Parametric Curves

Thomas Funkhouser
Princeton University
COS 426, Spring 2006

3D Object Representations

- Raw data
 - Voxels
 - Point cloud
 - Range image
 - Polygons

- Surfaces
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Octree
 - BSP tree
 - CSG
 - Sweep

- High-level structures
 - Scene graph
 - Application specific

Parametric Surfaces

- Boundary defined by parametric functions:
 - \(x = f_1(u,v) \)
 - \(y = f_2(u,v) \)
 - \(z = f_3(u,v) \)

- Example: ellipsoid
 - \(x = r \cos \phi \cos \theta \)
 - \(y = r \cos \phi \sin \theta \)
 - \(z = r \sin \phi \)

- Parametric functions define mapping from \((u,v)\) to \((x,y,z)\)

H&B Figure 10.10

H&B Figure 10.46

Princeton University

Parametric Surfaces

- Boundary defined by parametric functions:
 - \(x = f_1(u,v) \)
 - \(y = f_2(u,v) \)
 - \(z = f_3(u,v) \)

- Design of smooth surfaces in cars, ships, etc.

H&B Figure 10.46

F&DH Figure 11.42
Parametric Curves

- Boundary defined by parametric functions:
 - \(x = f_1(u) \)
 - \(y = f_2(u) \)

- Example: ellipse
 - \(x = r \cos \theta \)
 - \(y = r \sin \theta \)

Implicit curves

An implicit curve in the plane is expressed as:

\[f(x, y) = 0 \]

Example: a circle with radius \(r \) centered at origin:

\[x^2 + y^2 - r^2 = 0 \]

Curves in Computer Graphics

- Fonts **ABC**
- Animation paths
- Shape modeling
- etc...

Parametric curves

How can we define arbitrary curves?

\[
\begin{align*}
x &= f_1(u) \\
y &= f_2(u)
\end{align*}
\]

Use functions that "blend" control points

\[
\begin{align*}
x &= f_1(u) = V_0^\ast(1 - u) + V_1^\ast u \\
y &= f_2(u) = V_0^\ast(1 - u) + V_1^\ast u
\end{align*}
\]

Parametric curves

More generally:

\[
\begin{align*}
x(u) &= \sum_{i=0}^{n} B_i(u) \ast V_i \\
y(u) &= \sum_{i=0}^{n} B_i(u) \ast V_i
\end{align*}
\]
Continuity

- Parametric continuity (C^n)
 - How many times differentiable is the curve with respect to u at a given point
- Parametric continuity at joints:
 - C^0 continuity means curve is connected at joint
 - C^1 continuity means that segments share same first derivative at joint
 - C^n continuity means that segments share same nth derivative at joint
- Relationships:
 - C^n implies C^{n-1}

Goals

- Some attributes we might like to have:
 - Efficient computation
 - Predictable control
 - Local control
 - Interpolation
 - Continuity

Parametric curves

What $B(u)$ functions should we use?

$$x(u) = \sum_{i=0}^{n} B_i(u) \cdot V_i$$

$$y(u) = \sum_{i=0}^{n} B_i(u) \cdot V_i$$

Continuity

- Geometric continuity (G^n)
 - How many times differentiable is the curve with respect to x,y at a given point
- Relationships:
 - C^n implies G^n, but not vice-versa
Cubic Piecewise Parametric Polynomial Curves

- Blending functions are polynomials:
 \[
 x(u) = \sum_{i=0}^{n} B_i(u) \cdot V_i \\
 y(u) = \sum_{i=0}^{n} B_i(u) \cdot V_i
 \]

- Advantages of polynomials
 - Easy to compute
 - Infinitely continuous
 - Easy to derive curve properties

Goals

- Some attributes we might like to have:
 - Efficient computation
 - Predictable control
 - Local control
 - Interpolation
 - Continuity

- We’ll satisfy these goals using:
 - Piecewise
 - Parametric
 - Polynomials

Parametric Polynomial Curves

- Blending functions are polynomials:
 \[
 Q(u) = \sum_{i=0}^{n} B_i(u) \cdot V_i \\
 B_i(u) = \sum_{j=0}^{m} a_j \cdot u^j
 \]

- Advantages of polynomials
 - Easy to compute
 - Infinitely continuous
 - Easy to derive curve properties

Parametric Polynomial Curves

- Splines:
 - Split curve into segments
 - Each segment defined by low-order polynomial blending subset of control vertices

- Motivation:
 - Provides control & efficiency
 - Same blending function for every segment
 - Prove properties from blending functions

- Challenges
 - How choose blending functions?
 - How guarantee continuity at joints?

Piecewise Parametric Polynomial Curve

- Compute polynomial \(B_i(u) \) to ensure properties
 - Example: Interpolation of control vertices and \(C^2 \) continuity at joints with cubics

Cubic Piecewise Parametric Polynomial Curve

- From now on, consider cubic blending functions
 - All ideas generalize to higher degrees

- In CAGD, higher-order functions are often used
 - Hard to control wiggles

- In graphics, piecewise cubic curves will do
 - Smallest degree that allows \(C^2 \) continuity for arbitrary curves
Natural Cubic Hermite Splines

- Definition: 4\(n\)-1 degrees of freedom
- Properties:
 - \(C^1\) continuity
 - 2\((n-1)\) constraints: \(Q'(1)=Q_{n+1}'(0)\) and \(Q''(1)=Q_{n+1}''(0)\)
- Solve system of equation for coefficients of blending functions

Cubic Hermite Splines

- Definition: 4\(n\)-1 degrees of freedom
- Properties:
 - \(C^1\) continuity
 - 2\((n-2)\) constraints: \(Q_i(0)=V_i\) and \(Q_{i+1}(1)=V_{i+1}\)

Cubic Hermite Splines

- Definition:
 - Each segment defined by position and derivative at two adjacent control vertices
 - Blending functions are cubic polynomials
 - \(4(n-1)\) degrees of freedom

Each segment defined by cubic Hermite Splines

Each has different blending functions resulting in different properties

Types of Splines

- Splines covered in this lecture
 - Hermite
 - B-Spline
 - Bezier
- There are many others
• Problems:
 - No local control
 - Whole curve adjusts to any movement of control vertex
 - Every segment has different blending functions
 - Hard to prove properties

Uniform Cubic Hermite Splines

- Properties:
 - Interpolates control points
 - Same blending function for every segment
 - Local control
 - C^1 continuity at joints

Types of Spline Curves

- Splines covered in this lecture
 - Hermite
 - B-Spline
 - Bezier

- There are many others

Each has different blending functions resulting in different properties

Uniform Cubic B-Splines

- Properties:
 - Local control
 - C^0 continuity
 - Approximating

B-Spline Blending Functions

- Properties imply blending functions:
 - Cubic polynomials
 - Four control vertices affect each point
 - C^2 continuity
B-Spline Blending Functions

• How derive blending functions?
 - Cubic polynomials
 - Local control
 - C^2 continuity

B-Spline Blending Functions

• Four cubic polynomials for four vertices
 - 16 variables (degrees of freedom)
 - Variables are \(a, b, c, d \) for four blending functions

\[
\begin{align*}
 b_0(u) &= a_0 u^3 + b_0 u^2 + c_0 u + d_0 \\
 b_1(u) &= a_1 u^3 + b_1 u^2 + c_1 u + d_1 \\
 b_2(u) &= a_2 u^3 + b_2 u^2 + c_2 u + d_2 \\
 b_3(u) &= a_3 u^3 + b_3 u^2 + c_3 u + d_3
\end{align*}
\]

B-Spline Blending Functions

• C^2 continuity implies 15 constraints
 - Position of two curves same
 - Derivative of two curves same
 - Second derivatives same

B-Spline Blending Functions

Fifteen continuity constraints:

\[
\begin{align*}
 0 &= b_0(0) \\
 0 &= b_0'(0) \\
 0 &= b_0''(0) \\
 b_0(1) &= b_1(0) \\
 b_0'(1) &= b_1'(0) \\
 b_0''(1) &= b_1''(0) \\
 b_0(1) - b_1(0) &= b_1'(0) - b_1'(0) \\
 b_0''(1) - b_1''(0) &= b_1''(0) - b_1''(0) \\
 b_0(1) &= b_2(0) \\
 b_0'(1) &= b_2'(0) \\
 b_0''(1) &= b_2''(0) \\
 b_0(1) - b_2(0) &= b_2'(0) - b_2'(0) \\
 b_0''(1) - b_2''(0) &= b_2''(0) - b_2''(0) \\
 b_0(1) &= b_3(0) \\
 b_0'(1) &= b_3'(0) \\
 b_0''(1) &= b_3''(0) \\
 b_0(1) - b_3(0) &= b_3'(0) - b_3'(0) \\
 b_0''(1) - b_3''(0) &= b_3''(0) - b_3''(0)
\end{align*}
\]

One more convenient constraint:

\[
 b_0(0) + b_1(0) + b_2(0) + b_3(0) - 1
\]

B-Spline Blending Functions

• Solving the system of equations yields:

\[
\begin{align*}
 b_0(u) &= \frac{1}{6}u^3 + \frac{1}{2}u^2 - \frac{1}{2}u + \frac{1}{6} \\
 b_1(u) &= \frac{1}{2}u^3 - u^2 + \frac{1}{3} \\
 b_2(u) &= \frac{1}{2}u^3 - u^2 + \frac{1}{2}u + \frac{1}{6} \\
 b_3(u) &= \frac{1}{6}u^3
\end{align*}
\]

B-Spline Blending Functions

• In matrix form:

\[
Q(u) = \begin{bmatrix} u^3 & u^2 & u \end{bmatrix} ^T \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix} \begin{bmatrix} V_0 \\ V_1 \\ V_2 \\ V_3 \end{bmatrix}
\]
Basic properties of Bézier curves

- Endpoint interpolation:
 \[Q(0) = V_0 \]
 \[Q(1) = V_n \]

- Convex hull:
 - Curve is contained within convex hull of control polygon

- Symmetry
 - \(Q(\alpha) \) defined by \(\{V_0, \ldots, V_n\} \) = \(Q(1-\alpha) \) defined by \(\{V_n, \ldots, V_0\} \)

Matrix form

Bézier curves may be described in matrix form:

\[
Q(u) = \sum_{i=0}^{n} \binom{n}{i} u^i (1-u)^{n-i} V_i = \begin{pmatrix} 1 & -3 & 3 & -1 \end{pmatrix} M_{\text{Bezier}} \begin{pmatrix} V_0 \\ V_1 \\ V_2 \\ V_3 \end{pmatrix}
\]

Types of Splines

- Spline covered in this lecture
 - Hermite
 - B-Spline
 - Bezier

- There are many others

B-Spline Blending Functions

- Blending functions imply properties:
 - Local control
 - Approximating
 - \(C^2 \) continuity
 - Convex hull

B-Spline Blending Functionsss

In plot form:

\[
B_i(u) = \sum_{j=0}^{n} a_{ij} u^j
\]

Each has different blending functions resulting in different properties
Bézier curves

- Curve \(Q(u) \) can also be defined by nested interpolation:

\[
V_0, V_1, ..., V_n \text{ are control points}
\]

\(\{V_0, V_1, ..., V_n\} \text{ is control polygon} \)

Display

Q: How would you draw it using line segments?
A: Recursive subdivision!

Display

Pseudocode for displaying Bézier curves:

```plaintext
procedure Display(V_i):
  if \( \{V_i\} \) flat within \( \varepsilon \)
    then output line segment \( V_0V_i \)
    else subdivide to produce \( \{L_i\} \) and \( \{R_i\} \)
    Display(\( \{L_i\} \))
    Display(\( \{R_i\} \))
  end if
end procedure
```

Flatness

Q: How do you test for flatness?
A: Compare the length of the control polygon to the length of the segment between endpoints:

\[
\frac{|V_i - V_0| + |V_i - V_1| + |V_i - V_n|}{|V_i - V_0|} < 1 + \varepsilon
\]

Beziers Splines

- For more complex curves, piece together Bézier curves

- Solve for “interior” control vertices
 - Positional \((C^0) \) continuity
 - Derivative \((C^1) \) continuity
Summary

• Splines: mathematical way to express curves
• Motivated by “loftsman’s spline”
 ▶ Long, narrow strip of wood/plastic
 ▶ Used to fit curves through specified data points
 ▶ Shaped by lead weights called “ducks”
 ▶ Gives curves that are “smooth” or “fair”
• Have been used to design:
 ▶ Automobiles
 ▶ Ship hulls
 ▶ Aircraft fuselage/wing

What’s next?

• Use curves to create parameterized surfaces