids with which she wins.

When she lowers her bid too far and loses, however, bidder 1’s expected payoff becomes

E(v(y1, y1)|y1 ≤ s1). Since v(·, ·) is increasing in its first argument this expected payoff

is less than E(v(s1, y1)|y1 ≤ s1). In other words, when s1 > y1 bidder 1 never gains but

may lose when choosing a bid different from v(s1, s1). Similarly, when s1 ≤ y1, bidder 1’s

expected payoff when she bids v(s1, s1) is E(v(y1, y1)|y1 ≥ s1). This payoff is the same for

all bids with which bidder 1 loses. A bid that would lead her to win the auction yields a

lower expected payoff of E(v(s1, y1)|y1 ≥ s1).

The first price auction leads to relatively low bids because of a strong “free rider”

problem; with a low value, a bidder is better off losing and receiving (part of) the winning

bid. This free rider effect can be even stronger in the second price auction.18

Proposition 4. The amount of money raised by a second-price auction is increasing in

α with R2(α = 0) = E(v(Y2, Y2)), R2(α = 1) = E(v(Y1, Y1)), and R2(α = ∞) = v(1, 1).

In other words, a bidder who values $1 given to the public good at more than $1, bids at

most v(1, 1) in the auction (which is the maximum possible revenue). Recall that α > 1

can occur when one or more outside parties match the revenue raised in the auction.

The difference with a first price auction is that the highest bidder does not benefit from

increasing her bid, which further suppresses bids. Clearly, when α > 1, it would be better

not to conduct a second price auction but just ask for voluntary contributions!

Recall that in the example of section 2 the second price auction resulted in a higher

revenue than the first price auction. Bulow, Huang, and Klemperer (1999) show that this

holds more generally when n = 2 and α < 1/2. Engers and McManus (2000) prove that

the second price auction does better when α < 1. The following proposition also considers

the case α > 1.19

Proposition 5. The second-price auction raises less (more) money than a first price

auction when α > 1 (α < 1).

18The positive externalities present in auctions contrast with the negative externalities that occur in
“raffles,” i.e. a bidder who buys more lottery tickets lowers everyone else’s chance of winning (Morgan,
1997).

19The assumption of a common α is crucial for the result of Proposition 5. When there are small
asymmetries between bidders, the first price auction raises more revenue than a second price auction
even when α < 1, see Proposition 6 in Bulow, Huang, and Klemperer (1999).
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Of course, both the first and second price auctions raise less money than an all-pay-all

auction when α < 1/n or a simple lowest price all-pay auction when α ≥ 1/n.

0.5 1 1.5
alpha

0.55

0.6

0.65

0.7

0.75

0.8

Revenue

Figure 2: The revenue from an all-pay-all auction (dotted line), a first
price auction (short dashes), second price auction (long dashes), and a
third price auction (solid line) for 0 ≤ α ≤ 2.

The above propositions show that the revenue from a first and second price auction

are the same for α = 0, which is the standard revenue equivalence result, and α = 1. This

latter result is no coincidence.

Proposition 6. Any auction in which only the highest bidder makes a payment, e.g.

the kth price auction for k = 1, · · · , n, yields revenue R = E(v(Y2, Y2)) for α = 0 and

R = E(v(Y1, Y1)) for α = 1.

When α > 1, it seems likely that a (k + 1)th price auction will result in less revenue than

a kth price auction since one more high bidder does not benefit from increasing her bid.

For α < 1 we would expect the opposite ranking (as in Proposition 5). This claim is

verified for the case of three bidders and uniform private values in Figure 2, which shows
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revenues in a first, second, and third price auction by α.20 The solid line represents the

revenue from a third price auction, which is higher than that of a second price auction

(long dashes) or a first price auction (short dashes) when 0 < α < 1. Note that the

revenue from a first price auction diverges when α > 1 since the winner benefits from

her own bid. In contrast, the maximum revenue of the kth price auction for k > 1 is

Rk(α = ∞) = v(1, 1). These results lead us to conjecture:

Conjecture. Let k = 1, · · · , n − 1. The (k + 1)th price auction results in more (less)

revenue than the kth price auction when α < 1 (α > 1).

5. Conclusions

In this paper we have considered auctions in which bidders receive shares of the auction’s

revenue. We propose a new auction format, the all-pay-all auction, in which all bidders

pay a weighted sum of all bids. The all-pay-all auction ensures efficiency, i.e. the object

is assigned to the highest-value bidder, and maximizes the seller’s revenue. This contrasts

with the properties of standard auction formats in which a bidder’s payment depends

only on her own bid. Standard auctions generally are not efficient when bidders’ shares

are asymmetric. In addition, they result in a strictly positive payoff for the lowest type

and are thus not revenue maximizing from the seller’s point of view.

The inferiority of standard auctions is most dramatic when they are used to raise

money for a public good. A bidder’s “share” in this context is the benefit she derives

from the public good, i.e. a share of α means that a bidder values $1 given to the public

good at $α. In this case, the sum of bidders’ shares is not necessarily less than one

since one bidder’s benefit from the public good does not affect another’s. In fact, when

matching of the auction’s revenue by one or more outside parties is possible, an individual

bidder’s share α need not be less than one.
20The bidding functions for the first and second price auction are derived in the proofs of Propositions

3 and 4 respectively. The revenue of a first price auction is R1 = 3/(6− 2α) for α ≤ 1 and the revenue of
a second price auction is R2 = (1 + 2α)/(2 + 2α) for all α ≥ 0. The bidding function for the third price
auction is

B3(x) = 2− 2
1− α

+
2x

1− α
+

α

2(1− α)

(
1 +

√
1 + 8/α

)
(1− x)

1
2 (
√

1+8/α−1)

and the corresponding revenue is R3 = (3 α B3(0)− 1
2 )/(3 α− 1) for all α ≥ 0.
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The all-pay-all auction raises more money for the public good than any other auction

and its revenue diverges when α tends to 1/n. In other words, if it were known that

the marginal value of the public good is α one need only attract more than 1/α bidders

to raise an arbitrary amount. (Of course, this divergence is due to the assumption that

the marginal value of the public good is constant.) In contrast, all standard auctions

yield finite revenues for α ≤ 1. Even when bidders are indifferent between keeping $1 or

giving it to the public good, they only bid a finite amount. The low bids are caused by

the positive externalities one bidder’s high bid exerts on others. Moreover, in a kth price

auction for k > 1, optimal bids remain finite even when the constant marginal value of the

public good exceeds $1. The latter formats further suppress bids because the high bidders

do not benefit from an increase in their own bids. Clearly, in many of these situations it

would be better to ask for voluntary contributions or conduct a “raffle” (where a higher

investment by one bidder imposes a negative externality on others). Ideally, however, one

should employ an all-pay-all auction.
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A. Appendix

Proof of Proposition 1. Suppose bidders j 6= i use the strategy B(·) and bidder i’s

signal is si = x. Bidder i’s expected payoff in the all-pay-all auction when she bids as if

her signal is y is

πe
i (B(y)|x) =

∫ y

0
v(x, z) dF (z)n−1 −

(
1 +

αi

α0

)
B(y)− αi

α0

(n− 1) E(B)

+ αi

((
1 +

αi

α0

)
B(y) +

αi

α0

(n− 1) E(B)
)

+ αi

( ∑

j 6=i

{E(B) +
αj

α0

(n− 1) E(B) +
αj

α0

B(y)}
)
,

where E(B) is the expected value of another’s bid. Combining the B(y) and E(B) terms

on the right side, the expected payoff simplifies to

πe
i (B(y)|x) =

∫ y

0
v(x, z) dF (z)n−1 −B(y).

Using (3.1) we have

πe
i (B(y)|x) =

∫ y

0
(v(x, z)− v(z, z)) dF (z)n−1. (A.1)

Since v is increasing in its first argument, the integrand is positive when z < x and negative

when z > x, so bidder i’s expected payoff is maximized when y = x. Note from (A.1) that

a bidder’s equilibrium payoff when she has signal s is π∗(s) =
∫ s
0 (v(s, z)−v(z, z)) dF (z)n−1,

which is non-negative for all s ∈ [0, 1] and zero when s = 0. Hence, the participation

constraint, which requires non-negative expected equilibrium payoffs, is satisfied. Q.E.D.

Proof of Proposition 2. Consider an auction in which the object is awarded to the

highest bidder. The surplus generated by the auction is S = E(v(Y1, Y2)), which is divided

between the seller and the bidders: S = π0 +πbidders. The ex ante expected payoffs for the

bidders are
∑n

i=1

∫ 1
0 π∗i (s) dF (s), where π∗i (s) is the expected equilibrium payoff of bidder

i when her signal is s. A simple envelope theorem argument shows that π∗i (s) satisfies

∂π∗i (s)
∂s

=
∫ s

0

∂v(s, z)

∂s
dF (z)n−1 =

∂

∂s

∫ s

0
(v(s, z)− v(z, z)) dF (z)n−1.
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Hence,

π∗i (s) = π∗i (0) +
∫ s

0
(v(s, z)− v(z, z)) dF (z)n−1, (A.2)

which is the standard incentive compatability constraint (Myerson, 1981). The sum of

bidders’ ex ante expected equilibrium payoffs can now be written as

πbidders =
n∑

i=1

π∗i (0) + n
∫ 1

0

∫ s

0
(v(s, z)− v(z, z)) dF (z)n−1dF (s)

=
n∑

i=1

π∗i (0) + n
∫ 1

0

∫ 1

z
(v(s, z)− v(z, z)) dF (s) dF (z)n−1,

where we changed the order of integration. Expanding the second term on the right side

yields two terms, one of which is

n (n− 1)
∫ 1

0

∫ 1

z
v(s, z) f(s) f(z) F (z)n−2 ds dz = E(v(Y1, Y2)),

where we used fY1,Y2(s, z) = n(n − 1)F (z)n−2f(z)f(s), see Mood, Graybill, and Boes

(1963). The other term is

n (n− 1)
∫ 1

0
v(z, z) f(z) F (z)n−2 (1− F (z)) dz = E(v(Y2, Y2)).

To summarize, in any auction in which the object is awarded to the highest bidder,

bidders’ ex ante expected payoffs are

πbidders =
n∑

i=1

π∗i (0) + E(v(Y1, Y2))− E(v(Y2, Y2)), (A.3)

and the seller’s payoff is therefore

π0 = E(v(Y2, Y2))−
n∑

i=1

π∗i (0). (A.4)

Hence, the all-pay-all auction, in which π∗i (0) = 0 for all i, gives the seller the highest

possible payoff (ignoring reserve prices and/or entry fees). Q.E.D.

Proof of Proposition 3. We first derive the equilibrium bidding function, B1(·). Con-

sider a bidder with signal x who bids as if she has signal y and who faces opponents that
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bid according to B1(·). Her expected payoff is

π(B1(y)|x) =
∫ y

0
(v(x, z)− (1− α)B1(y)) dF (z)n−1 + α

∫ 1

y
B1(z) dF (z)n−1.

Evaluating the derivative of the right side with respect to y at y = x yields the first-order

condition

(v(x, x)−B1(x)) (F (x)n−1)′ − (1− α) B1
′(x) F (x)n−1 = 0.

It is straightforward to integrate this equation to obtain

B1(s) =
∫ s

0
v(z, z) dFα(z|s), (A.5)

where Fα(z|s) ≡ (F (z)/F (s))
n−1
1−α and we assumed that α ≤ 1. This result is a simple

extension of Engelbrecht-Wiggans’ (1994) result for two-bidders. Note that Fα first-order

stochastically dominates Fα′ for all α ≥ α′. Since v(·, ·) is increasing in its first argument

and non-decreasing in its second argument, an increase in α thus raises
∫ s
0 v(z, z)dFα(z|s).

Hence, an increase in α results in higher bids and higher revenues. For α = 0, the optimal

bids in (A.5) reduce to the standard optimal bids for the first price auction, yielding

revenue R1 = E(v(Y2, Y2)). When α = 1, the distribution Fα(z|s) is degenerate and puts

all probability mass at z = s. In this case B1(s) = v(s, s) and R1 = E(v(Y1, Y1)). Q.E.D.

Proof of Proposition 4. Again we follow Engelbrecht-Wiggans (1994) in our derivation

of the bidding function, B2(·). Consider a bidder with signal x who bids as if she has

signal y and who faces opponents that bid according to B2(·). Her expected payoff is

π(B2(y)|x) =
∫ y

0
(v(x, z)− (1− α)B2(z)) dF (z)n−1

+ α (n− 1) B2(y) (1− F (y)) F (y)n−2

+ α (n− 1) (n− 2)
∫ 1

y
B2(z) f(z) (1− F (z)) F (z)n−3dz. (A.6)

Evaluating the derivative of the right side with respect to y at y = x yields the first-order

condition

(v(x, x)−B2(x)) f(x) + α B2
′(x) (1− F (x)) = 0,
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independent of the number of bidders. It is straightforward to integrate this equation to

obtain

B2(s) =
∫ 1

s
v(z, z) dGα(z|s), (A.7)

where Gα(z|s) ≡ 1− (1−F (z)
1−F (s)

)
1
α . Note that Gα first-order stochastically dominates Gα′ for

all α ≥ α′. Since v(·, ·) is increasing in its first argument and non-decreasing in its second

argument, an increase in α thus raises
∫ 1
s v(z, z)dGα(z|s). Hence, an increase in α results

in higher bids and higher revenues. For α = 0, the distribution Gα(z|s) is degenerate and

puts all probability mass at z = s. In this case B2(s) = v(s, s) and R2 = E(v(Y2, Y2)).

When α = 1, the optimal bids are given by B2(s) =
∫ 1
s v(z, z) f(z) dz/(1− F (s)). Hence,

expected revenue is

R2 = n(n− 1)
∫ 1

0
B2(s) f(s) F (s)n−2(1− F (s)) ds

= n(n− 1)
∫ 1

0

∫ 1

s
v(z, z) f(z) f(s) F (s)n−2 dz ds

= n(n− 1)
∫ 1

0

∫ z

0
v(z, z) f(z) f(s) F (s)n−2 ds dz

= n
∫ 1

0
v(z, z) f(z) F (z)n−1 dz

= E(v(Y1, Y1)).

Finally, for α = ∞, the distribution Gα(z|s) is degenerate and puts all probability mass

at z = 1. In this case B2(s) = v(1, 1) and R2 = v(1, 1). Q.E.D.

Proof of Proposition 5. Our proof follows that of Bulow, Huang, and Klemperer (1999)

who show that a second price auction results in a higher revenue when n = 2 and α < 1
2
.

The revenue of any auction in which the object is awarded to the highest bidder is given

by R = (E(v(Y2, Y2)) − nπ∗(0))/(1 − nα), see (A.4). Hence, the difference between the

revenue of a first and second price auction is

∆ ≡ R2 −R1 =
n(π∗1(0)− π∗2(0))

1− n α
,

where π∗1(0) (π∗2(0)) is the expected equilibrium payoff of a bidder with signal s = 0 in a

first (second) price auction.
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First, assume that α < 1 so that the bidding function (A.5) of the first price auction

is well defined. The expected equilibrium payoff of a bidder with signal 0 in a first price

auction is the expected value of the highest of others’ bids: π∗1(0) = α
∫ 1
0 B1(s) dF (s)n−1,

where B1(s) is given by (A.5). Since Fα(z|s) ≡ (F (z)/F (s))
n−1
1−α we have

π∗1(0) = (α− 1)
∫ 1

0

∫ s

0
v(z, z) dF (z)

n−1
1−α dF (s)−

α(n−1)
1−α

= (α− 1)
∫ 1

0

∫ 1

z
v(z, z) dF (s)−

α(n−1)
1−α dF (z)

n−1
1−α

= (n− 1)
∫ 1

0
v(z, z) F (z)n−2 (1− F (z)

α(n−1)
1−α ) dF (z).

Similarly, in a second price auction, π∗2(0) is the expected value of the second-highest of

others’ bids: π∗2(0) = α(n − 1)(n − 2)
∫ 1
0 B2(s)f(s)F (s)n−3(1 − F (s))ds, where B2(s) is

given by (A.7). Since Gα(z|s) ≡ 1− (1−F (z)
1−F (s)

)
1
α we have

π∗2(0) = (n− 1)
∫ 1

0

∫ 1

s
v(z, z) (1− F (z))

1−α
α (1− F (s))

α−1
α dF (z) dF (s)n−2

= (n− 1)
∫ 1

0
v(z, z) (1− F (z))

1−α
α

(∫ z

0
(1− F (s))

α−1
α dF (s)n−2

)
dF (z).

Let us define the new integration variable, t = F (z), and φ(t) = v(F−1(t), F−1(t)), which

is strictly increasing in t. Then ∆ = n(n− 1)
∫ 1
0 φ(t)δ(t) dt, where

δ(t) ≡
(
tn−2 (1− t

α(n−1)
1−α )− (1− t)

1−α
α

∫ t

0
(1− x)

α−1
α dxn−2

)
/(1− nα).

Note that δ(0) = δ(1) = 0 and that δ(t) has expected value zero, i.e.
∫ 1
0 δ(t)dt = 0. The

proof that ∆ > 0 follows by showing that δ(t) is negative for t < t∗ and positive for t > t∗

for some 0 < t∗ < 1. To establish this property we determine the sign of δ′(t) whenever

δ(t) = 0:

sign
{
δ′(t)

∣∣∣
δ(t)= 0

}
= sign

{α (n− 2 + α) (1− t) + (1− α)2 (t− t
1−nα
1−α )

nα− 1

}
. (A.8)

Let h(t) be the argument of the sign function on the right side of (A.8). It is easy to

verify that h(t) is concave in t, with h(1) = 0 and h(0) < 0 for α < 1, so that δ(t) is

negative for small t. Hence, when the graph of δ(t) crosses zero the first time, say at t∗,
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its slope must be positive, i.e. h(t∗) > 0. Now suppose δ(t) is zero at multiple points

0 < t1 < · · · < tn < 1, which can occur only if the sign of h(t) alternates. However,

concavity of h(t) together with h(1) = 0 implies that h(t) > 0 for all t∗ < t < 1. Hence, t∗

is the unique point at which δ(t) = 0 is zero and at that point the slope of δ(t) is positive.

This implies that δ(t) is negative for t < t∗ and positive for t > t∗.

Finally, when α > 1, bids in a first price auction diverge to infinity while they are

finite in a second price auction. Hence, the first price auction yields more revenue. Q.E.D.

Proof of Proposition 6. Consider a standard auction format in which only the winner

pays. When α = 1, the winning bidder’s net payment is zero. For a bidder with signal

s = 1, who wins for sure, the expected payoff is therefore E(v(1, y1)) where y1 is the

highest signal of the others. From (A.2) we also have

π∗(1) = π∗(0) + E(v(1, y1))− E(v(y1, y1)).

Hence π∗(0) = E(v(y1, y1)), or

π∗(0) = (n− 1)
∫ 1

0
v(z, z) f(z) F (z)n−2 dz dz

= (n− 1)
∫ 1

0
v(z, z) f(z)

(
F (z)n−1 + F (z)n−2(1− F (x))

)
dz

=
1

n

(
(n− 1) E(v(Y1, Y1)) + E(v(Y2, Y2))

)
.

Finally, revenue is given by R = (E(v(Y2, Y2)) − nπ∗(0))/(1 − nα), see the proof of

Proposition 2, so R = E(v(Y1, Y1)) when α = 1. Q.E.D.
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