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Abstract

We study the point-to-point shortest path problem in
a setting where preprocessing is allowed. We improve
the reach-based approach of Gutman [17] in several
ways. In particular, we introduce a bidirectional version
of the algorithm that uses implicit lower bounds and
we add shortcut arcs to reduce vertex reaches. Our
modifications greatly improve both preprocessing and
query times. The resulting algorithm is as fast as the
best previous method, due to Sanders and Schultes [28].
However, our algorithm is simpler and combines in a
natural way with A∗ search, which yields significantly
better query times.

1 Introduction

We study the following point-to-point shortest path

problem (P2P): given a directed graph G = (V,A)
with nonnegative arc lengths and two vertices, the
source s and the destination t, find a shortest path
from s to t. We are interested in exact shortest paths
only. We allow preprocessing, but limit the size of
the precomputed data to a (moderate) constant times
the input graph size. Preprocessing time is limited by
practical considerations. For example, in our motivating
application, driving directions on large road networks,
quadratic-time algorithms are impractical.

Finding shortest paths is a fundamental problem.
The single-source problem with nonnegative arc lengths
has been studied most extensively [1, 3, 4, 5, 9, 10, 11,
12, 15, 20, 25, 33, 37]. For this problem, near-optimal
algorithms are known both in theory, with near-linear
time bounds, and in practice, where running times are
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within a small constant factor of the breadth-first search
time.

The P2P problem with no preprocessing has been
addressed, for example, in [19, 27, 31, 38]. While no
nontrivial theoretical results are known for the general
P2P problem, there has been work on the special case
of undirected planar graphs with slightly super-linear
preprocessing space. The best bound in this context
appears in [8]. Algorithms for approximate shortest
paths that use preprocessing have been studied; see e.g.
[2, 21, 34]. Previous work on exact algorithms with
preprocessing includes those using geometric informa-
tion [24, 36], hierarchical decomposition [28, 29, 30], the
notion of reach [17], and A∗ search combined with land-
mark distances [13, 16].

In this paper we focus on road networks. However,
our algorithms do not use any domain-specific informa-
tion, such as geographical coordinates, and therefore
can be applied to any network. Their efficiency, how-
ever, needs to be verified experimentally for each par-
ticular application. In addition to road networks, we
briefly discuss their performance on grid graphs.

We now discuss the most relevant recent develop-
ments in preprocessing-based algorithms for road net-
works. Such methods have two components: a prepro-

cessing algorithm that computes auxiliary data and a
query algorithm that computes an answer for a given
s–t pair.

Gutman [17] defines the notion of vertex reach.
Informally, the reach of a vertex is a number that is
big if the vertex is in the middle of a long shortest path
and small otherwise. Gutman shows how to prune an
s-t search based on (upper bounds on) vertex reaches
and (lower bounds on) vertex distances from s and to
t. He uses Euclidean distances for lower bounds, and
observes that the idea of reach can be combined with
Euclidean-based A∗ search to improve efficiency.

Goldberg and Harrelson [13] (see also [16]) have
shown that the performance of A∗ search (without
reaches) can be significantly improved if landmark-
based lower bounds are used instead of Euclidean
bounds. This leads to the alt (A∗ search, land-
marks, and triangle inequality) algorithm for the prob-
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lem. In [13], it was noted that the alt method could
be combined with reach pruning in a natural way. Not
only would the improved lower bounds direct the search
better, but they would also make reach pruning more ef-
fective.

Sanders and Schultes [28] (see also [29]) have re-
cently introduced an interesting algorithm based on
highway hierarchy; we call it the hh algorithm. They de-
scribe it for undirected graphs, and briefly discuss how
to extend it to directed graphs. However, at the time
our experiments have been completed and our techni-
cal report [14] published, there was no implementation
of the directed version of the highway hierarchy algo-
rithm. Assuming that the directed version of hh is not
much slower than the undirected version, hh is the most
practical of the previously published P2P algorithms for
road networks. It has fast queries, relatively small mem-
ory overhead, and reasonable preprocessing complexity.
Since the directed case is more general, if an algorithm
for directed graphs performs well compared to hh then
it follows that this algorithm performs well compared
to the current state of the art. We compare our new
algorithms to hh in Section 8.3.

The notions of reach and highway hierarchies have
different motivations: The former is aimed at pruning
the shortest path search, while the latter takes advan-
tage of inherent road hierarchy to restrict the search to
a smaller subgraph. However, as we shall see, the two
approaches are related. Vertices pruned by reach have
low reach values and as a result belong to a low level of
the highway hierarchy.

In this paper we study the reach method and its
relationship to the hh algorithm. We develop a shortest
path algorithm based on improved reach pruning that
is competitive with hh. Then we combine it with alt
to make queries even faster.

The first contribution of our work is the introduc-
tion of several variants of the reach algorithm, includ-
ing bidirectional variants that do not need explicit lower
bounds. We also introduce the idea of adding shortcut

arcs to reduce vertex reaches. A small number of short-
cuts (less than n, the number of vertices) drastically
speeds up the preprocessing and the query of the reach-
based method. The performance of the algorithm that
implements these improvements (which we call re) is
similar to that of hh. We then show that the techniques
behind re and alt can be combined in a natural way,
leading to a new algorithm, real. On road networks,
the time it takes for real to answer a query and the
number of vertices it scans are much lower than those
for re and hh.

Furthermore, we suggest an interpretation of hh in
terms of reach, which explains the similarities between

the preprocessing algorithms of Gutman, hh, and re.
It also shows why hh cannot be combined with alt as
naturally as re can.

In short, our results lead to a better understanding
of several recent P2P algorithms, leading to simplifi-
cation and improvement of the underlying techniques.
This, in turn, leads to practical algorithms. For the
graph of the road network of North America (which has
almost 30 million vertices), finding the fastest route be-
tween two random points takes less than 4 milliseconds
on a standard workstation, while scanning fewer than
2 000 vertices on average. Local queries are even faster.

Due to the page limit, we omit some details, proofs, and

experimental results. A full version of the paper is available

as a technical report [14].

2 Preliminaries

The input to the preprocessing stage of a P2P algorithm
is a directed graph G = (V,A) with n vertices and
m arcs, and nonnegative lengths `(a) for every arc a.
The query stage also has as inputs a source s and a
sink t. The goal is to find a shortest path from s to
t. We denote by dist(v, w) the shortest-path distance
from vertex v to vertex w with respect to `. In general,
dist(v, w) 6= dist(w, v).

The labeling method for the shortest path prob-
lem [22, 23] finds shortest paths from the source to
all vertices in the graph. The method works as fol-
lows (see e.g. [32]). It maintains for every vertex v
its distance label d(v), parent p(v), and status S(v) ∈
{unreached, labeled, scanned}. Initially d(v) = ∞,
p(v) = nil, and S(v) = unreached for every ver-
tex v. The method starts by setting d(s) = 0 and
S(s) = labeled. While there are labeled vertices, the
method picks a labeled vertex v, relaxes all arcs out of
v, and sets S(v) = scanned. To relax an arc (v, w),
one checks if d(w) > d(v) + `(v, w) and, if true, sets
d(w) = d(v) + `(v, w), p(w) = v, and S(w) = labeled.

If the length function is nonnegative, the labeling
method terminates with correct shortest path distances
and a shortest path tree. Its efficiency depends on the
rule to choose a vertex to scan next. We say that
d(v) is exact if it is equal to the distance from s to v.
Dijkstra [5] (and independently Dantzig [3]) observed
that if ` is nonnegative and v is a labeled vertex with
the smallest distance label, then d(v) is exact and each
vertex is scanned once. We refer to the labeling method
with the minimum label selection rule as Dijkstra’s

algorithm. If ` is nonnegative then Dijkstra’s algorithm
scans vertices in nondecreasing order of distance from s
and scans each vertex at most once.

For the P2P case, note that when the algorithm is
about to scan the sink t, we know that d(t) is exact and
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the s-t path defined by the parent pointers is a shortest
path. We can terminate the algorithm at this point.
Intuitively, Dijkstra’s algorithm searches a ball with s
in the center and t on the boundary.

One can also run Dijkstra’s algorithm on the reverse

graph (the graph with every arc reversed) from the sink.
The reverse of the t-s path found is a shortest s-t path
in the original graph.

The bidirectional algorithm [3, 7, 26] alternates
between running the forward and reverse versions of
Dijkstra’s algorithm, each maintaining its own set of
distance labels. We denote by df (v) the distance label
of a vertex v maintained by the forward version of
Dijkstra’s algorithm, and by dr(v) the distance label
of a vertex v maintained by the reverse version. (We
will still use d(v) when the direction would not matter
or is clear from the context.) During initialization, the
forward search scans s and the reverse search scans
t. The algorithm also maintains the length of the
shortest path seen so far, µ, and the corresponding
path. Initially, µ = ∞. When an arc (v, w) is relaxed
by the forward search and w has already been scanned
by the reverse search, we know the shortest s-v and
w-t paths have lengths df (v) and dr(w), respectively.
If µ > df (v) + `(v, w) + dr(w), we have found a path
shorter than those seen before, so we update µ and its
path accordingly. We perform similar updates during
the reverse search. The algorithm terminates when the
search in one direction selects a vertex already scanned
in the other. A better criterion (see [16]) is to stop
the algorithm when the sum of the minimum labels of
labeled vertices for the forward and reverse searches
is at least µ, the length of the shortest path seen so
far. Intuitively, the bidirectional algorithm searches two
touching balls centered at s and t.

Alternating between scanning a vertex by the for-
ward search and scanning a vertex by the reverse search
balances the number of scanned vertices between these
searches. One can, however, coordinate the progress
of the two searches in any other way and, as long as
we stop according to one of the rules mentioned above,
correctness is preserved. Balancing the work of the for-
ward and reverse searches is a strategy guaranteed to
be within a factor of two of the optimal strategy, which
is the one that splits the work between the searches to
minimize the total number of scanned vertices. Also
note that remembering µ is necessary, since there is no
guarantee that the shortest path will go through the
vertex at which the algorithm stops.

3 Reach-Based Pruning

The following definition of reach is due to Gutman [17].
Given a path P from s to t and a vertex v on P , the reach

of v with respect to P is the minimum of the length of
the prefix of P (the subpath from s to v) and the length
of the suffix of P (the subpath from v to t). The reach

of v, r(v), is the maximum, over all shortest paths P
that contain v, of the reach of v with respect to P . (For
now, assume that the shortest path between any two
vertices is unique; Section 5 discusses this issue in more
detail.)

Let r(v) be an upper bound on r(v), and let
dist(v, w) be a lower bound on dist(v, w). The following
fact allows the use of reaches to prune Dijkstra’s search:

Suppose r(v) < dist(s, v) and r(v) < dist(v, t).
Then v is not on the shortest path from s to
t, and therefore Dijkstra’s algorithm does not
need to label or scan v.

Note that this also holds for the bidirectional algorithm.
To compute reaches, it suffices to look at all shortest

paths in the graph and apply the definition of reach to
each vertex on each path. A more efficient algorithm
is as follows. Initialize r(v) = 0 for all vertices v. For
each vertex x, grow a complete shortest path tree Tx

rooted at x. For every vertex v, determine its reach
rx(v) within the tree, given by the minimum between
its depth (the distance from the root) and its height (the
distance to its farthest descendant). If rx(v) > r(v),
update r(v). This algorithm runs in Õ(nm) time, which
is still impractical for large graphs. On the largest one
we tested, which has around 30 million vertices, this
computation would take years on existing workstations.

Note that, if one runs this algorithm from only a few
roots, one will obtain valid lower bounds for reaches.
Unfortunately, the query algorithm needs good upper

bounds to work correctly. Upper bounding algorithms
are considerably more complex, as Section 5 will show.

4 Queries Using Upper Bounds on Reaches

In this section, we describe how to make the bidirec-
tional Dijkstra’s algorithm more efficient assuming we
have upper bounds on the reaches of every vertex. As
described in Section 3, to prune the search based on
the reach of some vertex v, we need a lower bound on
the distance from the source to v and a lower bound on
the distance from v to the sink. We show how we can
use lower bounds implicit in the search itself to do the
pruning, thus obtaining a new algorithm.

During the bidirectional Dijkstra’s algorithm, con-
sider the search in the forward direction, and let γ be
the smallest distance label of a labeled vertex in the
reverse direction (i.e., the topmost label in the reverse
heap). If a vertex v has not been scanned in the re-
verse direction, then γ is a lower bound on the distance
from v to the destination t. (The same idea applies to
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Figure 1: Bidirectional bound algorithm. Assume v is about to be scanned in the forward direction, has not yet been
scanned in the reverse direction, and that the smallest distance label of a vertex not yet scanned in the reverse direction
is γ. Then v can be pruned if r̄(v) < df (v) and r̄(v) < γ.

the reverse search: we use the topmost label in the for-
ward heap as a lower bound on the distance from s for
unscanned vertices in the reverse direction.) When we
are about to scan v we know that df (v) is the distance
from the source to v. So we can prune the search at v
if all the following conditions hold: (1) v has not been
scanned in the reverse direction, (2) r̄(v) < df (v), and
(3) r̄(v) < γ. When using these bounds, the stopping
criterion is the same as for the standard bidirectional
algorithm (without pruning). We call the resulting pro-
cedure the bidirectional bound algorithm. See Figure 1.

An alternative is to use the distance label of the
vertex itself for pruning. Assume we are about to scan
a vertex v in the forward direction (the procedure in
the reverse direction is similar). If r(v) < df (v), we
prune the vertex. Note that if the distance from v
to t is at most r(v), the vertex will still be scanned
in the reverse direction, given the appropriate stopping
condition. More precisely, we stop the search in a given
direction when either there are no labeled vertices or
the minimum distance label of labeled vertices for the
corresponding search is at least half the length of the
shortest path seen so far. We call this the self-bounding

algorithm.
The reason why the self-bounding algorithm can

safely ignore the lower bound to the destination is that
it leaves to the other search to visit vertices that are
closer to it. Note, however, that when scanning an arc
(v, w), even if we end up pruning w, we must check if
w has been scanned in the opposite direction and, if
so, check whether the candidate path using (v, w) is the
shortest path seen so far.

The following natural algorithm falls into both of
the above categories. The algorithm balances the radius
of the forward and reverse search regions by picking the
labeled vertex with minimum distance label considering
both search directions. Note that the distance label of
this vertex is also a lower bound on the distance to the

target, as the search in the opposite direction has not
selected the vertex yet. We refer to this algorithm as
distance-balanced. Note that one could also use explicit
lower bounds in combination with the implicit bounds.

We call our implementation of the bidirectional
Dijkstra’s algorithm with reach-based pruning re. The
query is distance-balanced and uses two optimizations:
early pruning and arc sorting. The former avoids
labeling unscanned vertices if reach and distance bounds
justify this. The latter uses adjacency lists sorted
in decreasing order by the reach of the head vertex,
which allows some vertices to be early-pruned without
explicitly looking at them. The resulting code is simple,
with just a few tests added to the implementation of the
bidirectional Dijkstra’s algorithm.

5 Preprocessing

In this section we present an algorithm for efficiently
computing upper bounds on vertex reaches. Our algo-
rithm combines three main ideas, two introduced in [17],
and the third implicit in [28].

The first idea is the use of partial trees. Instead
of running a full shortest path computation from each
vertex, which is expensive, we stop these computations
early and use the resulting partial shortest path trees,
which contain all shortest paths with length lower than a
certain threshold. These trees allow us to divide vertices
into two sets, those with small reaches and those with
large reaches. We obtain upper bounds on the reaches of
the former vertices. The second idea is to delete these
low-reach vertices from the graph, replacing them by
penalties used in the rest of the computation. Then
we recursively bound reaches of the remaining vertices.
The third idea is to introduce shortcuts arcs to reduce
the reach of some vertices. This speeds up both the
preprocessing (since the graph will shrink faster) and
the queries (since more vertices will be pruned).
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The preprocessing algorithm works in two phases:
during the main phase, partial trees are grown and
shortcuts are added; this is followed by the refinement

phase, when high-reach vertices are re-evaluated in
order to improve their reach bounds.

The main phase uses two subroutines: one adds
shortcuts to the graph (shortcut step), and the other
runs the partial-trees algorithm and eliminates low-
reach vertices (partial-trees step). The main phase starts
by applying the shortcut step. Then it proceeds in
iterations, each associated with a threshold εi (which
increases with i, the iteration number). Each iteration
applies a partial-trees step followed by the shortcut step.
By the end of the i-th iteration, the algorithm eliminates
every vertex which it can prove has reach less than
εi. If there are still vertices left in the graph, we set
εi+1 = α εi (for some α > 1) and proceed to the next
iteration.

Approximate reach algorithms, including ours, need
the notion of a canonical path, which is a shortest
path with additional properties. In particular, between
every pair (s, t) there is a unique canonical path. We
implement canonical paths as follows. For each arc a, we
generate a length perturbation `′(a). When computing
the length of a path, we separately sum lengths and
perturbations along the path, and use the perturbation
to break ties in path lengths.

Next we briefly discuss the major components of
the algorithm. Due to space limitations, we discuss
a variant based on vertex reaches. We indeed use
vertex reaches for pruning the query, but our best
preprocessing algorithm uses arc reaches instead to gain
efficiency (see [14] for details). The main ideas behind
our arc-based preprocessing are the same as for the
vertex-based version that we describe.

5.1 Growing Partial Trees. To gain intuition on
the construction and use of partial trees, we consider
a graph such that all shortest paths are unique (and
therefore canonical) and a parameter ε. We outline
an algorithm that partitions vertices into two groups,
those with high reach (ε or more) and those with low
reach (less than ε). For each vertex x in the graph, the
algorithm runs Dijkstra’s shortest path algorithm from
x with an early termination condition. Let T be the
current tentative shortest path tree maintained by the
algorithm, and let T ′ be the subtree of T induced by the
scanned vertices. Note that any path in T ′ is a shortest
path. The tree construction stops when for every leaf y
of T ′, one of two conditions holds: (1) y is a leaf of T or
(2) the length of the x′-y path in T ′ is at least 2ε, where
x′ is the vertex adjacent to x on the x-y path in T ′.

Let Tx, the partial tree of x, denote T ′ at the time

the tree construction stops. The algorithm marks all
vertices that have reach at least ε with respect to a path
in Tx as high-reach vertices.

It is clear that the algorithm will never mark
a vertex whose reach is less than ε, since its reach
restricted to the partial trees cannot be greater than
its actual reach. Therefore, to prove the correctness of
the algorithm, it is enough to show that every vertex
v with high reach is marked at the end. Consider a
minimal canonical path P such that the reach of v with
respect to P is high (at least ε). Let x and y be the first
and the last vertices of P , respectively. Consider Tx.
By uniqueness of shortest paths, either P is a path in
Tx, or P contains a subpath of Tx that starts at x and
ends at a leaf, z, of Tx. In the former case v is marked.
For the latter case, note that z cannot be a leaf of T as
z has been scanned and the shortest path P continues
past z. The distance from x to v is at least ε and the
distance from x′, the successor of x on P , to v is less
than ε (otherwise P would not be minimal). By the
algorithm, the distance from x′ to z is at least 2ε and
therefore the distance from v to z is at least ε. Thus in
this case v is also marked.

Note that long arcs pose an efficiency problem for
this approach. For example, if x has an arc with
length 100ε adjacent to it, the depth of Tx is at least
102ε. Building Tx will be expensive. All partial-tree-
based preprocessing algorithms, including ours, deal
with this problem by building smaller trees in such
cases and potentially classifying some low-reach vertices
as having high reach. This results in weaker upper
bounds on reaches and potentially slower query times,
but correctness is preserved.

Our algorithm builds the smaller trees as follows.
Consider a partial shortest path tree Tx rooted at a
vertex x, and let v 6= x be a vertex in this tree. Let f(v)
be the vertex adjacent to x on the shortest path from x
to v. The inner circle of Tx is the set containing the root
x and all vertices v ∈ Tx such that d(v)− `(x, f(v)) ≤ ε.
We call vertices in the inner circle inner vertices; all
other vertices in Tx are outer vertices. The distance

from an outer vertex w to the inner circle is defined
in the obvious way, as the length of the path (in Tx)
between the closest (to w) inner vertex and w itself.
The partial tree stops growing when all labeled vertices
are outer vertices and have distance to the inner circle
greater than ε.

Our preprocessing runs the partial-trees algorithm
in iterations, multiplying the value of ε by a constant α,
each time it starts a new iteration. Iteration i applies
the partial-trees algorithm to a graph Gi = (Vi, Ai).
This is the graph induced by all arcs that have not been
eliminated yet (considering not only the original arcs,
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but also shortcuts added in previous iterations). All
vertices in Vi have reach estimates above εi−1 (for i > 1).
To compute valid upper bounds for them, the partial-
trees algorithm must take into account the vertices that
have been deleted. It does so by using the concept
of penalties, which implicitly increase the depths and
heights of vertices in the partial trees. This ensures the
algorithm will compute correct upper bounds.

Next we introduce arc reaches, which are similar to
vertex reaches but carry more information and lead to
faster preprocessing. They are useful for defining the
penalties as well.

5.2 Arc Reaches. Let (v, w) be an arc on the short-
est path P between s and t. The reach of this arc with
respect to P is the minimum of the length of the prefix
of P (the distance between s and w) and the length of
the suffix of P (the distance between v and t). Note
that the arc belongs to both the prefix and the suffix
(a definition that excluded the arc from both would be
equivalent). The arc reach of (v, w) with respect to the
entire graph, denoted by r(v, w), is the maximum reach
of this arc with respect to all shortest paths P contain-
ing it.

During the partial-trees algorithm, we actually try
to bound arc reaches instead of vertex reaches—the
procedure is essentially the same as described before,
and arc reaches are more powerful (the reach of an arc
may be much smaller than the reaches of its endpoints).
Once all arc reaches are bounded, they are converted
into vertex reaches: a valid upper bound on the reach
of a vertex can be obtained from upper bounds on the
reaches of all incident arcs.

Penalties are computed as follows. The in-penalty

of a vertex v ∈ Vi is defined as

in-penalty(v) = max
(u,v)∈A+:(u,v)6∈Ai

{r̄(u, v)},

if v has at least one eliminated incoming arc, and zero
otherwise. In this expression, A+ is the set of original
arcs augmented by the shortcuts added up to iteration
i. The out-penalty of v is defined similarly, considering
outgoing arcs instead of incoming arcs:

out-penalty(v) = max
(v,w)∈A+:(v,w)6∈Ai

{r̄(v, w)}.

If there is no outgoing arc, the out-penalty is zero.
The partial-trees algorithm works as described

above, but increases the lengths of path suffixes and
prefixes by out- and in-penalties, respectively, for the
purpose of reach computation.

5.3 Shortcut Step. We call a vertex v bypassable

if it has exactly two neighbors (u and w) and one of

the following condition holds: (1) v has exactly one
incoming arc, (u, v), and one outgoing arc, (v, w); or
(2) v has exactly two outgoing arcs, (v, u) and (v, w),
and exactly two incoming arcs, (u, v) and (w, v). In the
first case, we say v is a candidate for a one-way bypass;
in the second, v is a candidate for a two-way bypass.
Shortcuts are used to go around bypassable vertices.

A line is a path in the graph containing at least
three vertices such that all vertices, except the first
and the last, are bypassable. Every bypassable vertex
belongs to exactly one line, which can either be one-

way or two-way. Once a line is identified, we may
bypass it. The simplest approach would be to do it
in a single step: if its first vertex is u and the last
one is w, we can simply add a shortcut (u,w) (and
(w, u), in case it is a two-way line). The length and
the perturbation associated with the shortcut is the
sum of the corresponding values of the arcs it bypasses.
We break the tie thus created by making the shortcut
preferred (i.e., implicitly shorter). If v is a bypassed
vertex, any shortest path that passes through u and
w will no longer contain v. This potentially reduces
the reach of v. If the line has more than two arcs, we
actually add “sub-lines” as well: we recursively process
the left half, then the right half, and finally bypass the
entire line. This reduces reaches even further, as the
example in Figure 2 shows.

Once a vertex is bypassed, we immediately delete
it from the graph to speed up the reach computation.
As long as the appropriate penalties are assigned to its
neighbors, the computation will still find valid upper
bounds on all reaches.

One issue with the addition of shortcuts is that they
may be very long, which can hurt the performance of
the partial-trees algorithm in future iterations. To avoid
this, we limit the length of shortcuts that may be added
in iteration i to at most εi+1/2.

5.4 The Refinement Phase. The fact that penal-
ties are used to help compute valid upper bounds tends
to make the upper bounds less tight (in absolute terms)
as the algorithm progresses, since penalties become
higher. Therefore, additive errors tend to be larger for
vertices that remain in the graph after several itera-
tions. Since they have high reach, they are visited by
more queries than other vertices. If we could make these
reaches more precise, the query would be able to prune
more vertices. This is the goal of the refinement phase

of our algorithm: it recomputes the reach estimates of
the δ vertices with highest (upper bounds on) reaches
found during the main step, where δ is a user-defined
parameter (we used δ = d10√

ne).
Let Vδ be this set of high-reach vertices of G. To
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Figure 2: In this graph, (s, u), (u, x), (x, v), (v, y), (y, w), and (w, t) are the original edges (for simplicity, the graph is
undirected). Without shortcuts, their reaches are r(s) = 0, r(u) = 20, r(x) = 30, r(v) = 36, r(y) = 29, r(w) = 18, and
r(t) = 0. If we add just shortcut (u, w), the reaches of three vertices are reduced: r(x) = 19, r(v) = 12, and r(y) = 19. If
we also add shortcuts (u, v) and (v, w), the reaches of x and y are reduced even further, to r(x) = r(y) = 0.

recompute the reaches, we first determine the subgraph
Gδ = (Vδ, Aδ) induced by Vδ. This graph contains
not only original arcs, but also the shortcuts between
vertices in Vδ added during the main phase. We
then run an exact vertex reach computation on Gδ by
growing a complete shortest path tree from each vertex
in Vδ. Because these shortest path trees include vertices
in Gδ only, we still have to use penalties to account for
the remaining vertices.

5.5 Additional Parameters. The choice of ε1 and
α is a tradeoff between preprocessing efficiency and the
quality of reaches and shortcuts. To choose ε1, we first
pick k = min{500, bd√ne/3c} vertices at random. For
each vertex, we compute the radius of a partial shortest
path tree with exactly bn/kc scanned vertices. (This
radius is the distance label of the last scanned vertex.)
Then we set ε1 to be twice the minimum of all k radii.
We use α = 3.0 until we reach an iteration in the
main phase where the number of vertices is smaller than
δ, then we reduce it to 1.5. This change allows the
algorithm to add more shortcuts in the final iterations.
The refinement step ensures that the reach bounds of
the last δ vertices are still good.

6 Reach and the ALT Algorithm

6.1 A∗ Search and the ALT Algorithm. A poten-

tial function is a function from the vertices of a graph G
to reals. Given a potential function π, the reduced cost

of an arc is defined as `π(v, w) = `(v, w) − π(v) + π(w).
Suppose we replace the original distance function ` by
`π. Then for any two vertices x and y, the length of
every x-y path (including the shortest) changes by the
same amount, π(y) − π(x). Thus the problem of find-
ing shortest paths in G is equivalent to the problem of
finding shortest paths in the transformed graph.

Now suppose we are interested in finding the short-
est path from s to t. Let πf be a (perhaps domain-
specific) potential function such that πf (v) gives an es-
timate on the distance from v to t. In the context of

this paper, A∗ search [6, 18] is an algorithm that works
like Dijkstra’s algorithm, except that at each step it se-
lects a labeled vertex v with the smallest key, defined
as kf (v) = df (v) + πf (v), to scan next. It is easy to see
that A∗ search is equivalent to Dijkstra’s algorithm on
the graph with length function `πf

. If πf is such that
`πf

is nonnegative for all arcs (i.e., if πf is feasible), the
algorithm will find the correct shortest paths. We refer
to the class of A∗ search algorithms that use a feasi-
ble function πf with πf (t) = 0 as lower-bounding algo-

rithms. As shown in [16], better estimates lead to fewer
vertices being scanned. In particular, a lower-bounding
algorithm with a nonnegative potential function visits
no more vertices than Dijkstra’s algorithm, which uses
the zero potential function.

We combine A∗ search and bidirectional search as
follows. Let πf be the potential function used in the
forward search and let πr be the one used in the reverse
search. Since the latter works in the reverse graph, each
original arc (v, w) appears as (w, v), and its reduced cost
w.r.t. πr is `πr

(w, v) = `(v, w) − πr(w) + πr(v), where
`(v, w) is in the original graph. We say that πf and
πr are consistent if, for all arcs (v, w), `πf

(v, w) in the
original graph is equal to `πr

(w, v) in the reverse graph.
This is equivalent to πf + πr = const.

If πf and πr are not consistent, the forward and
reverse searches use different length functions. When
the searches meet, we have no guarantee that the
shortest path has been found. Assume πf and πr

give lower bounds to the sink and from the source,
respectively. We use the average function suggested by
Ikeda et al. [19], defined as pf (v) = (πf (v) − πr(v))/2
for the forward computation and as pr(v) = (πr(v) −
πf (v))/2 = −pf (v) for the reverse one. Although pf

and pr usually do not give lower bounds as good as the
original ones, they are feasible and consistent.

The alt algorithm [13, 16] is based on A∗ and
uses landmarks and triangle inequality to compute
feasible lower bounds. We select a small subset of
vertices as landmarks and, for each vertex in the graph,
precompute distances to and from every landmark.
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Consider a landmark L: if d(·) is the distance to L, then,
by the triangle inequality, d(v) − d(w) ≤ dist(v, w); if
d(·) is the distance from L, d(w)−d(v) ≤ dist(v, w). To
get the tightest lower bound, one can take the maximum
of these bounds, over all landmarks. Intuitively, the best
lower bound on dist(v, w) is given by a landmark that
appears “before” v or “after” w. We use the version of
alt algorithm used in [16], which balances the work of
the forward search and the reverse search.

6.2 Reach and A∗ search. Reach-based pruning
can be easily combined with A∗ search. Gutman [17]
noticed this in the context of unidirectional search. The
general approach is to run A∗ search and prune vertices
(or arcs) based on reach conditions. When A∗ is about
to scan a vertex v, we can extract the length of the
shortest path from the source to v from the key of
v (recall that kf (v) = df (v) + πf (v)). Furthermore,
πf (v) is a lower bound on the distance from v to the
destination. If the reach of v is smaller than both df (v)
and πf (v), we prune the search at v.

The reason why reach-based pruning works is that,
although A∗ search uses transformed lengths, the short-
est paths remain invariant. This applies to bidirectional
search as well. In this case, we use df (v) and πf (v) to
prune in the forward direction, and dr(v) and πr(v) to
prune in the reverse direction. Pruning by reach does
not affect the stopping condition of the algorithm. We
still use the usual condition for A∗ search, which is sim-
ilar to that of the standard bidirectional Dijkstra, but
with respect to reduced costs [16]. We call our imple-
mentation of the bidirectional A∗ search algorithm with
landmarks and reach-based pruning real. As in alt,
we used a version of real that balances the work of the
forward search and the reverse search. Our implemen-
tation of real uses variants of early pruning and arc
sorting, modified for the context of A∗ search.

Note that we cannot use implicit bounds with A∗

search. The implicit bound based on the radius of the
ball searched in the opposite direction does not apply
because the ball is in the transformed space. The self-
bounding algorithm cannot be combined with A∗ search
in a useful way, because it assumes that the two searches
will process balls of radius equal to half of the s-t
distance. This defeats the purpose of A∗ search, which
aims at processing a smaller set.

The main gain in the performance of A∗ search
comes from the fact that it directs the two searches
towards their goals, reducing the search space. Reach-
based pruning sparsifies search regions, and this sparsifi-
cation is effective for regions searched by both Dijkstra’s
algorithm and A∗ search.

Note that real has two preprocessing algorithms:

the one used by re (which computes shortcuts and
reaches) and the one used by alt (which chooses land-
marks and computes distances from all vertices to it).
These two procedures are independent from each other:
since shortcuts do not change distances, landmarks can
be generated regardless of what shortcuts are added.
Furthermore, the query is still independent of the pre-
processing algorithm: the query only takes as input the
graph with shortcuts, the reach values, and the dis-
tances to and from landmarks. The actual algorithms
used to obtain this data can be changed at will.

7 Other Reach Definitions and Related Work

7.1 Gutman’s Algorithm. In [17], Gutman com-
putes shortest routes with respect to travel times. How-
ever, his algorithm, which is unidirectional, uses Eu-
clidean bounds on travel distances, not times. This re-
quires a more general definition of reach, which involves,
in addition to the metric induced by graph distances
(native metric), another metric M , which can be dif-
ferent. To define reach, one considers native shortest
paths, but takes subpath lengths and computes reach
values for M -distances. It is easy to see how these
reaches can be used for pruning. Note that Gutman’s
algorithm can benefit from shortcuts, although he does
not use them. All our algorithms have natural distance
bounds for the native metric, so we use it as M .

Other major differences between re and Gutman’s
algorithm are as follows. First, re is bidirectional,
and bidirectional shortest path algorithms tend to scan
fewer vertices than unidirectional ones. Second, re uses
implicit lower bounds and thus does not need the vertex
coordinates required by Gutman’s algorithm. Finally,
re preprocessing creates shortcuts, which Gutman’s
algorithm does not. There are some other differences
in the preprocessing algorithm, but their effect on
performance is less significant. In particular, we do
not grow partial trees from eliminated vertices, which
requires a slightly different interpretation of penalties.

A variant of Gutman’s algorithm uses A∗ search
with Euclidean lower bounds. In addition to the
differences mentioned in the previous paragraph, real
differs in using tighter landmark-based lower bounds.

7.2 Cardinality Reach and Highway Hierar-

chies. We now discuss the relationship between our
reach-based algorithm (re) and the hh algorithm of
Sanders and Schultes. Since hh is described for undi-
rected graphs, we restrict the discussion to this case.

We introduce a variant of reach that we call c-reach
(cardinality reach). Given a vertex v on a shortest path
P , grow equal-cardinality balls centered at its endpoints
until v belongs to one of the balls. Let cP (v) be the
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Table 1: Road Networks

name description vertices arcs latitude (N) longitude (W)

NA North America 29 883 886 70 297 895 [−∞, +∞] [−∞, +∞]
E Eastern USA 4 256 990 10 088 732 [24.0; 50.0] [−∞; 79.0]

NW Northwest USA 1 649 045 3 778 225 [42.0; 50.0] [116.0; 126.0]
COL Colorado 585 950 1 396 345 [37.0; 41.0] [102.0; 109.0]
BAY Bay Area 330 024 793 681 [37.0; 39.0] [121; 123]

cardinality of each of the balls at this point. The c-
reach of v, c(v), is the maximum, over all shortest paths
P , of cP (v). Note that if we replace cardinality with
radius, we get the definition of reach. To use c-reach
for pruning the search, we need the following values.
For a vertex v and a nonnegative integer i, let ρ(v, i)
be the radius of the smallest ball centered at v that
contains i vertices. Consider a search for the shortest
path from s to t and a vertex v. We do not need to
scan v if ρ(s, c(v)) < dist(s, v) and ρ(t, c(v)) < dist(v, t).
Implementation of this pruning method would require
maintaining n − 1 values of ρ for every vertex.

The main idea behind hh preprocessing is to use the
partial-trees algorithm for c-reaches instead of reaches.
Given a threshold h, the algorithm identifies vertices
that have c-reach below h (local vertices). Consider a
bidirectional search. During the search from s, once the
search radius advances past ρ(s, h), one can prune local
vertices in this search. One can do similar pruning for
the reverse search. This idea is applied recursively to
the graph with low c-reach vertices deleted. This gives a
hierarchy of vertices, in which each vertex needs to store
a ρ-value for each level of the hierarchy it is present at.
The preprocessing phase of hh also shortcuts lines and
uses other heuristics to reduce the graph size at each
iteration.

An important property of the hh query algorithm,
which makes it similar to the self-bounding algorithm
discussed in Section 4, is that the search in a given
direction never goes to a lower level of the hierarchy.
Our self-bounding algorithm can be seen as having a
“continuous hierarchy” of reaches: once a search leaves
a reach level, it never comes back to it. Like the self-
bounding algorithm, hh cannot be combined with A∗

search in a natural way.

8 Experimental Results

8.1 Experimental Setup. We implemented our al-
gorithms in C++ and compiled them with Microsoft
Visual C++ 7.0. All tests were performed on an AMD
Opteron with 16 GB of RAM running Microsoft Win-
dows Server 2003 at 2.4 GHz.

We use a standard cache-efficient graph represen-

tation. All arcs are stored in a single array, with each
arc represented by its head and its length.1 The ar-
ray is sorted by arc tail, so all outgoing arcs from a
vertex appear consecutively. An array of vertices maps
the identifier of a vertex to the position (in the list of
arcs) of the first element of its adjacency list. All query
algorithms use standard four-way heaps.

We conduct most of our tests on road networks.
We test our algorithm on the five graphs described
in Table 1. The first graph in the table, North
America (NA), was extracted from Mappoint.NET data
and represents Canada, the United States (including
Alaska), and the main roads of Mexico. The other
four instances are representative subgraphs of NA (for
tests on more subgraphs, see [14]). All graphs are
directed and biconnected. We ran tests with two length
functions: travel times and travel distances.

For a comparison with hh, we use the graph of the
United States built by Sanders and Schultes [28] based
on Tiger-Line data [35]. Because our implementations
of alt and real assume the graph to be connected (to
simplify implementation), we only take the largest con-
nected component of this graph, which contains more
than 98.6% of the vertices. The graph is undirected,
and we replace each edge {v, w} by arcs (v, w) and
(w, v). Our version of the graph (which we call USA)
has 23 947 347 vertices and 57 708 624 arcs.

We also performed experiments with grid graphs.
Vertices of an x×y grid graph correspond to points on a
two-dimensional grid with coordinates i, j for 0 ≤ i < x
and 0 ≤ j < y. Each vertex has arcs to the vertices to
its left, right, up, and down neighbors, if present. Arc
lengths are integers chosen uniformly at random from
[1, 1024]. We use square grids (i.e., x = y).

Unless otherwise noted, in each experiment we run
the algorithms with a fixed set of parameters. For alt
we use the same parameters as in [16]: for each graph we
generated one set of 16 maxcover landmarks, and each s-
t search uses dynamic selection to pick between two and

1The length is stored as a 16-bit integer on the original graphs

and as a 32-bit integer for the graphs with shortcuts. The head

is always a 32-bit integer.
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six of those. The same set of landmarks was also used
by real. Upper bounds on reaches were generated with
the algorithm described in Section 5. The reaches thus
obtained (alongside with the corresponding shortcuts)
were used by both re and real.

8.2 Road Networks. Tables 2 and 3 present the
results obtained by our algorithms when applied to the
Mappoint.NET graphs with the travel-time and travel-
distance metrics, respectively. In these experiments,
we used 1000 random s-t pairs for each graph. We
give results for preprocessing, average-case performance,
and worst-case performance. For queries, we give both
absolute numbers and the speedup with respect to an
implementation of the bidirectional Dijkstra’s algorithm
(to which we refer as b).

For queries, the running time generally increases
with graph size. While the complexity of alt grows
roughly linearly with the graph size, re and real scale
better. For small graphs, alt is competitive with re,
but for large graphs the latter is more than 20 times
faster. real is 3 to 4 times faster than re.

In terms of preprocessing, we note that computing
landmarks is significantly faster than finding good upper
bounds on reaches. However, landmark data (with a
reasonable number of landmarks) takes up more space
than reach data; compare the space usage of re and
alt. In fact, the reaches themselves are a minor part
(less than 20%) of the total space required by re.
The rest of the space is used up by the graph with
shortcuts (typically, the number of arcs increases by
35% to 55%) and by the shortcut translation map, used
to convert shortcuts into its constituent arcs. The time
for actually performing this conversion after each query
is not taken into account in our experiments, since not
all applications require it.

Next we compare the results for the two metrics.
With the travel distance metric, the superiority of high-
ways over local roads becomes much less pronounced
than with travel times. As a result, re become twice
as slow for queries, and preprocessing takes 2.5 times
longer on NA. On the other hand, alt queries slow
down only by about 20%, and preprocessing slows down
even less. Changes in the performance of real fall in-
between, which implies that its speedup with respect
to re becomes higher (on NA, real visits less than one
tenth as many vertices as re on average). All algorithms
require a similar amount of space for travel times and
for travel distances. While not quite as good as with
travel times, the performance for travel distances is still
excellent: real can find a shortest path on NA in less
than 6 milliseconds on average.

While s and t are usually far apart on random s-

t pairs, queries for driving directions tend to be more
local. We used an idea from [28] to generate queries
with different degrees of locality for NA. See Figure 3.
When s and t are close together, alt visits fewer vertices
than re. However, since the asymptotic performance of
alt is worse, re quickly surpasses it as s and t get
farther apart. real is the best algorithm in every case.
Comparing plots for travel time and distance metrics,
we note that alt is less affected by the metric change
than the other algorithms.

8.3 Comparison to Highway Hierarchies. As al-
ready mentioned, hh is the most practical of the pre-
vious P2P algorithms. Recall that hh works for undi-
rected graphs only, while our algorithms work on di-
rected graphs (which are more general). To compare
our algorithms with hh, we use the (undirected) USA
graph. Data for hh on USA, which we take from [28] and
from a personal communication from Dominik Schultes,
is available for the travel time metric only.

We compare both operation counts and running
times. Since for all algorithms queries are based on
the bidirectional Dijkstra’s algorithm, comparing the
number of vertices scanned is informative. For the
running times, note that the hh experiments were
conducted on a somewhat different machine. It was
slightly slower than ours: an AMD Opteron running at
2.2 GHz (ours is an AMD Opteron running at 2.4 GHz)
using the Linux operating system (ours uses Windows).
Furthermore, implementation styles may be different.
This introduces an extra error margin in the running
time comparison. (To emphasize this, we use ≈ when
stating running times for hh in Table 4.) However,
comparing running times gives a good sanity check, and
is necessary for preprocessing algorithms, which differ
more than the query algorithms.

While in all our experiments we give the maximum
number of vertices visited during the 1 000 queries we
tested, Sanders and Schultes also obtain an upper bound
on the worst-case number by running the search from
each vertex in the graph to an unreachable dummy
vertex and doubling the maximum number of vertices
scanned. We did the same for re. Note that this
approach does not work for the landmark-based algo-
rithms, as preprocessing would determine that no land-
mark is reachable to or from the dummy vertex. For
both metrics, the upper bound is about a factor 1.5
higher than the lower bound given by the maximum
over 1 000 trials, suggesting that the latter is a reason-
able approximation of the worst-case behavior.

Data presented in Table 4 for the travel time metric
suggests that re and hh have similar performance and
memory requirements. real queries are faster, but

138



Table 2: Algorithm performance on road networks with travel times as arc lengths: total preprocessing time, total space
in disk required by the preprocessed data (in megabytes), average number of vertices scanned per query (over 1000 random
queries), maximum number of vertices scanned (over the same queries), and average running times. Query data shown in
both absolute values and as a speedup with respect to the bidirectional Dijkstra algorithm.

prep. disk query
time space avg scans max scans avg time

graph method (min) (MB) count spd count spd ms spd

BAY alt 0.7 26 4 052 29 54 818 5 3.39 16
re 3.2 19 1 590 74 3 438 85 1.17 48

real 3.9 40 290 404 1 691 172 0.45 123

COL alt 1.6 47 7 373 26 85 246 6 5.84 15
re 5.2 36 2 181 88 5 074 103 1.80 49

real 6.9 73 306 624 1 612 324 0.59 149

NW alt 3.9 132 14 178 36 144 082 8 12.52 21
re 17.5 100 2 804 184 5 877 203 2.39 112

real 21.4 204 367 1 408 1 513 789 0.73 365

E alt 15.2 342 35 044 42 487 194 8 44.47 18
re 84.7 255 6 925 212 13 857 277 7.06 116

real 99.9 523 795 1 843 4 543 844 1.61 510

NA alt 95.3 2 398 250 381 41 3 584 377 8 393.41 19
re 678.8 1 844 14 684 698 24 618 1 104 17.38 439

real 774.2 3 726 1 595 6 430 7 450 3 647 3.67 2 080

Table 3: Algorithm performance on road networks with travel distances as arc lengths: total preprocessing time, total
space in disk required by the preprocessed data (in megabytes), average number of vertices scanned per query (over 1000
random queries), maximum number of vertices scanned (over the same queries), and average running times. Query data
shown in both absolute values and as a speedup with respect to the bidirectional Dijkstra algorithm.

prep. disk query
time space avg scans max scans avg time

graph method (min) (MB) count spd count spd ms spd

BAY alt 0.8 27 3 383 35 42 192 7 3.25 18
re 4.6 19 2 761 43 6 313 45 2.05 28

real 5.4 41 335 356 2 717 105 0.45 128

COL alt 1.8 48 7 793 24 126 755 4 6.34 14
re 9.7 36 3 792 50 10 067 50 3.16 28

real 11.5 75 406 469 2 805 178 0.72 123

NW alt 4.2 136 20 662 26 426 069 3 21.61 12
re 21.3 101 4 217 125 10 630 121 3.81 71

real 25.4 208 478 1 103 3 058 419 0.89 302

E alt 14.6 353 43 737 35 582 663 7 61.98 15
re 158.9 258 14 025 108 28 144 141 13.28 69

real 173.4 537 1 142 1 323 7 097 560 2.27 404

NA alt 97.2 2 511 292 777 36 3 588 684 8 476.86 17
re 1 623.0 1 866 30 962 336 56 794 485 34.92 231

real 1 720.2 3 860 2 653 3 922 17 527 1 570 5.97 1 351
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Figure 3: Average number of scanned vertices for local queries on NA with travel times (left) and distances (right). The
horizontal axis refers to buckets with 1 000 pairs each. Each pair s-t in bucket i is such that s is chosen at random and t is
the j-th farthest vertex from s, where j is selected uniformly at random from the range (2i−1, 2i]. The vertical axis is in
log scale.

Table 4: Results for the undirected USA graph (same measures as in Table 2). For hh, averages are taken over 10 000
random queries (but the maximum is still taken over 1 000). For hh and re we also give an upper bound on the maximum
number of scans (ub). Data for hh with travel distances is not available.

prep. disk query
time space avg scans max scans avg time

metric method (min) (MB) count spd count spd ub ms spd

times alt 92.7 1 984 177 028 44 2 587 562 8 — 322.78 21
re 365.9 1 476 3 851 2 000 8 722 2 330 13 364 4.50 1 475

real 458.5 3 038 891 8 646 3 667 5 541 — 1.84 3 601
hh ≈ 258.0 1 457 3 912 1 969 5 955 3 412 8 678 ≈ 7.04 ≈ 937

distances alt 99.9 1 959 256 507 33 2 674 150 8 — 392.84 15
re 981.5 1 503 22 377 376 44 130 500 68 672 25.59 236

real 1 081.4 3 040 2 119 3 973 11 163 1 977 — 4.89 1 235

it needs more memory. alt queries are substantially
slower, but preprocessing is faster.

Lacking data for hh, we cannot compare it to our
algorithms for the travel distance metric. Performance
of our algorithms on USA with this metric is similar to
that on NA with the same metric. This suggests that
directed graphs are not much harder than undirected
ones for our algorithms. In contrast, with the travel
time metric, the performance of re (and, to a lesser
extent, real) is much better on USA than on NA.
This suggests that the hierarchy on the USA graph
with travel times is more evident than on NA, probably
because USA has a small number of road categories.

8.4 Grids. Although road networks are our motivat-
ing application, we also tested our algorithms on grid
graphs. As with road networks, for each graph we gen-
erated 1 000 pairs of vertices, each selected uniformly

at random. These graphs have no natural hierarchy of
shortest paths, which results in a large fraction of the
vertices having high reach. For these tests, we used the
same parameter settings as for road networks. It is un-
clear how much one can increase performance by tuning
parameter values. As preprocessing for grids is fairly
expensive, we limited the maximum grid size to about
half a million vertices. The results are shown in Table 5.

As expected, re does not get nearly as much
speedup on grids as it does on road networks (see
Tables 2 and 3). However, there is some speedup,
and it does grow (albeit slowly) with grid size. alt
is significantly faster than re: in fact, its speedup on
grids is comparable to that on road networks. However,
the speedup does not appear to change much with grid
size, and it is likely that for very large grids re would
be faster.

An interesting observation is that real remains the
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Table 5: Algorithm performance on grid graphs with random arc lengths. For each graph and each method, the table
shows the total time spent in preprocessing, the total size of the data stored on disk after preprocessing, the average
number of vertices scanned (over 1 000 random queries), the maximum number of vertices scanned (over the same queries),
and the average running time. For the last three measures, we show both the actual value and the speedup (spd) with
respect to b.

prep. disk query
time space avg scans max scans avg time

vertices method (min) (MB) count spd count spd msec spd

65 536 alt 0.2 6.2 686 29.6 8 766 5.5 0.52 17.6
re 12.3 5.2 5 514 3.7 10 036 4.8 3.09 2.9

real 12.5 9.6 363 55.9 2 630 18.4 0.34 26.4

131 044 alt 0.6 12.4 1 307 32.6 14 400 7.2 1.42 13.9
re 44.7 10.4 9 369 4.6 16 247 6.4 5.94 3.3

real 45.3 19.3 551 77.4 3 174 32.6 0.77 25.8

262 144 alt 0.9 25.1 2 382 35.9 27 399 7.3 2.81 16.1
re 131.4 20.7 14 449 5.9 24 248 8.3 9.75 4.6

real 132.3 38.8 791 108.0 5 020 39.9 1.22 37.1

524 176 alt 1.9 50.2 4 416 38.8 40 568 9.9 5.25 17.5
re 232.1 41.4 23 201 7.4 39 433 10.2 17.47 5.3

real 234.1 77.7 1 172 146.3 7 702 52.3 1.61 57.2

best algorithm in this test, and its speedup grows with
grid size. For our largest grid, queries for real improve
on alt by about a factor of four for all performance
measures that we considered. The space penalty of
real with respect to alt is a factor of about 1.5. real
is over 50 times better than b. This shows that the
combination of reaches and landmarks is more robust
than either alt or re individually.

The most important downside of the reach-based
approach on grids is its large preprocessing time. An in-
teresting question is whether this can be improved. This
would require a more elaborate procedure for adding
shortcuts to a graph (instead of just waiting for lines
to appear during the preprocessing algorithm). Such an
improvement may lead to a better preprocessing algo-
rithm for road networks as well.

8.5 Additional Experiments. We ran our prepro-
cessing algorithm on BAY with and without shortcut
generation. The results are shown in Table 6. With-
out shortcuts, queries visited almost 10 times as many
vertices, and preprocessing was more than 15 times
slower; for larger graphs, the relative performance is
even worse. Without shortcuts, preprocessing NA is im-
practical. The table also compares approximate and ex-
act reach computations. Again, preprocessing for exact
reaches is extremely expensive, and of course shortcuts
do not make it any faster (note that the shortcuts in this
case are the ones added by the approximate algorithm).
Fortunately, our upper bounding heuristic seems to do

a good enough job: on BAY, exact reaches improved
queries by less than 25%.

We also experimented with the number of land-
marks real uses on NA. With as few as four landmarks,
real is already twice as fast as re on average (while
visiting less than one third of the vertices). In general,
more landmarks give better results, but with more than
16 landmarks the additional speedup does not seem to
be worth the extra amount of space required.

9 Conclusion and Future Work

The reach-based shortest path approach leads to sim-
ple query algorithms with efficient implementations.
Adding shortcuts greatly improves the performance of
these algorithms on road networks. We have shown
that the algorithm re, based on these ideas, is com-
petitive with the best previous method. Moreover, it
combines naturally with A∗ search. The resulting al-
gorithm, real, improves query times even more: an
average query in North America takes less than 4 mil-
liseconds.

However, we believe there is still room for improve-
ment. In particular, we could make the algorithm more
cache-efficient by reordering the vertices so that those
with high reach appear close to each other. There are
few of those, and they are much more likely to be visited
during any particular search than low-reach vertices.

The number of vertices visited could also be re-
duced. With shortcuts added, a shortest path on NA
with travel times has on average less than 100 vertices,
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Table 6: Results for re with different reach values on BAY, both with and without shortcuts.

prep. query
time avg max time

metric shortcuts reaches (min) scans scans (ms)

times no approx. 52.8 13 369 28 420 6.44
exact 966.1 11 194 24 358 6.05

yes approx. 3.2 1 590 3 438 1.17
exact 980.7 1 383 3 056 0.97

distances no approx. 82.5 17 448 37 171 9.47
exact 956.9 13 986 30 788 7.61

yes approx. 4.6 2 761 6 313 2.05
exact 1 078.9 2 208 5 159 1.55

but an average real search scans more than 1500 ver-
tices. Simply adding more landmarks would require too
much space, however. To overcome this, one could store
landmark distances only for a fraction (e.g., 20%) of the
vertices, those with reach greater than some threshold
R. The query algorithm would first search balls of ra-
dius R around s and t without using landmarks, then
would start using landmarks from that point on. An-
other potential improvement would be to pick a set of
landmarks specific to real (in our current implementa-
tion, real uses the same landmarks as alt).

Also, one could reduce the space required to store
r values by picking a constant γ, rounding r’s up to the
nearest integer power of γ, and storing the logarithms
to the base γ of the r’s.

Our query algorithm is independent of the prepro-
cessing algorithm, allowing us to state natural subprob-
lems for the latter. What is a good number of shortcuts
to add? Where to add them? How to do it efficiently?

Another natural problem, originally raised by Gut-
man [17], is that of efficient reach computation. Can one
compute reaches in less than Θ(nm) time? What about
provably good upper bounds on reaches? Our results
add another dimension to this direction of research by
allowing shortcuts to be added to improve performance.

Another interesting direction of research is to iden-
tify a wider class of graphs for which these techniques
work well, and to make the algorithms more robust over
that class.
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