Dynamic Trees

- Motivation (Online MSTs)
- Problem Definition
- A Data Structure for Dynamic Paths
- A Data Structure for Dynamic Trees
- Extensions

Dynamic Trees

Online Minimum Spanning Trees

- The online minimum spanning trees problem:
- Input: a sequence of edges (with costs), one at a time.
- Goal: keep the minimum spanning forest of the graph.
- An algorithm:
- For each new edge (v, w) :
- If v and w belong to different components, insert the edge.
- If v and w are in the same component:
- insert (v, w) into the solution; and
- remove the most expensive edge on the cycle created.

Online Minimum Spanning Trees	
	edge cost (f, g) 6 $\rightarrow(f, h)$ 7 (a, d) 6 (a, e) 5 (a, b) 7 (d, f) 5 (b, f) 8 (c, h) 5 (d, e) 2 (e, f) 4 (c, g) 4 (g, h) 3 (b, c) 5 (b, e) 6 (b, g) 6
Dynamic Trees	

Online Minimum Spanning Trees	
	edge cost (f, g) 6 (f, h) 7 (a, d) 6 (a, e) 5 $\rightarrow(a, b)$ 7 (d, f) 5 (b, f) 8 (c, h) 5 (d, e) 2 (e, f) 4 (c, g) 4 (g, h) 3 (b, c) 5 (b, e) 6 (b, g) 6
Dynamic Trees	

| Online Minimum Spanning Trees | |
| :---: | :---: | :---: |

Online Minimum Spanning Trees	
	edge cost (f, g) 6 (f, h) 7 (a, d) 6 $\rightarrow(a, e)$ 5 (a, b) 7 (d, f) 5 (b, f) 8 (c, h) 5 (d, e) 2 (e, f) 4 (c, g) 4 (g, h) 3 (b, c) 5 (b, e) 6 (b, g) 6
Dynamic Trees	

| Online Minimum Spanning Trees | edge cost
 (f, g) |
| :---: | :---: | :---: |

Online Minimum Spanning Trees | |
| :---: | :---: | :---: |

Online Minimum Spanning Trees	
	edge cost (f, g) 6 (f, h) 7 (a, d) 6 (a, e) 5 (a, b) 7 (d, f) 5 (b, f) 8 (c, h) 5 (d, e) 2 (e, f) 4 $\rightarrow(c, g)$ 4 (g, h) 3 (b, c) 5 (b, e) 6 (b, g) 6
Dynamic Trees	

Online Minimum Spanning Trees	
	edge cost (f, g) 6 (f, h) 7 (a, d) 6 (a, e) 5 (a, b) 7 (d, f) 5 (b, f) 8 (c, h) 5 (d, e) 2 (e, f) 4 (c, g) 4 (g, h) 3 $\rightarrow(b, c)$ 5 (b, e) 6 (b, g) 6
Dynamic Trees	

| Online Minimum Spanning Trees | edge |
| :---: | :---: | :---: |

Online Minimum Spanning Trees	
	edge cost (f, g) 6 (f, h) 7 (a, d) 6 (a, e) 5 (a, b) 7 (d, f) 5 (b, f) 8 (c, h) 5 (d, e) 2 (e, f) 4 (c, g) 4 $\rightarrow(g, h)$ 3 (b, c) 5 (b, e) 6 (b, g) 6
Dynamic Trees	

| Online Minimum Spanning Trees | |
| :--- | :--- | :--- |

Online Minimum Spanning Trees

- How fast is the algorithm?
- How fast can we find the most expensive edge of a cycle?
- $\mathrm{O}(\log n)$, with the right data structure.
- Total running time: $\mathrm{O}(m \log n) \quad$ (m edges, n vertices)

Dynamic Trees

Online Minimum Spanning Trees

| Dynamic Trees |
| :--- | :--- |
| - Motivation (Online MSTs) |
| - Problem Definition |
| - A Data Structure for Dynamic Paths |
| - A Data Structure for Dynamic Trees |
| - Extensions |
| |
| |
| Dynamic Trees |

Dynamic Trees - Problem Definition

- Goal: maintain a forest of rooted trees with costs on vertices.
- Each tree has a root, every edge directed towards the root.
- Operations allowed:
- $\operatorname{link}(v, w)$: creates an edge between v (a root) and w.
- cut (v) : deletes edge $(v, p(v)$) (where $p(v)$ is v 's parent).
- findcost (v) : returns the cost of vertex v.
- findroot (v) : returns the root of the tree containing v.
- findmin (v) : returns the minimum-cost vertex w on the path from v to the root.
- A possible extension:
- $\operatorname{evert}(w)$: makes w the root of its tree.

Dynamic Trees

$\operatorname{cut}(q)$
\Longleftarrow

Dynamic Trees

Applications

- Used as a building block of several graph algorithms:
- online minimum spanning trees
- dynamic graphs
- directed minimum spanning trees
- network flows (e.g., maximum flow)
- ...

Dynamic Trees and Online MST

- How can dynamic trees help us in the online MST problem?
- We must answer the following (equivalent) questions:
- Should we insert (c, g), with cost 4 , into the following tree?
- Is (c, g) cheaper than some other edge on the cycle it creates?
- What is the most expensive edge on the path between c and g ?
- Imagine the tree is rooted at g : now, what is the most expensive edge on the path from c to the root?

Dynamic Trees

Obvious Implementation of Dynamic Trees

- Each node represents a vertex.
- Each node x points to its parent $p(x)$:
- cut, link, findcost: constant time.
- findroot, findmin: time proportional to path length.
- Acceptable if paths are small, but $\mathrm{O}(n)$ in the worst case.
- We can get $\mathrm{O}(\log n)$ for all operations.

Dynamic Trees

Dynamic Trees

- Motivation (Online MSTs)
- Problem Definition
- A Data Structure for Dynamic Paths
- A Data Structure for Dynamic Trees
- Extensions

Dynamic Trees

Simple Paths as Lists

- Natural representation: doubly-linked list:
- Path characterized by two endpoints.
- findcost: constant time.
- concatenate: constant time.
- split: constant time.
- findmin: linear time (not good).
- Can we do it $\mathrm{O}(\log n)$ time?

Simple Paths as Binary Trees

- Compact alternative:
- Each internal node represents both a vertex and a subpath:
- subpath from leftmost to rightmost descendant.

Dynamic Trees

Splaying

- Simpler alternative to balanced binary trees: splaying.
- Trees may be unbalanced in the worst case.
- Guarantees $\mathrm{O}(\log n)$ amortized access.
- Much simpler to implement.
- Basic characteristics:
- Maintains no balancing information.
- On an access to v :
- moves v to the root;
- roughly halves the depth of other nodes in the access path.
- Primitive operation: rotation.
- All operations (insert, delete, join, split) use splaying.

Simple Paths: Finding Minima

- Also store $\operatorname{mincost}(x)$, minimum cost in subpath with root x.
- findmin (x) now runs in $O(\log n)$ time.

Splaying

- Three restructuring operations:

An Example of Splaying
An Example of Splaying
An Example of Splaying
An Example of Splaying

An Example of Splaying

Dynamic Trees
An Example of Splaying

Amortized Analysis

- Bounds the running time of a sequence of operations.
- Potential function $Ф$ maps configurations to real numbers.
- Amortized time to execute each operation:
- $a_{i}=t_{i}+\Phi_{i}-\Phi_{i-1}$
- a_{i} : amortized time to execute i-th operation;
- t_{i} : actual time to execute the operation;
- Φ_{i} : potential after the i-th operation.
- Total time for m operations:
$\Sigma_{i=1 . . m} t_{i}=\Sigma_{i=1 . . m}\left(a_{i}+\Phi_{i-1}-\Phi_{i}\right)=\Phi_{0}-\Phi_{m}+\sum_{i=1 . . m} a_{i}$

An Example of Splaying

An Example of Splaying

- Final result:

Amortized Analysis of Splaying

- Definitions:
- $s(x)$: size of node x (number of descendants, including x); - At most n, by definition.
- $r(x)$: rank of node x, defined as $\log s(x)$; - At most $\log n$, by definition.
- Φ_{i} : potential of the data structure (twice the sum of all ranks). - At most $2 n \log n$, by definition.
- Access Lemma [ST85]: The amortized time to splay a tree with root t at a node x is at most

$$
6(r(t)-r(x))+1=O(\log (s(t) / s(x)))
$$

Proof of Access Lemma

- Access Lemma [ST85]: The amortized time to splay a tree with root t at a node x is at most

$$
6(r(t)-r(x))+1=O(\log (s(t) / s(x)))
$$

- Proof idea:
- $r_{i}(x)=$ rank of x after the i-th splay step;
- $a_{i}=$ amortized cost of the i-th splay step;
- $a_{i} \leq 6\left(r_{i}(x)-r_{i-1}(x)\right)+1$ (for the zig step, if any)
- $a_{i} \leq 6\left(r_{i}(x)-r_{i-1}(x)\right)$ (for each zig-zig or zig-zag step)
- Total amortized time for all k steps:

$$
\begin{aligned}
& \Sigma_{i=1 . . k} a_{i} \leq \Sigma_{i=1 . k-1}\left[6\left(r_{i}(x)-r_{i-1}(x)\right)\right]+\left[6\left(r_{i}(x)-r_{i-1}(x)\right)+1\right] \\
& \quad=6 r_{k}(x)-6 r_{\mathrm{o}}(x)+1
\end{aligned}
$$

| Proof of Access Lemma: Splaying Step |
| :--- | :--- |
| - Zig: |
| Claim: $a \leq 1+6\left(r^{\prime}(x)-r(x)\right)$
 $t+\Phi^{\prime}-\Phi \leq 1+6\left(r^{\prime}(x)-r(x)\right)$
 $1+\left(2 r^{\prime}(x)+2 r^{\prime}(y)\right)-(2 r(x)+2 r(y)) \leq 1+6\left(r^{\prime}(x)-r(x)\right)$
 $1+2\left(r^{\prime}(x)-r(x)\right) \leq 1+6\left(r^{\prime}(x)-r(x)\right)$,
 TRUE because $r^{\prime}(x) \geq r(x)$. |

Splaying

- Summing up:
- No rotation: $a=1$
- Zig: $a \leq 6\left(r^{\prime}(x)-r(x)\right)+1$
- Zig-zig: $a \leq 6\left(r^{\prime}(x)-r(x)\right)$
- Zig-zag: $a \leq 4\left(r^{\prime}(x)-r(x)\right)$
- Total amortized time at most $6(r(t)-r(x))+1=\mathrm{O}(\log n)$
- Since accesses bring the relevant element to the root, other operations (insert, delete, join, split) become trivial.

Dynamic Trees

- Motivation (Online MSTs)
- Problem Definition
- A Data Structure for Dynamic Paths
- A Data Structure for Dynamic Trees
- Extensions

Dynamic Trees

- We know how to deal with isolated paths.
- How to deal with paths within a tree?

Dynamic Trees

Dynamic Trees

- Main idea: partition the vertices in a tree into disjoint solid paths connected by dashed edges.

Dynamic Trees

Dynamic Trees

- A vertex v is exposed if:
- There is a solid path from v to the root;
- No solid edge enters v.
- It is unique.

[^0]
Virtual Tree: An Example

the actual tree

Dynamic Trees

- Example: expose (y)
- Take all edges on the path to the root, ...

Exposing a Vertex: An Example

- expose(y): (1) splay within each solid tree;
- Does not change the partition into solid paths.

Dynamic Trees

Exposing a Vertex: An Example

- expose(y): (2) splice on all vertices from y to the root.
- Original exposed path: (qlifc ba)
- New exposed path: (yvuts mjgdcba)

Dynamic Trees

Exposing a Vertex: An Example

- expose(y): (3) splay on y.
- Does not change the exposed path.

Exposing a Vertex: Running Time

- Running time of expose (x) :
- Proportional to initial depth of x;
- x is rotated all the way to the root;
- we just need to count the number of rotations.
- Will use the Access Lemma.
- $s(x), r(x)$ and potential are defined as before;
- In particular, $s(x)$ is the size of the whole subtree rooted at x. - Includes both solid and dashed edges.
- Update: $\operatorname{mincost}^{\prime}(z)=\min \{\operatorname{cost}(z), \operatorname{mincost}(v), \operatorname{mincost}(x)\}$
 $(x)\}$

Implementing Dynamic Tree Operations

- $\operatorname{link}(v, w)$:
- expose v and w (they are in different trees);
- set $p(v)=w$ (that is, make v a middle child of w).
- $\operatorname{cut}(v)$:
- expose v;
- make $p(\operatorname{right}(v))=$ null and $\operatorname{right}(v)=$ null;
- set $\operatorname{mincost}(v)=\min \{\operatorname{cost}(v), \operatorname{mincost}(l e f t(v))\}$.

| Dynamic Trees |
| :--- | :--- |
| - Motivation (Online MSTs) |
| - Problem Definition |
| - A Data Structure for Dynamic Paths |
| - A Data Structure for Dynamic Trees |
| - Extensions |
| |
| |
| Dynamic Trees |

Network Flow Applications

- Augmenting path:
- path from source to sink with positive residual capacity C.

Dynamic Trees

Network Flow Applications

- Augmenting path:
- path from source to sink with positive residual capacity C.
- Flow can be sent along this path (as much as C).
- Residual capacity of each arc decreases by C.

Dynamic Trees

Network Flow Applications

- Augmenting path:
- path from source to sink with positive residual capacity C;
- Flow can be sent along this path (as much as C).
- Residual capacity of each arc decreases by C.
- Maximum flow algorithms usually maintain only a tree.
- findmin(s) can determine the residual capacity C;
- How can we decrease the capacities?

Dynamic Trees

Adding Costs to Dynamic Paths

- Corresponding operation on dynamic paths:
- addcost (v, x) : adds x to the cost of vertices in path containing v;
- current representation takes linear time.

Adding Costs: Updating Fields
- Updating fields during splice:
- $\Delta \operatorname{cost}^{\prime}(v)=\Delta \operatorname{cost}(v)-\Delta \operatorname{cost}(z)$
- $\Delta \operatorname{cost}^{\prime}(u)=\Delta \operatorname{cost}(u)+\Delta \operatorname{cost}(z)$
- $\Delta \min ^{\prime}(z)=\max \{0, \Delta \min (v)-\Delta \operatorname{cost}(v), \Delta \min (x)-\Delta \operatorname{cost} t(x)\}$
Recall that w is always the root of a solid tree.
Dynamic Trees

Adding Costs: Operations

- $\operatorname{addcost}(v, x)$:
- expose v;
- add x to $\Delta \operatorname{cost}(v)$, subtract x from $\Delta \operatorname{cost}(l \operatorname{left}(v))$
- $\operatorname{link}(v, w)$:
- expose v and w (they are in different trees);
- set $p(v)=w$ (that is, make v a middle child of w).
- $\operatorname{cut}(v)$:
- expose v;
- add $\Delta \operatorname{cost}(v)$ to $\Delta \operatorname{cost}(\operatorname{right}(v))$;
- make $p(\operatorname{right}(v))=$ null and $\operatorname{right}(v)=$ null
- $\operatorname{set} \Delta \min (v)=\max \{0, \Delta \min (l e f t(v))-\Delta \operatorname{cost}(l e f t(v))\}$

Other Extensions

- Associate values with edges:
- just interpret $\operatorname{cost}(v)$ as $\operatorname{cost}(v, p(v))$.
- Other path queries (such as length):
- modify values stored in each node appropriately.
- Free (unrooted) trees: use evert to change root.
- Subtree-related operations:
- Can be implemented, but parent must have access to middle children in constant time:
- Tree must have bounded degree.
- Approach for arbitrary trees: "ternarize" them:
- [Goldberg, Grigoriadis and Tarjan, 1991]

[^0]: Dynamic Trees

