
Renato Werneck

Dynamic Trees 1

Dynamic Trees

Dynamic Trees

• Motivation (Online MSTs)

• Problem Definition

• A Data Structure for Dynamic Paths

• A Data Structure for Dynamic Trees

• Extensions

Dynamic Trees

Online Minimum Spanning Trees

• The online minimum spanning trees problem:

Input: a sequence of edges (with costs), one at a time.

Goal: keep the minimum spanning forest of the graph.

• An algorithm:

For each new edge (v,w):

• If v and w belong to different components, insert the edge.

• If v and w are in the same component:
– insert (v,w) into the solution; and
– remove the most expensive edge on the cycle created.

Dynamic Trees

Online Minimum Spanning Trees

a

h

f

b

d

g

c

e
8

7

5

5

3

4

6

6
6

7

5

6
2 4

5

costedge

6(b,g)

6(b,e)

5(b,c)

3(g,h)

4(c,g)

4(e,f)

2(d,e)

5(c,h)

8(b,f)

5(d,f)

7(a,b)

5(a,e)

6(a,d)

7(f,h)

6(f,g)

Dynamic Trees

Online Minimum Spanning Trees

a

h

f

b

d

g

c

e

costedge

6(b,g)

6(b,e)

5(b,c)

3(g,h)

4(c,g)

4(e,f)

2(d,e)

5(c,h)

8(b,f)

5(d,f)

7(a,b)

5(a,e)

6(a,d)

7(f,h)

6(f,g)

Dynamic Trees

Online Minimum Spanning Trees

a

h

f

b

d

g

c

e

costedge

6(b,g)

6(b,e)

5(b,c)

3(g,h)

4(c,g)

4(e,f)

2(d,e)

5(c,h)

8(b,f)

5(d,f)

7(a,b)

5(a,e)

6(a,d)

7(f,h)

6→ (f,g)

6

Dynamic Trees

Online Minimum Spanning Trees

a

h

f

b

d

g

c

e

costedge

6(b,g)

6(b,e)

5(b,c)

3(g,h)

4(c,g)

4(e,f)

2(d,e)

5(c,h)

8(b,f)

5(d,f)

7(a,b)

5(a,e)

6(a,d)

7→ (f,h)

6(f,g)

6

7

Renato Werneck

Dynamic Trees 2

Dynamic Trees

Online Minimum Spanning Trees

a

h

f

b

d

g

c

e

costedge

6(b,g)

6(b,e)

5(b,c)

3(g,h)

4(c,g)

4(e,f)

2(d,e)

5(c,h)

8(b,f)

5(d,f)

7(a,b)

5(a,e)

6→ (a,d)

7(f,h)

6(f,g)

6

7

6

Dynamic Trees

Online Minimum Spanning Trees

a

h

f

b

d

g

c

e

costedge

6(b,g)

6(b,e)

5(b,c)

3(g,h)

4(c,g)

4(e,f)

2(d,e)

5(c,h)

8(b,f)

5(d,f)

7(a,b)

5→ (a,e)

6(a,d)

7(f,h)

6(f,g)

6

7

6

5

Dynamic Trees

Online Minimum Spanning Trees

a

h

f

b

d

g

c

e

costedge

6(b,g)

6(b,e)

5(b,c)

3(g,h)

4(c,g)

4(e,f)

2(d,e)

5(c,h)

8(b,f)

5(d,f)

7→ (a,b)

5(a,e)

6(a,d)

7(f,h)

6(f,g)

6

7

6

5

7

Dynamic Trees

Online Minimum Spanning Trees

a

h

f

b

d

g

c

e

costedge

6(b,g)

6(b,e)

5(b,c)

3(g,h)

4(c,g)

4(e,f)

2(d,e)

5(c,h)

8(b,f)

5→ (d,f)

7(a,b)

5(a,e)

6(a,d)

7(f,h)

6(f,g)

6

7

6

5

7

5

Dynamic Trees

Online Minimum Spanning Trees

a

h

f

b

d

g

c

e

costedge

6(b,g)

6(b,e)

5(b,c)

3(g,h)

4(c,g)

4(e,f)

2(d,e)

5(c,h)

8→ (b,f)

5(d,f)

7(a,b)

5(a,e)

6(a,d)

7(f,h)

6(f,g)

6

7

6

5

7

5

8

Dynamic Trees

Online Minimum Spanning Trees

a

h

f

b

d

g

c

e

costedge

6(b,g)

6(b,e)

5(b,c)

3(g,h)

4(c,g)

4(e,f)

2(d,e)

5→ (c,h)

8(b,f)

5(d,f)

7(a,b)

5(a,e)

6(a,d)

7(f,h)

6(f,g)

6

7

6

5

7

5

5

Renato Werneck

Dynamic Trees 3

Dynamic Trees

Online Minimum Spanning Trees

a

h

f

b

d

g

c

e

costedge

6(b,g)

6(b,e)

5(b,c)

3(g,h)

4(c,g)

4(e,f)

2→ (d,e)

5(c,h)

8(b,f)

5(d,f)

7(a,b)

5(a,e)

6(a,d)

7(f,h)

6(f,g)

6

7

6

5

7

5

5

2

Dynamic Trees

Online Minimum Spanning Trees

a

h

f

b

d

g

c

e

costedge

6(b,g)

6(b,e)

5(b,c)

3(g,h)

4(c,g)

4→ (e,f)

2(d,e)

5(c,h)

8(b,f)

5(d,f)

7(a,b)

5(a,e)

6(a,d)

7(f,h)

6(f,g)

6

7

5

7

5

5

2 4

Dynamic Trees

Online Minimum Spanning Trees

a

h

f

b

d

g

c

e

costedge

6(b,g)

6(b,e)

5(b,c)

3(g,h)

4→ (c,g)

4(e,f)

2(d,e)

5(c,h)

8(b,f)

5(d,f)

7(a,b)

5(a,e)

6(a,d)

7(f,h)

6(f,g)

6

7

5

7

5

2 4

4

Dynamic Trees

Online Minimum Spanning Trees

a

h

f

b

d

g

c

e

costedge

6(b,g)

6(b,e)

5(b,c)

3→ (g,h)

4(c,g)

4(e,f)

2(d,e)

5(c,h)

8(b,f)

5(d,f)

7(a,b)

5(a,e)

6(a,d)

7(f,h)

6(f,g)

6

5

7

5

2 4

4

3

Dynamic Trees

Online Minimum Spanning Trees

a

h

f

b

d

g

c

e

costedge

6(b,g)

6(b,e)

5→ (b,c)

3(g,h)

4(c,g)

4(e,f)

2(d,e)

5(c,h)

8(b,f)

5(d,f)

7(a,b)

5(a,e)

6(a,d)

7(f,h)

6(f,g)

6

5

7

2 4

4

3

5

Dynamic Trees

Online Minimum Spanning Trees

a

h

f

b

d

g

c

e

costedge

6(b,g)

6→ (b,e)

5(b,c)

3(g,h)

4(c,g)

4(e,f)

2(d,e)

5(c,h)

8(b,f)

5(d,f)

7(a,b)

5(a,e)

6(a,d)

7(f,h)

6(f,g)

6

5

2 4

4

3

5

6

Renato Werneck

Dynamic Trees 4

Dynamic Trees

Online Minimum Spanning Trees

a

h

f

b

d

g

c

e

costedge

6→ (b,g)

6(b,e)

5(b,c)

3(g,h)

4(c,g)

4(e,f)

2(d,e)

5(c,h)

8(b,f)

5(d,f)

7(a,b)

5(a,e)

6(a,d)

7(f,h)

6(f,g)

6

5

2 4

4

3

5

6

Dynamic Trees

Online Minimum Spanning Trees

a

h

f

b

d

g

c

e

costedge

6(b,g)

6(b,e)

5(b,c)

3(g,h)

4(c,g)

4(e,f)

2(d,e)

5(c,h)

8(b,f)

5(d,f)

7(a,b)

5(a,e)

6(a,d)

7(f,h)

6(f,g)

6

5

2 4

4

3

5

Dynamic Trees

Online Minimum Spanning Trees

• How fast is the algorithm?

How fast can we find the most expensive edge of a cycle?

• O(log n), with the right data structure.

Total running time: O(m log n) (m edges, n vertices)

a

h

f

b

d

g

c

e
8

7

5

5

3

4

6

6
6

7

5

6
2 4

5
a

h

f

b

d

g

c

e 6

5

2 4

4

3

5

Dynamic Trees

Dynamic Trees

• Motivation (Online MSTs)

• Problem Definition

• A Data Structure for Dynamic Paths

• A Data Structure for Dynamic Trees

• Extensions

Dynamic Trees

Dynamic Trees - Problem Definition

• Goal: maintain a forest of rooted trees with costs on vertices.

Each tree has a root, every edge directed towards the root.

• Operations allowed:

link(v,w): creates an edge between v (a root) and w.

cut(v): deletes edge (v, p(v)) (where p(v) is v’s parent).

findcost(v): returns the cost of vertex v.

findroot(v): returns the root of the tree containing v.

findmin(v): returns the minimum-cost vertex w on the path from v to
the root.

• A possible extension:

evert(w): makes w the root of its tree.

Dynamic Trees

Dynamic Trees

• An example (two trees):

a

c

fe

db

g h

j

i

k nm
l

o p

1 6 2

4 1
3 9 4

7

7

4 6

2 68

sr

t u 46

28

q

3

1

Renato Werneck

Dynamic Trees 5

Dynamic Trees

Dynamic Trees

a

c

fe

db

g h

j

i

k nm
l

o p

1 6 2

4 1
3 9 4

7

7

4 6

2 68

sr

t u 46

28

q

link(q,e)

3

1

a

c

fe

db

g h

j

i

k nm
l

o p

1 6 2

4 1
3 9 4

7

7

4 6

2 68

sr

t u 46

28

q

3

1

Dynamic Trees

Dynamic Trees

a

c

fe

db

g h

j

i

k nm
l

o p

1 6 2

4 1
3 9 4

7

7

4 6

2 68

sr

t u 46

28

q

cut(q)

3

1

a

c

fe

db

g h

j

i

k nm
l

o p

1 6 2

4 1
3 9 4

7

7

4 6

2 68

sr

t u 46

28

q

3

1

Dynamic Trees

Dynamic Trees

findmin(s) = b

findroot(s) = a

findcost(s) = 2

a

c

fe

db

g h

j

i

k nm
l

o p

1 6 2

4 1
3 9 4

7

7

4 6

2 68

sr

t u 46

28

q

3

1

Dynamic Trees

Applications

• Used as a building block of several graph algorithms:

online minimum spanning trees

dynamic graphs

directed minimum spanning trees

network flows (e.g., maximum flow)

…

Dynamic Trees

Dynamic Trees and Online MSTs

• How can dynamic trees help us solve the online MST problem?

We must answer the following (equivalent) questions:

• Should we insert (c,g), with cost 4, into the following tree?

• Is (c,g) cheaper than some other edge on the cycle it creates?

• What is the most expensive edge on the path between c and g?

a

h

f

b

d

g

c

e 6

7

5

7

5

2 4

Dynamic Trees

Dynamic Trees and Online MST

• How can dynamic trees help us in the online MST problem?

We must answer the following (equivalent) questions:

• Should we insert (c,g), with cost 4, into the following tree?

• Is (c,g) cheaper than some other edge on the cycle it creates?

• What is the most expensive edge on the path between c and g?

• Imagine the tree is rooted at g: now, what is the most expensive edge on the
path from c to the root?

a

h

f

b

d

g

c

e 6

7

5

7

5

2 4

Renato Werneck

Dynamic Trees 6

Dynamic Trees

Obvious Implementation of Dynamic Trees

• Each node represents a vertex.

• Each node x points to its parent p(x):

cut, link, findcost: constant time.

findroot, findmin: time proportional to path length.

• Acceptable if paths are small, but O(n) in the worst case.

• We can get O(log n) for all operations.
a

c

fe

db

g h

j

i

k nm
l

o p

1 6 2

4 1
3 9 4

7

7

4 6

2 68

sr

t u 46

28

q

3

1

Dynamic Trees

Dynamic Trees

• Motivation (Online MSTs)

• Problem Definition

• A Data Structure for Dynamic Paths

• A Data Structure for Dynamic Trees

• Extensions

Dynamic Trees

Dynamic Paths

• We start with a simpler problem:

Maintain set of paths subject to the following operations:

• split: removes an edge, cutting a path in two;

• concatenate: links endpoints of two paths, creating a new path.

Operations allowed:

• findcost(v): returns the cost of vertex v;

• findmin(v): returns minimum-cost vertex on the path containing v.

v1 v5v4v3v2 v6 v7

Dynamic Trees

Simple Paths as Lists

• Natural representation: doubly-linked list:

Path characterized by two endpoints.

• findcost: constant time.

• concatenate: constant time.

• split: constant time.

• findmin: linear time (not good).

• Can we do it O(log n) time?

v1 v5v4v3v2 v6 v7

6 7432 9 3costs:

Dynamic Trees

Simple Paths as Binary Trees

• Alternative representation: balanced binary tree.

Leaves = vertices in symmetric order.

Internal nodes = subpaths between extreme descendants.

v1 v5v4v3v2 v6 v7

(v1,v2)

(v1,v3)

(v4,v6)

(v4,v7)

(v5,v6)

(v1,v7)

Dynamic Trees

Simple Paths as Binary Trees

• Compact alternative:

Each internal node represents both a vertex and a subpath:

• subpath from leftmost to rightmost descendant.

v1

v2

v4

v5v3

v6

v7

v1 v5v4v3v2 v6 v7

Renato Werneck

Dynamic Trees 7

Dynamic Trees

Simple Paths: Maintaining Costs

• We store cost(x) directly in each node.

Problem: findmin still takes linear time (must visit all vertices).

6

2

4

73

9

3

actual costs

v1

v2

v4

v5v3

v6

v7

v1 v5v4v3v2 v6 v7

6 7432 9 3costs:

Dynamic Trees

Simple Paths: Finding Minima

• Also store mincost(x), minimum cost in subpath with root x.

findmin(x) now runs in O(log n) time.

6

2

4

73

9

3

actual costs

6

2

3

73

2

3

mincost

v1

v2

v4

v5v3

v6

v7

v1

v2

v4

v5v3

v6

v7

v1 v5v4v3v2 v6 v7

6 7432 9 3costs:

Dynamic Trees

Simple Paths: Data Fields

• Final version:

Stores mincost(x) and cost(x) for every vertex x.

(6,6)

(2,2)

(4,3)

(7,7)(3,3)

(9, 2)

(3,3)

(cost, mincost)

v1

v2

v4

v5v3

v6

v7

v1 v5v4v3v2 v6 v7

6 7432 9 3costs:

Dynamic Trees

Simple Paths: Structural Changes

• Concatenating and splitting paths:

Join or split the corresponding binary trees;

Time proportional to tree height.

For balanced trees (AVL, red-black, etc.), this is O(log n):

• Rotations must be supported in constant time.

• We must be able to update mincost, but that’s easy:

mincost’(w) = min {cost(w), mincost(b), mincost(c)}
mincost’(v) = min {cost(v), mincost(a), mincost’(w)}

w

ba

c w

cb

a
rotate(v)

v

v

Dynamic Trees

Splaying

• Simpler alternative to balanced binary trees: splaying.

Trees may be unbalanced in the worst case.

Guarantees O(log n) amortized access.

Much simpler to implement.

• Basic characteristics:

Maintains no balancing information.

On an access to v:

• moves v to the root;

• roughly halves the depth of other nodes in the access path.

Primitive operation: rotation.

• All operations (insert, delete, join, split) use splaying.

Dynamic Trees

Splaying

• Three restructuring operations:

y

x

A

zig(x)

B

C

x

y

B C

A

y

x

A

zig-zig(x)

B

C

y

z

C D

B

z

D

x

A

y

x

B C

A

zig-zag(x)
z

C D

z

D y

A B

(only happens if y is the original root)

x

Renato Werneck

Dynamic Trees 8

Dynamic Trees

An Example of Splaying

h

g

H

I

f

A e

d

B c

C b

a

E

D

F

G

Dynamic Trees

An Example of Splaying

h

g

H

I

f

A e

d

B c

C b

a

E

D

F

h

g

H

I

f

A e

d

B

c

C

b

E

D

F

a

G Gzig-zig(a)

Dynamic Trees

An Example of Splaying

h

g

H

I

f

A e

d

B

c

C

b

E

D

F

a

G

Dynamic Trees

An Example of Splaying

h

g

H

I

f

A

ed

B

c

C

b

E

D

F

a

G

zig-zag(a)

h

g

H

I

f

A e

d

B

c

C

b

E

D

F

a

G

Dynamic Trees

An Example of Splaying

h

g

H

I

f

A

ed

B

c

C

b

E

D

F

a

G

Dynamic Trees

An Example of Splaying

h

g

H

I

f

A

ed

B

c

C

b

E

D

F

a

G

zig-zag(a)

h

g

H

I

f

A ed

B

c

C

b

E

D

F

a

G

Renato Werneck

Dynamic Trees 9

Dynamic Trees

An Example of Splaying

h

g

H

I

f

A ed

B

c

C

b

E

D

F

a

G

Dynamic Trees

An Example of Splaying

h

g

H

I

f

A ed

B

c

C

b

E

D

F

a

G

h

g

H

I

f

A

e

d

B

c

C

b

E

D

F

a

G zig(a)

Dynamic Trees

An Example of Splaying

h

g

H

I

f

A

e

d

B

c

C

b

E

D

F

a

G

Dynamic Trees

An Example of Splaying

• Final result:

h

g

H

I

f

A

e

d

B

c

C

b

E

D

F

a

G

h

g

H

I

f

A e

d

B c

C b

a

E

D

F

G splay(a)

Dynamic Trees

Amortized Analysis

• Bounds the running time of a sequence of operations.

• Potential function Φ maps configurations to real numbers.

• Amortized time to execute each operation:

ai = ti + Φi – Φi –1

• ai: amortized time to execute i-th operation;

• ti: actual time to execute the operation;

• Φi: potential after the i-th operation.

• Total time for m operations:

Σi=1..m ti = Σi=1..m(ai + Φi –1– Φi) = Φ0 – Φm + Σi=1..m ai

Dynamic Trees

Amortized Analysis of Splaying

• Definitions:

s(x): size of node x (number of descendants, including x);

• At most n, by definition.

r(x): rank of node x, defined as log s(x);

• At most log n, by definition.

Φi: potential of the data structure (twice the sum of all ranks).
• At most 2 n log n, by definition.

• Access Lemma [ST85]: The amortized time to splay a tree with root
t at a node x is at most

6(r(t)–r(x)) + 1 = O(log(s(t)/s(x))).

Renato Werneck

Dynamic Trees 10

Dynamic Trees

Proof of Access Lemma

• Access Lemma [ST85]: The amortized time to splay a tree with root
t at a node x is at most

6(r(t)–r(x)) + 1 = O(log(s(t)/s(x))).

• Proof idea:

ri(x) = rank of x after the i-th splay step;

ai = amortized cost of the i-th splay step;

ai ≤ 6(ri(x)–ri–1(x)) + 1 (for the zig step, if any)

ai ≤ 6(ri(x)–ri–1(x)) (for each zig-zig or zig-zag step)

Total amortized time for all k steps:

Σi=1..k ai ≤ Σi=1..k-1 [6(ri(x)–ri–1(x))] + [6(ri(x)–ri–1(x)) + 1]

= 6rk(x) – 6r0(x) + 1

Dynamic Trees

Proof of Access Lemma: Splaying Step

• Zig-zig:

Claim: a ≤ 6 (r’(x) – r(x))

t + Φ’ – Φ ≤ 6 (r’(x) – r(x))

2 + 2(r’(x)+r’(y)+r’(z)) – 2(r(x)+r(y)+r(z)) ≤ 6 (r’(x) – r(x))

1 + r’(x) + r’(y) + r’(z) – r(x) – r(y) – r(z) ≤ 3 (r’(x) – r(x))

1 + r’(y) + r’(z) – r(x) – r(y) ≤ 3 (r’(x) – r(x)) since r’(x) = r(z)

1 + r’(y) + r’(z) – 2r(x) ≤ 3 (r’(x) – r(x)) since r(y) ≥ r(x)

1 + r’(x) + r’(z) – 2r(x) ≤ 3 (r’(x) – r(x)) since r’(x) ≥ r’(y)

(r(x) – r’(x)) + (r’(z) – r’(x)) ≤ –1 rearranging

log(s(x)/s’(x)) + log(s’(z)/s’(x)) ≤ –1 definition of rank

TRUE because s(x)+s’(z)<s’(x): both ratios are smaller than 1, at least one is at
most –1/2 (and its log is at most –1)

y

x

A

zigzig(x)

B

C

y

z

C D

B

z

D

x

A

Dynamic Trees

Proof of Access Lemma: Splaying Step

• Zig-zag:

Claim: a ≤ 4 (r’(x) – r(x))

t + Φ’ – Φ ≤ 4 (r’(x) – r(x))

2 + (2r’(x)+2r’(y)+2r’(z)) – (2r(x)+2r(y)+2r(z)) ≤ 4 (r’(x) – r(x))

2 + 2r’(y) + 2r’(z) – 2r(x) – 2r(y) ≤ 4 (r’(x) – r(x)), since r’(x) = r(z)

2 + 2r’(y) + 2r’(z) – 4r(x) ≤ 4 (r’(x) – r(x)), since r(y) ≥ r(x)

(r’(y) – r’(x)) + (r’(z) –r’(x)) ≤ –1, rearranging

log(s’(y)/s’(x)) + log(s’(z)/s’(x)) ≤ –1 definition of rank

TRUE because s’(y)+s’(z)<s’(x): both ratios are smaller than 1, at least one is at
most –1/2 (and its log is at most –1).

y

x

B C

A

zigzag(x) z

C D

z

D

x

y

A B

Dynamic Trees

Proof of Access Lemma: Splaying Step

• Zig:

Claim: a ≤ 1 + 6 (r’(x) – r(x))

t + Φ’ – Φ ≤ 1 + 6 (r’(x) – r(x))

1 + (2r’(x)+2r’(y)) – (2r(x)+2r(y)) ≤ 1 + 6 (r’(x) – r(x))

1 + 2 (r’(x) – r(x)) ≤ 1 + 6 (r’(x) – r(x)), since r(y) ≥ r’(y)

TRUE because r’(x) ≥ r(x).

y

x

A

zig(x)

B

C

x

y

B C

A

(only happens if y is root)

Dynamic Trees

Splaying

• Summing up:

No rotation: a = 1

Zig: a ≤ 6 (r’(x) – r(x)) + 1

Zig-zig: a ≤ 6 (r’(x) – r(x))

Zig-zag: a ≤ 4 (r’(x) – r(x))

Total amortized time at most 6 (r(t) – r(x)) + 1 = O(log n)

• Since accesses bring the relevant element to the root, other
operations (insert, delete, join, split) become trivial.

Dynamic Trees

Dynamic Trees

• Motivation (Online MSTs)

• Problem Definition

• A Data Structure for Dynamic Paths

• A Data Structure for Dynamic Trees

• Extensions

Renato Werneck

Dynamic Trees 11

Dynamic Trees

Dynamic Trees

• We know how to deal with isolated paths.

• How to deal with paths within a tree?

Dynamic Trees

Dynamic Trees

• Main idea: partition the vertices in a tree into disjoint solid paths
connected by dashed edges.

Dynamic Trees

Dynamic Trees

• A vertex v is exposed if:

There is a solid path from v to the root;

No solid edge enters v.

Dynamic Trees

Dynamic Trees

• A vertex v is exposed if:

There is a solid path from v to the root;

No solid edge enters v.

• It is unique.

v

Dynamic Trees

Dynamic Trees

• Solid paths:

Represented as binary trees (as seen before).

Parent pointer of root is the outgoing dashed edge of the path.

• Dashed pointers go up, so the solid path above does not “know” it has
dashed children.

• Solid binary trees linked by dashed edges: virtual tree.

• “Isolated path” operations handle the exposed path.

That’s the solid path entering the root.

• If a different path is needed:

expose(v): make entire path from v to the root solid.

Dynamic Trees

Virtual Tree: An Example

m

j

g

r

d
c

a

i

f

l

b

u

t

v

s

w

e

h

k

on
qp

iq
c

f

a

l b

p

tr g

j

m
d

uw

sv

k

e

o h

n

the actual tree a virtual tree

z

y

x

xz

y

Renato Werneck

Dynamic Trees 12

Dynamic Trees

Dynamic Trees

• Example: expose(y)

m

j

g

r

d
c

a

i

f

l

b

u

t

v

s

w

e

h

k

on
qp

z

y

x

(actual tree)

Dynamic Trees

Dynamic Trees

• Example: expose(y)

Take all edges on the path to the root, …

m

j

g

r

d
c

a

i

f

l

b

u

t

v

s

w

e

h

k

on
qp

z

y

x

(actual tree)

Dynamic Trees

Dynamic Trees

• Example: expose(y)

…, make them solid, …

m

j

g

r

d
c

a

i

f

l

b

u

t

v

s

w

e

h

k

on
qp

z

y

x

(actual tree)

Dynamic Trees

Dynamic Trees

• Example: expose(y)

…make sure there is no other solid edge incident to the path.

• Uses splice operation.

m

j

g

r

d
c

a

i

f

l

b

u

t

v

s

w

e

h

k

on
qp

z

y

x

(actual tree)

Dynamic Trees

Exposing a Vertex

• expose(y): makes the path from y to the root solid.

• Implemented in three steps:

1. Splay within each solid tree on the path from x to root.

2. Splice each dashed edge from x to the root.

– splice replaces left solid child with dashed child;

3. Splay on x, which will become the root.

Dynamic Trees

• expose(y): (1) splay within each solid tree;

Does not change the partition into solid paths.

Exposing a Vertex: An Example

iq
c

f

a

l b

p

tr g

j

m
d

uw

sv

k

e

o h

n

xz

y

local splays

i
q

c

al

b
f

j

m

d

r

g

t

u

w

s

v

x
z

k

e

o h

n

y

p

Renato Werneck

Dynamic Trees 13

Dynamic Trees

• expose(y): (2) splice on all vertices from y to the root.

Original exposed path: (q l i f c b a)

New exposed path: (y v u t s m j g d c b a)

Exposing a Vertex: An Example

i
q

c

al

b
f

j

m

d

r

g

t

u

w

s

v

x
z

k

e

o h

n

y

piq

c

al

b
f

j

m

d

r
gt

u
w

s

v

x
z

k

eo

h

n

y

p
splices

Dynamic Trees

• expose(y): (3) splay on y.

Does not change the exposed path.

Exposing a Vertex: An Example

iq

c

a

l

b
f

j

m

d

r
g

t

u

w

s

v

x

z

k

eo

h

n

y

p

iq

c

al

b
f

j

m

d

r
gt

u
w

s

v

x
z

k

eo

h

n

y

p

global splay

Dynamic Trees

• Additional restructuring primitive: splice.

Dashed child becomes solid, replaces left child.

Update: mincost’(z) = min{cost(z), mincost(v), mincost(x)}

Dynamic Trees: Splice

u xv

splice(v)

w

z

v xu w

z

Dynamic Trees

Exposing a Vertex: Running Time

• Running time of expose(x):

Proportional to initial depth of x;

• x is rotated all the way to the root;

• we just need to count the number of rotations.

Will use the Access Lemma.

• s(x), r(x) and potential are defined as before;

• In particular, s(x) is the size of the whole subtree rooted at x.
– Includes both solid and dashed edges.

Dynamic Trees

Exposing a Vertex: Running Time (Proof)

k: number of dashed edges from x to the root t.

Amortized costs of each pass:

1. Splay within each solid tree:
– xi: vertex splayed on the i-th solid tree.
– amortized cost of i-th splay: 6 (r’(xi) – r(xi)) + 1 (Access Lemma)
– r(xi+1) ≥ r’(xi), so the sum over all steps telescopes;
– amortized cost first of pass: 6(r’(xk)–r(x1)) + k ≤ 6 log n + k.

2. Splice dashed edges:
– no rotations, no changes in potential: amortized cost is zero.

3. Splay on x:
– amortized cost is at most 6 log n + 1.
– x ends up in root, so exactly k rotations happen;
– each rotation costs one credit, but is charged two;
– they pay for the extra k rotations in the first pass.

Amortized number of rotations = O(log n).

Dynamic Trees

Implementing Dynamic Tree Operations

• findcost(v):

expose v, return cost(v).

• findroot(v):

expose v;

find w, the rightmost vertex in the solid subtree containing v;

splay at w and return w.

• findmin(v):

expose v;

use mincost to walk down from v to w, the rightmost minimum-cost
node in the solid subtree containing v;

splay at w and return w.

Renato Werneck

Dynamic Trees 14

Dynamic Trees

Implementing Dynamic Tree Operations

• link(v,w):

expose v and w (they are in different trees);

set p(v)=w (that is, make v a middle child of w).

• cut(v):

expose v;

make p(right(v))=null and right(v)=null;

set mincost(v) = min{cost(v), mincost(left(v))}.

Dynamic Trees

Alternative Implementations

• Total time per operation depends on path representation:

Splay trees: O(log n) amortized [Sleator and Tarjan, 85].

Balanced search trees: O(log2n) amortized [ST83].

Locally biased search trees: O(log n) amortized [ST83].

Globally biased search treess: O(log n) worst-case [ST83].

• Biased search trees:

Support leaves with different weights.

Some solid leaves are “heavier” because they also represent dashed
subtrees.

Much more complicated than splay trees.

Dynamic Trees

Dynamic Trees

• Motivation (Online MSTs)

• Problem Definition

• A Data Structure for Dynamic Paths

• A Data Structure for Dynamic Trees

• Extensions

Dynamic Trees

Network Flow Applications

• Augmenting path:

path from source to sink with positive residual capacity C.

s t

6

1

5
2

25

4

9
7

3

4

3

9
98

8

6

4

Dynamic Trees

Network Flow Applications

• Augmenting path:

path from source to sink with positive residual capacity C.

s t

6

1

5
2

25

4

9
7

3

4

3

9
98

8

6

4

Dynamic Trees

Network Flow Applications

• Augmenting path:

path from source to sink with positive residual capacity C.

• Flow can be sent along this path (as much as C).

Residual capacity of each arc decreases by C.

s t

4

1

5
2

05

4

9
5

1

4

3

7
98

8

6

2

Renato Werneck

Dynamic Trees 15

Dynamic Trees

Network Flow Applications

• Augmenting path:

path from source to sink with positive residual capacity C;

• Flow can be sent along this path (as much as C).

Residual capacity of each arc decreases by C.

• Maximum flow algorithms usually maintain only a tree.

findmin(s) can determine the residual capacity C;

How can we decrease the capacities?

s t

6

1

2

4

7

3

3

9

6

4

Dynamic Trees

Extension: Adding Costs

• addcost(v,x): adds x to the cost of each vertex on the path from v to
the root.

a

c

fe

db

g h

j

i

k nm
l

o p

1 6 2

4 1
3 9 4

7

7

4 6

2 68

sr

t u 46

28

q

3

1

a

c

fe

db

g h

j

i

k nm
l

o p

4 6 2

7 1
3 9 4

7

7

4 6

2 68

sr

t u 46

58

q

6

4

addcost(s,3)

Dynamic Trees

Adding Costs to Dynamic Paths

• Corresponding operation on dynamic paths:

addcost(v,x): adds x to the cost of vertices in path containing v;

current representation takes linear time.

6

2

4

73

9

3

actual costs

v1

v2

v4

v5v3

v6

v7

v1 v5v4v3v2 v6 v7

6 7432 9 3costs:

Dynamic Trees

Adding Costs to Dynamic Paths

• Better approach is to store ∆cost(x) instead (difference form):

Root: ∆cost(x) = cost(x)

Other nodes: ∆cost(x) = cost(x) – cost(p(x))

6

2

4

73

9

3

4

-7

2

3-1

9

-6

actual costs difference form

v1

v2

v4

v5v3

v6

v7

v1

v2

v4

v5v3

v6

v7

v1 v5v4v3v2 v6 v7

6 7432 9 3costs:

Dynamic Trees

Adding Costs to Dynamic Paths

• Costs:

addcost: constant time (just add to root)

Finding cost(x) is slightly harder: O(depth(x)).

6

2

4

73

9

3

4

-7

2

3-1

9

-6

actual costs difference form

v1

v2

v4

v5v3

v6

v7

v1

v2

v4

v5v3

v6

v7

v1 v5v4v3v2 v6 v7

6 7432 9 3costs:

Dynamic Trees

Adding Costs to Dynamic Paths

• Still have to implement findmin:

Cannot store mincost(x) explicitly (addcost would be linear).

6

2

4

73

9

3

actual costs

6

2

3

73

2

3

mincost

v1

v2

v4

v5v3

v6

v7

v1

v2

v4

v5v3

v6

v7

v1 v5v4v3v2 v6 v7

6 7432 9 3costs:

Renato Werneck

Dynamic Trees 16

Dynamic Trees

Adding Costs to Dynamic Paths

• Store ∆min(x) = cost(x)–mincost(x) instead.

findmin still runs in O(log n) time, addcost now constant.

6

2

4

73

9

3

actual costs

0

0

1

00

7

0

∆min

6

2

3

73

2

3

mincost

v1

v2

v4

v5v3

v6

v7

v1

v2

v4

v5v3

v6

v7

v1

v2

v4

v5v3

v6

v7

v1 v5v4v3v2 v6 v7

6 7432 9 3costs:

Dynamic Trees

Adding Costs to Dynamic Paths

• Final version:

Store ∆min(x) and ∆cost(x) on each node.

6

2

4

73

9

3

actual costs

(4,0)

(-7,0)

(2,1)

(3,0)(-1,0)

(9, 7)

(-6,0)

(∆cost, ∆min)

v1

v2

v4

v5v3

v6

v7

v1

v2

v4

v5v3

v6

v7

v1 v5v4v3v2 v6 v7

6 7432 9 3costs:

Dynamic Trees

Adding Costs to Dynamic Paths: Updating Fields

• Updating fields during rotations:

∆cost’(v) = ∆cost(v) + ∆cost(w)

∆cost’(w) = –∆cost(v)

∆cost’(b) = ∆cost(v) + ∆cost(b)

∆min’(w) = max{0, ∆min(b) – ∆cost’(b), ∆min(c) – ∆cost(c)}

∆min’(v) = max{0, ∆min(a) – ∆cost(a), ∆min’(w) – ∆cost’(w)}

w

ba

c w

cb

a
rotate(v)

v

v

Dynamic Trees

• Updating fields during splice:

∆cost’(v) = ∆cost(v) – ∆cost(z)

∆cost’(u) = ∆cost(u) + ∆cost(z)

∆min’(z) = max{0, ∆min(v) – ∆cost’(v), ∆min(x) – ∆cost(x)}

• Recall that w is always the root of a solid tree.

Adding Costs: Updating Fields

u xv

splice(v)

w

z

v xu w

z

Dynamic Trees

Adding Costs: Operations

• findcost(v):

expose v, return ∆cost(v).

• findroot(v):

expose v;

find w, the rightmost vertex in the solid subtree containing v;

splay at w and return w.

• findmin(v):

expose v;

use ∆cost and ∆min to walk down from v to w, the last minimum-cost
node in the solid subtree;

splay at w and return w.

Dynamic Trees

Adding Costs: Operations

• addcost(v, x):

expose v;

add x to ∆cost(v), subtract x from ∆cost(left(v))

• link(v,w):

expose v and w (they are in different trees);

set p(v)=w (that is, make v a middle child of w).

• cut(v):

expose v;

add ∆cost(v) to ∆cost(right(v));

make p(right(v))=null and right(v)=null.

set ∆min(v) = max {0, ∆min(left(v)) – ∆cost(left(v))}

Renato Werneck

Dynamic Trees 17

Dynamic Trees

• evert(q): makes q the root of its tree

Another Extension: Change Root

m

j

g

r

d
c

a

i

f

l

b

u

t

v

s

w

e

h

k

on
qp

z

y

x

m

j

g

r

d
c

i

a

b

l

f

u

t

v

s

w

e

h

k

on

q

p

z

y

x

evert(q)

(actual trees)

Dynamic Trees

• evert(q): makes q the root of its tree

Make sure q is exposed, reverse solid path.

Another Extension: Change Root

m

j

g

r

d
c

a

i

f

l

b

u

t

v

s

w

e

h

k

on
qp

z

y

x

m

j

g

r

d
c

i

a

b

l

f

u

t

v

s

w

e

h

k

on

q

p

z

y

x

evert(q)

(actual trees)

Dynamic Trees

• evert(q): makes q the root of its tree

In the virtual tree: reverse left-right pointers:

• This can be done implicitly with a reverse bit.
– Must be stored in difference form (meaning depends on parents).

Another Extension: Change Root

evert(q)

(virtual trees)

iq
c

f

a

l b

p

tr g

j

m
d

uw

sv

k

e

o h

n

xz

y

q
ic

f

a

lb

p

tr g

j

m
d

uw

sv

k

e

o h

n

xz

y

Dynamic Trees

Other Extensions

• Associate values with edges:

just interpret cost(v) as cost(v,p(v)).

• Other path queries (such as length):

modify values stored in each node appropriately.

• Free (unrooted) trees: use evert to change root.

• Subtree-related operations:

Can be implemented, but parent must have access to middle children in
constant time:

• Tree must have bounded degree.

Approach for arbitrary trees: “ternarize” them:

• [Goldberg, Grigoriadis and Tarjan, 1991]

