

Dynamic Trees

- Motivation (Online MSTs)
- Problem Definition
- A Data Structure for Dynamic Paths
- A Data Structure for Dynamic Trees
- Extensions

Dynamic Trees

Dynamic Trees - Problem Definition

- · Goal: maintain a forest of rooted trees with costs on vertices.
 - Each tree has a root, every edge directed towards the root.
- Operations allowed:
 - link(*v*,*w*): creates an edge between *v* (a root) and *w*.
 - $\operatorname{cut}(v)$: deletes edge (v, p(v)) (where p(v) is v's parent).
 - findcost(v): returns the cost of vertex v.
 - findroot(v): returns the root of the tree containing v.
 - findmin(v): returns the minimum-cost vertex w on the path from v to the root.
- A possible extension:
 - evert(*w*): makes *w* the root of its tree.

Dynamic Trees • An example (two trees): $\int_{e^{-d^{-1}} e^{-d^{-1}} e^{-d^$

Obvious Implementation of Dynamic Trees

- Each node represents a vertex.
- Each node *x* points to its parent *p*(*x*):
 - cut, link, findcost: constant time.
 - findroot, findmin: time proportional to path length.
- Acceptable if paths are small, but O(n) in the worst case.
- We can get $O(\log n)$ for all operations.

Dynamic Trees

Dynamic Trees

- Motivation (Online MSTs)
- Problem Definition
- A Data Structure for Dynamic Paths
- A Data Structure for Dynamic Trees
- Extensions

We start	with a sin	npler prol	olem:			
 Main 	tain set of p	oaths subje	ct to the fol	llowing ope	erations:	
• sp	lit: removes	an edge, cut	tting a path i	in two;		
• co	ncatenate: li	inks endpoir	nts of two pa	ths, creating	g a new path	
 Opera 	ations allow	ved:				
• III • fir	idmin(v): re	turns minin	ium-cost vei	rtex on the p	ath containi	ng v.

Splaying

- · Simpler alternative to balanced binary trees: splaying.
 - Trees may be unbalanced in the worst case.
 - Guarantees O(log n) amortized access.
 - Much simpler to implement.
- Basic characteristics:
 - · Maintains no balancing information.
 - On an access to v:
 - moves v to the root;
 - roughly halves the depth of other nodes in the access path.
 - Primitive operation: rotation.
- All operations (insert, delete, join, split) use splaying.

Amortized Analysis

- · Bounds the running time of a sequence of operations.
- Potential function Φ maps configurations to real numbers.
- · Amortized time to execute each operation:

• $a_i = t_i + \Phi_i - \Phi_{i-1}$

- + a_i : amortized time to execute *i*-th operation;
- + $t_i:$ actual time to execute the operation;
- Φ_i : potential after the *i*-th operation.
- Total time for m operations:

 $\boldsymbol{\Sigma}_{i=1\dots m} \boldsymbol{t}_i = \boldsymbol{\Sigma}_{i=1\dots m} (\boldsymbol{a}_i + \boldsymbol{\Phi}_{i-1} - \boldsymbol{\Phi}_i) = \boldsymbol{\Phi}_{\mathrm{o}} - \boldsymbol{\Phi}_m + \boldsymbol{\Sigma}_{i=1\dots m} \boldsymbol{a}_i$

Amortized Analysis of Splaying

- Definitions:
 - s(x): size of node x (number of descendants, including x);
 At most n, by definition.
 - *r*(*x*): rank of node *x*, defined as log *s*(*x*);
 At most log *n*, by definition.
 - \$\Phi_i\$: potential of the data structure (twice the sum of all ranks).
 At most 2 n log n, by definition.
- Access Lemma [ST85]: The amortized time to splay a tree with root t at a node x is at most

 $6(r(t) - r(x)) + 1 = O(\log(s(t)/s(x))).$

```
Dynamic Trees
```

Proof of Access Lemma

Access Lemma [ST85]: The amortized time to splay a tree with root t at a node x is at most

 $6(r(t) - r(x)) + 1 = O(\log(s(t)/s(x))).$

- Proof idea:
 - *r_i(x)* = rank of *x* after the *i*-th splay step;
 - *a_i* = amortized cost of the *i*-th splay step;
 - $a_i \le 6(r_i(x) r_{i-1}(x)) + 1$ (for the zig step, if any)
 - $a_i \le 6(r_i(x) r_{i-1}(x))$ (for each zig-zig or zig-zag step)
 - Total amortized time for all *k* steps:

$$\begin{split} & \sum_{i=1,k} a_i \leq \sum_{i=1,k-1} \left[6(r_i(x) - r_{i-1}(x)) \right] + \left[6(r_i(x) - r_{i-1}(x)) + 1 \right] \\ & = 6r_k(x) - 6r_o(x) + 1 \end{split}$$

Dynamic Trees

Splaying

- Summing up:
 - No rotation: a = 1
 - Zig: $a \le 6 (r'(x) r(x)) + 1$
 - Zig-zig: $a \le 6 (r'(x) r(x))$
 - Zig-zag: $a \le 4 (r'(x) r(x))$
 - Total amortized time at most $6(r(t) r(x)) + 1 = O(\log n)$
- Since accesses bring the relevant element to the root, other operations (insert, delete, join, split) become trivial.

Dynamic Trees

- Motivation (Online MSTs)
- Problem Definition
- A Data Structure for Dynamic Paths
- A Data Structure for Dynamic Trees
- Extensions

Dynamic Trees

Dynamic Trees

· Solid paths:

- Represented as binary trees (as seen before).
- Parent pointer of root is the outgoing dashed edge of the path.
 Dashed pointers go up, so the solid path above does not "know" it has dashed children.
- Solid binary trees linked by dashed edges: virtual tree.
 - "Isolated path" operations handle the exposed path.
 - That's the solid path entering the root.
- If a different path is needed:
 - expose(v): make entire path from v to the root solid.

Dynamic Trees

•

Exposing a Vertex

- expose(y): makes the path from y to the root solid.
- Implemented in three steps:
 - 1. Splay within each solid tree on the path from x to root.
 - 2. Splice each dashed edge from *x* to the root.
 splice replaces left solid child with dashed child;
 - 3. Splay on *x*, which will become the root.

•

Exposing a Vertex: Running Time (Proof) k: number of dashed edges from x to the root t. Amortized costs of each pass: Splay within each solid tree: x, vertex splayed on the i-th solid tree. amortized cost of i-th splay: 6 (r¹(x_i) - r(x_i)) + 1 (Access Lemma) r⁰(x_i,) = r²(x_i), so the sum over all steps telescopes; amortized cost first of pass: 6(r¹(x_i)-r(x_i)) + k ≤ 6 log n + k. Splay on x: amortized cost is at most 6 log n + 1. x ends up in root, so exactly k rotations happen; each rotation costs one credit, but is charged two; they pay for the extra k rotations in the first pass. Amortized number of rotations = O(log n).

Dynamic Trees

Implementing Dynamic Tree Operations

- findcost(v):
 - expose v, return cost(v).
- findroot(v):
- expose v;
- find w, the rightmost vertex in the solid subtree containing v;
- splay at *w* and return *w*.
- findmin(v):
 - expose v;
 - use *mincost* to walk down from v to w, the rightmost minimum-cost node in the solid subtree containing v;
 - splay at w and return w.

Implementing Dynamic Tree Operations

• link(*v*,*w*):

- expose v and w (they are in different trees);
- set p(v)=w (that is, make v a middle child of w).
- cut(v):
 - expose v;
 - make p(right(v))=null and right(v)=null;
 - set mincost(v) = min{cost(v), mincost(left(v))}.

Dynamic Trees

Alternative Implementations

- Total time per operation depends on path representation:
 - Splay trees: O(log n) amortized [Sleator and Tarjan, 85].
 - Balanced search trees: O(log²n) amortized [ST83].
 - Locally biased search trees: O(log n) amortized [ST83].
 - Globally biased search treess: O(log n) worst-case [ST83].

· Biased search trees:

- Support leaves with different weights.
- Some solid leaves are "heavier" because they also represent dashed subtrees.
- Much more complicated than splay trees.

Dynamic Trees
Motivation (Online MSTs)
Problem Definition
A Data Structure for Dynamic Paths
A Data Structure for Dynamic Trees
• Extensions
Dynamic Trees

Adding Costs: Operations

- findcost(v):
 - expose v, return $\triangle cost(v)$.
- findroot(v):
 - expose v;
 - find w, the rightmost vertex in the solid subtree containing v;
 - splay at w and return w.
- findmin(v):

Dynamic Trees

- expose v;
- use *△cost* and *△min* to walk down from *v* to *w*, the last minimum-cost node in the solid subtree;
- splay at w and return w.

Adding Costs: Operations

- addcost(v, x):
 - expose v;
 - add x to ∆cost(v), subtract x from ∆cost(left(v))
- link(*v*,*w*):
 - expose v and w (they are in different trees);
 - set p(v)=w (that is, make v a middle child of w).
- cut(v):
- expose v;
- add $\triangle cost(v)$ to $\triangle cost(right(v))$;
- make p(right(v))=null and right(v)=null.
- set $\Delta min(v) = \max \{0, \Delta min(left(v)) \Delta cost(left(v))\}$

Other Extensions

- · Associate values with edges:
 - just interpret cost(v) as cost(v,p(v)).
 - Other path queries (such as length):
 - modify values stored in each node appropriately.
- Free (unrooted) trees: use evert to change root.
- · Subtree-related operations:
 - Can be implemented, but parent must have access to middle children in constant time:
 - Tree must have bounded degree.
 - Approach for arbitrary trees: "ternarize" them:
 [Goldberg, Grigoriadis and Tarjan, 1991]

Dynamic Trees

.