Kinematics

Tom Funkhouser
Princeton University
COS 426, Fall 2006

Computer Animation

- What is animation?
 - Make objects change over time according to scripted actions

- What is simulation?
 - Predict how objects change over time according to physical laws

Outline

- Articulated figures
- Keyframe animation
- Kinematics
- Dynamics
- Guidelines
Articulated Figures

- Character poses described by set of rigid bodies connected by “joints”

![Scene Graph](Image)

Articulated Figures

- Well-suited for humanoid characters

![Angel Plate 1](Image)

Articulated Figures

- Joints provide handles for moving articulated figure

![Mike Marr, COS 426, Princeton University, 1995](Image)

Outline

- Articulated figures
- Keyframe animation
- Kinematics
- Dynamics
- Guidelines

![Angel Plate 1](Image)

Keyframe Animation

- Define character poses at specific time steps called “keyframes”

![Lasseter ’87](Image)

Keyframe Animation

- Interpolate variables describing keyframes to determine poses for character “in-between”

![Lasseter ’87](Image)
Keyframe Animation

- **Inbetweening:**
 - Linear interpolation - usually not enough continuity

 ![Linear interpolation graph](H&B Figure 16.16)

- **Inbetweening:**
 - Spline interpolation - maybe good enough

 ![Spline interpolation graph](H&B Figure 16.11)

Cubic Spline Interpolation

- May not follow physical laws

 ![Cubic spline interpolation example](Watt & Watt 1987)

Example: Walk Cycle

- **Articulated figure:**
 - Hip
 - Upper leg (hip rot)
 - Hip rotate
 - Lower leg (knee rot)
 - Flip rotate + knee rot
 - Foot (ankle rot)

 ![Walk cycle example](Watt & Watt)

- **Hip joint orientation:**
 - 45°
 - -35°

 ![Hip joint orientation example](Watt & Watt)
Example: Walk Cycle

- Knee joint orientation:

Example: Walk Cycle

- Ankle joint orientation:

Example: Robot

Example: Ice Skating

(Mao Chen, Zaijun Guan, Zhiyan Liu, Xiaohu Qie, CS426, Fall98, Princeton University)

Outline

- Articulated figures
- Keyframe animation
 - Kinematics
- Dynamics
- Guidelines

Animating Motion

- Kinematics
 - Considers only motion
- Dynamics
 - Considers underlying forces
 - Compute motion from initial conditions and physics
Example: 2-Link Structure
- Two links connected by rotational joints

![Diagram](image1)

Forward Kinematics
- Animator specifies joint angles: \(\theta_1 \) and \(\theta_2 \)
- Computer finds positions of end-effector: \(X \)

\[
X = (l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \theta_2), l_1 \sin \theta_1 + l_2 \sin(\theta_1 + \theta_2))
\]

Forward Kinematics
- Joint motions can be specified by initial conditions and velocities

![Diagram](image2)

Inverse Kinematics
- Animator specifies end-effector positions: \(X \)
- Computer finds joint angles: \(\theta_1 \) and \(\theta_2 \):

\[
\begin{align*}
\theta_2 &= \cos^{-1}\left(\frac{x^2 + y^2 - l_1^2 - l_2^2}{2l_1l_2}\right) \\
\theta_1 &= -\frac{(l_2 \sin \theta_2)x + (l_1 + l_2 \cos \theta_2)y}{(l_2 \sin \theta_2)y + (l_1 + l_2 \cos \theta_2)x}
\end{align*}
\]

Example: 2-Link Structure
- What if animator knows position of "end-effector"

![Diagram](image3)

Forward Kinematics
- Joint motions can be specified by spline curves

![Diagram](image4)

Forward Kinematics
- Joint motions can be specified by initial conditions and velocities

\[
\begin{align*}
\theta_1(0) &= 60^\circ \\
\theta_2(0) &= 250^\circ \\
\frac{d\theta_1}{dt} &= 1.2 \\
\frac{d\theta_2}{dt} &= -0.1
\end{align*}
\]

Inverse Kinematics
- Animator specifies end-effector positions: \(X \)
- Computer finds joint angles: \(\theta_1 \) and \(\theta_2 \):

\[
\begin{align*}
\theta_2 &= \cos^{-1}\left(\frac{x^2 + y^2 - l_1^2 - l_2^2}{2l_1l_2}\right) \\
\theta_1 &= -\frac{(l_2 \sin \theta_2)x + (l_1 + l_2 \cos \theta_2)y}{(l_2 \sin \theta_2)y + (l_1 + l_2 \cos \theta_2)x}
\end{align*}
\]
Inverse Kinematics

- End-effector positions can be specified by spline curves

\[X = (x, y) \]

\[\theta_1 \]

\[\theta_2 \]

\[\theta_3 \]

\[l_1 \]

\[l_2 \]

\[l_3 \]

(0,0)

x

y

Example: Ball Boy

“Ballboy”

Example: Toy Story II

Summary of Kinematics

- Forward kinematics
 - Specify conditions (joint angles)
 - Compute positions of end-effectors

- Inverse kinematics
 - “Goal-directed” motion
 - Specify goal positions of end effectors
 - Suitable for in-betweening

Inverse kinematics provides easier specification for many animation tasks, but it is computationally more difficult.
Outline
- Articulated figures
- Keyframe animation
- Kinematics

Dynamics
- Simulation of physics insures realism of motion

Spacetime Constraints
- Animator specifies constraints:
 - What the character’s physical structure is
 - e.g., articulated figure
 - What the character has to do
 - e.g., jump from here to there within time \(t \)
 - What other physical structures are present
 - e.g., floor to push off and land
 - How the motion should be performed
 - e.g., minimize energy

Spacetime Constraints
- Computer finds the “best” physical motion satisfying constraints
- Example: particle with jet propulsion
 - \(x(t) \) is position of particle at time \(t \)
 - \(f(t) \) is force of jet propulsion at time \(t \)
 - Particle’s equation of motion is:
 \[m\ddot{x} - f - mg = 0 \]
 - Suppose we want to move from \(a \) to \(b \) within \(t_a \) to \(t_f \) with minimum jet fuel:
 Minimize \(\int_{t_a}^{t_f} \| f(t) \| \, dt \) subject to \(x(t_a) = a \) and \(x(t_f) = b \)

Spacetime Constraints
- Discretize time steps:
 \[
 \begin{align*}
 x' &= \frac{x - x_{i-1}}{h} \\
 x'' &= \frac{x_{i+1} - 2x_i + x_{i-1}}{h^2} \\
 m(x'' - \ddot{x} - \frac{2x_i + x_{i-1}}{h}) - f_i - mg &= 0 \\
 \text{Minimize } h \sum_i |f_i| \text{ subject to } x_0 = a \text{ and } x_n = b
 \end{align*}
 \]

Spacetime Constraints
- Solve with iterative optimization methods
Spacetime Constraints

- Advantages:
 - Free animator from having to specify details of physically realistic motion with spline curves
 - Easy to vary motions due to new parameters and/or new constraints

- Challenges:
 - Specifying constraints and objective functions
 - Avoiding local minima during optimization

Example: Monsters, Inc.

- Specifying constraints and objective functions
- Avoiding local minima during optimization

- Adapting motion:
 - Physically realistic motion with spline curves

- Adapting motion:
 - Original Jump

- Adapting motion:
 - Heavier Base

- Adapting motion:
 - Ski Jump

- Adapting motion:
 - Hurdle

- Adapting motion:
 - Original Jump

- Adapting motion:
 - Heavier Base

- Adapting motion:
 - Ski Jump

- Adapting motion:
 - Hurdle
Summary

- Articulated figures
 - Hierarchies parts connected by joints
- Keyframe animation
 - Poses specified at key times
 - In-betweening to fill in the rest
- Kinematics
 - Forward kinematics
 - Inverse kinematics
- Dynamics
 - Space-time constraints
 - Also other physical simulations in previous lecture