
Computing the Shortest Path: A∗ Search Meets Graph Theory

Andrew V. Goldberg∗ Chris Harrelson†

Abstract

We propose shortest path algorithms that use A∗ search

in combination with a new graph-theoretic lower-bounding

technique based on landmarks and the triangle inequality.

Our algorithms compute optimal shortest paths and work on

any directed graph. We give experimental results showing

that the most efficient of our new algorithms outperforms

previous algorithms, in particular A∗ search with Euclidean

bounds, by a wide margin on road networks and on some

synthetic problem families.

1 Introduction

The shortest path problem is a fundamental problem
with numerous applications. In this paper we study
one of the most common variants of the problem,
where the goal is to find a point-to-point shortest
path in a weighted, directed graph. We refer to this
problem as the P2P problem. We assume that for the
same underlying network, the problem will be solved
repeatedly. Thus, we allow preprocessing, with the
only restriction that the additional space used to store
precomputed data is limited: linear in the graph size
with a small constant factor. Our goal is a fast
algorithm for answering point-to-point shortest path
queries. A natural application of the P2P problem is
providing driving directions, for example services like
Mapquest, Yahoo! Maps and Microsoft MapPoint, and
some GPS devices. One can spend time preprocessing
maps for these applications, but the underlying graphs
are very large, so memory usage much exceeding the
graph size is prohibitive. This motivates the linear-
space assumption.

Shortest path problems have been extensively stud-
ied. The P2P problem with no preprocessing has been
addressed, for example, in [21, 27, 29, 36]. While no
nontrivial theoretical results are known for the general
P2P problem, there has been work on the special case of
undirected planar graphs with slightly superlinear pre-

∗Microsoft Research, 1065 La Avenida, Mountain View,

CA 94062. Email: goldberg@microsoft.com; URL:

http://www.avglab.com/andrew/index.html.
†Computer Science Division, UC Berkeley. Part of this work

was done while the author was visiting Microsoft Research. Email:

chrishtr@cs.berkeley.edu.

processing space. The best bound in this context (see
[10]) is superlinear in the output path size unless the
path is very long. Preprocessing using geometric infor-
mation and hierarchical decomposition is discussed in
[19, 28, 34]. Other related work includes algorithms
for the single-source shortest path problem, such as
[1, 4, 6, 7, 13, 14, 16, 17, 18, 22, 25, 32, 35], and al-
gorithms for approximate shortest paths that use pre-
processing [3, 23, 33].

Usually one can solve the P2P problem while search-
ing only a small portion of the graph; the algorithm’s
running time then depends only on the number of vis-
ited vertices. This motivates an output-sensitive com-
plexity measure that we adopt. We measure algorithm
performance as a function of the number of vertices on
the output path. Note that this measure has the addi-
tional benefit of being machine-independent.

In Artificial Intelligence settings, one often needs to
find a solution in a huge search space. The classical A∗

search (also known as heuristic search) [8, 20] technique
often finds a solution while searching a small subspace.
A∗ search uses estimates on distances to the destination
to guide vertex selection in a search from the source.
Pohl [27] studied the relationship between A∗ search and
Dijkstra’s algorithm in the context of the P2P problem.
He observed that if the bounds used in A∗ search are
feasible (as defined in section 2), A∗ search is equivalent
to Dijkstra’s algorithm on a graph with nonnegative arc
lengths and therefore finds the optimal path. In classical
applications of A∗ search to the P2P problem, distance
bounds are implicit in the domain description, with
no preprocessing required. For example, for Euclidean
graphs, the Euclidean distance between two vertices
gives a lower bound on the distance between them.

Our first contribution is a new preprocessing-based
technique for computing distance bounds. The pre-
processing entails carefully choosing a small (constant)
number of landmarks, then computing and storing
shortest path distances between all vertices and each of
these landmarks. Lower bounds are computed in con-
stant time using these distances in combination with
the triangle inequality. These lower bounds yield a new
class of algorithms, which we call ALT algorithms since
they are based on A∗ search, landmarks, and the trian-
gle inequality. Here we are talking about the triangle



Figure 1: Vertices visited by Dijkstra’s algorithm (left),
A∗ search with Manhattan lower bounds (middle), and
an ALT algorithm (right) on the same input.

inequality with respect to the shortest path distances
in the graph, not an embedding in Euclidean space or
some other metric, which need not be present. Our ex-
perimental results show that ALT algorithms are very
efficient on several important graph classes.

To illustrate just how effective our approach can be,
consider a square grid with integral arc lengths selected
uniformly at random from the interval {100, . . . , 150}.
Figure 1 shows the area searched by three different al-
gorithms. Dijkstra’s algorithm searches a large “Man-
hattan ball” around the source. Note that for a pair of
points, the Manhattan distance between them times 100
is a decent lower bound on the true distance, and that
for these points the bounding rectangle contains many
near-shortest paths. With these observations in mind,
one would expect that A∗ search based on Manhattan
distance bounds will be able to prune the search by an
area slightly larger than the bounding box, and it fact
it does. However, in spite of many near-optimal paths,
our ALT algorithm is able to prune the search to an
area much smaller than the bounding box.

Our algorithm is the first exact shortest path algo-
rithm with preprocessing that can be applied to arbi-
trary directed graphs. The exact algorithms mentioned
above [10, 19, 28, 34] apply to restricted graph classes.
Landmark-based bounds have been previously used for
approximate shortest path computation (see e.g. [3]),
but these bounds are different from ours. In particular,
these bounds are not feasible and cannot be used in an
exact A∗ search algorithm.

We also study bidirectional variants of A∗ search.
For these, one has to be careful to preserve optimality
(for example, see [5, 30]). Pohl [27] (see also [24]) and
Ikeda et al. [21] give two ways of combining A∗ search
with the bidirectional version of Dijkstra’s method [4, 9,
26] to get provably optimal algorithms. We describe and
investigate an alternative to the Ikeda et al. algorithm,
and show that in practice our best implementation of
the bidirectional ALT algorithm is more robust than
the regular ALT implementation.

Proper landmark selection is important to the qual-
ity of the bounds. As our second contribution, we
give several algorithms for selecting landmarks. While
some of our landmark selection methods work on general

graphs, others take advantage of additional information,
such as geometric embeddings, to obtain better domain-
specific landmarks. Note that landmark selection is the
only part of the algorithm that may use domain knowl-
edge. For a given set of landmarks, no domain knowl-
edge is required.

Our third contribution is an experimental study
comparing the new and previously known algorithms
on synthetic graphs and on real-life road graphs taken
from Microsoft’s MapPoint database. We study which
variants of ALT algorithms perform best in practice,
and show that they compare very well to previous
algorithms. Our experiments give insight into how
ALT algorithm efficiency depends on the number of
landmarks, graph size, and graph structure. We also run
experiments showing why ALT algorithms are efficient.
In particular, we show that when our algorithms work
well, the lower bounds are within a few percent of
the true distances for most vertices. Some of the
experimental methodology we use is new and may prove
helpful in future work in this area.

Our output-sensitive way of measuring performance
emphasizes the efficiency of our algorithms and shows
how much room there is for improvement, assuming that
any P2P algorithm examines at least the vertices on
the shortest path. For our best algorithm running on
road graphs, the average number of vertices scanned
varies between 4 and 30 times the number of vertices
on the shortest path, over different types of origin-
destination pair distributions (for most graphs in our
test set, it is closer to 4 than to 30). For example, to
find a shortest path with 1, 000 vertices on a graph with
3, 000, 000 vertices, our algorithm typically scans only
10, 000 vertices (10 scanned vertices for every shortest
path vertex), which is a tiny fraction of the total number
of vertices.

Due to the space restriction, we omit some results
and details. See the full paper [15] for details.

2 Preliminaries

The input to the preprocessing stage of the P2P prob-
lem is a directed graph with n vertices, m arcs, and
nonnegative lengths `(a) for each arc a. After prepro-
cessing, we get queries specified by a source vertex s and
a sink vertex t. The answer to a query is the shortest
path from s to t.

Let dist(v, w) denote the shortest-path distance
from vertex v to vertex w with respect to `. We will
often use edge lengths other than `, but dist(·, ·) will
always refer to the original arc lengths. Note that in
general dist(v, w) 6= dist(w, v).

A potential function is a function from vertices to
reals. Given a potential function π, we define the



reduced cost of an edge by `π(v, w) = `(v, w) − π(v) +
π(w). Suppose we replace ` by `π. Then for any two
vertices x and y, the length of any x-y path changes
by the same amount, π(y)− π(x) (the other potentials
telescope). Thus a path is a shortest path with respect
to ` iff it is a shortest path with respect to `π, and the
two problems are equivalent.

We say that π is feasible if `π is nonnegative for all
arcs. It is well-known that if π(t) ≤ 0 and π is feasible,
then for any v, π(v) is a lower bound on the distance
from v to t. A related and simple-to-prove fact is:

Lemma 2.1. If π1 and π2 are feasible potential func-
tions, then p = max(π1, π2) is feasible.

One can also combine feasible potential functions by
taking the minimum, or, as observed in [21], the average
of feasible potential functions. We use the maximum
in particular to combine several feasible lower bound
functions in order to get one that at any vertex is at
least as high as each original function.

3 Labeling Method and Dijkstra’s Algorithm

The labeling method for the shortest path problem [11,
12] finds shortest paths from the source to all vertices
in the graph. The method works as follows (see for
example [31]). It maintains for every vertex v its
distance label ds(v), parent p(v), and status S(v) ∈
{unreached, labeled, scanned}. Initially ds(v) = ∞,
p(v) = nil, and S(v) = unreached for every vertex
v. The method starts by setting ds(s) = 0 and
S(s) = labeled. While there are labeled vertices, the
method picks a labeled vertex v, relaxes all arcs out of
v, and sets S(v) = scanned. To relax an arc (v, w),
one checks if ds(w) > ds(v) + `(v, w) and, if true, sets
ds(w) = ds(v)+`(v, w), p(w) = v, and S(w) = labeled.

If the length function is nonnegative, the labeling
method always terminates with correct shortest path
distances and a shortest path tree. The efficiency of
the method depends on the rule to chose a vertex to
scan next. We say that ds(v) is exact if the distance
from s to v is equal to ds(v). It is easy to see that
if the method always selects a vertex v such that, at
the selection time, ds(v) is exact, then each vertex is
scanned at most once. Dijkstra [7] (and independently
Dantzig [4]) observed that if ` is nonnegative and v is
a labeled vertex with the smallest distance label, then
ds(v) is exact. We refer to the scanning method with
the minimum labeled vertex selection rule as Dijkstra’s
algorithm for the single-source problem.

Theorem 3.1. [7] If ` is nonnegative then Dijkstra’s
algorithm scans vertices in nondecreasing order of their
distances from s and scans each vertex at most once.

Note that when the algorithm is about to scan the
sink, we know that ds(t) is exact and the s-t path
defined by the parent pointers is a shortest path. We
can terminate the algorithm at this point. We refer to
this P2P algorithm as Dijkstra’s algorithm. One can
also run the scanning method and Dijkstra’s algorithm
in the reverse graph (the graph with every arc reversed)
from the sink. The reversal of the t-s path found is a
shortest s-t path in the original graph.

The bidirectional algorithm [4, 9, 26] works as
follows. It alternates between running the forward and
reverse version of Dijkstra’s algorithm. We refer to
these as the forward and the reverse search, respectively.
During initialization, the forward search scans s and
the reverse search scans t. In addition, the algorithm
maintains the length of the shortest path seen so far, µ,
and the corresponding path as follows. Initially µ =∞.
When an arc (v, w) is scanned by the forward search and
w has already been scanned in the reversed direction,
we know the shortest s-v and w-t paths of lengths ds(v)
and dt(w), respectively. If µ > ds(v) + `(v, w) + dt(w),
we have found a shorter path than those seen before, so
we update µ and its path accordingly. We do similar
updates during the reverse search. The algorithm
terminates when the search in one directing selects a
vertex that has been scanned in the other direction. We
use an alternation strategy that balances the work of the
forward and reverse searches.

Theorem 3.2. [27] If the sink is reachable from the
source, the bidirectional algorithm finds an optimal path,
and it is the path stored along with µ.

4 A∗ Search

Consider the problem of looking for a path from s

to t and suppose we have a (perhaps domain-specific)
function πt : V → R such that πt(v) gives an estimate on
the distance from v to t. In the context of this paper,
A∗ search is an algorithm that works like Dijkstra’s
algorithm, except that at each step it selects a labeled
vertex v with the smallest value of k(v) = ds(v) + πt(v)
to scan next. It is easy to see that A∗ search is
equivalent to Dijkstra’s algorithm on the graph with
length function `πt

. If πt is feasible, `πt
is nonnegative

and Theorem 3.1 holds.
We refer to the class of A∗ search algorithms that

use a feasible function πt with πt(t) = 0 as lower-
bounding algorithms.

Observe that better lower bounds give better per-
formance, in the following sense. Consider an instance
of the P2P problem and let πt and πt

′ be two feasible
potential functions such that πt(t) = πt

′(t) = 0 and for
any vertex v, πt

′(v) ≥ πt(v) (i.e., πt
′ dominates πt). As-



sume that when selecting the next vertex for scan, we
break ties based on vertex IDs, and when we say v > w

we mean that v’s ID is greater than w’s.

Theorem 4.1. The set of vertices scanned by A∗ search
search using πt

′ is a subset of the set of vertices scanned
by A∗ search search using πt.

This theorem implies that any lower-bounding algo-
rithm with a nonnegative potential function visits no
more vertices than Dijkstra’s algorithm.

5 Bidirectional Lower-Bounding Algorithms

In this section we show how to combine the ideas of
bidirectional search and A∗ search. This seems trivial:
just run the forward and the reverse searches and stop
as soon as they meet. This does not work, however.

Let πt be a potential function used in the forward
search and let πs be one used in the reverse search.
Since the latter works in the reversed graph, each arc
(v, w) ∈ E appears as (w, v), and its reduced cost w.r.t.
πs is `πs

(w, v) = `(v, w)− πs(w) + πs(v), where `(v, w)
is in the original graph.

We say that πt and πs are consistent if for all
arcs (v, w), `πt

(v, w) in the original graph is equal to
`πs
(w, v) in the reverse graph. This is equivalent to

πt + πs = const.
It is easy to come up with lower-bounding schemes

for which πt and πs are not consistent. If they are not,
the forward and the reverse searches use different length
functions. Therefore when the searches meet, we have
no guarantee that the shortest path has been found.

One can overcome this difficulty in two ways: de-
velop a new termination condition or use consistent po-
tential functions. We call the algorithms based on the
former and the latter approaches symmetric and consis-
tent, respectively. Each of these has strengths and weak-
nesses. The symmetric approach can use the best avail-
able potential functions but cannot terminate as soon
as the two searches meet. The consistent approach can
stop as soon as the searches meet, but the consistency
requirement restricts the potential function choice.

5.1 Symmetric Approach The following symmet-
ric algorithm is due to Pohl [27]. Run the forward and
the reverse searches, alternating in some way. Each
time a forward search scans an arc (v, w) such that w
has been scanned by the reverse search, see if the con-
catenation of the s-t path formed by concatenating the
shortest s-v path found by the forward search, (v, w),
and the shortest w-t path found by the reverse search,
is shorter than best s-t path found so far, and update
the best path and its length, µ, if needed. Also do the
corresponding updates during the reverse search. Stop

when one of the searches is about to scan a vertex v with
k(v) ≥ µ (see the first paragraph of Section 4 for a def-
inition of k(·)) or when both searches have no labeled
vertices. The algorithm is correct because the search
must have found the shortest path by then.

Kwa [24] suggests several potential improvements
to Pohl’s algorithm, one of which we use. The improve-
ment is as follows. When the forward search scans an
arc (v, w) such that w has been scanned by the reverse
search, we do nothing to w. This is because we already
know the shortest path from w to t. This prunes the
forward search. We prune the reverse search similarly.
We call this algorithm the symmetric lower-bounding
algorithm.

5.2 Consistent Approach Given a potential func-
tion p, a consistent algorithm uses p for the forward
computation and −p (or its shift by a constant, which is
equivalent correctness-wise) for the reverse one. These
two potential functions are consistent; the difficulty is
to select a function p that works well.

Let πt and πs be feasible potential functions giv-
ing lower bounds to the source and from the sink, re-

spectively. Ikeda et al. [21] use pt(v) =
πt(v)−πs(v)

2 as
the potential function for the forward computation and

ps(v) =
πs(v)−πt(v)

2 = −pt(v) for the reverse one. We
refer to this function as the average function.

Notice that each of pt and −ps is feasible in the
forward direction. Thus ps(t)−ps(v) gives lower bounds
on the distance from v to t, although not necessarily
good ones. Feasibility of the average of pt and −ps is
obvious. Slightly less intuitive is the feasibility of the
maximum, as shown in Lemma 2.1.

We define an alternative potential function pt by
pt(v) = max(πt(v), πs(t)− πs(v) + β), where for a fixed
problem β is a constant that depends on πt(s) and/or
πs(t) (our implementation uses a constant fraction of
πt(s)). It is easy to see that pt is a feasible potential
function. We refer to this function as the max function.

6 Computing Lower Bounds

Previous implementations of the lower bounding algo-
rithm used information implicit in the domain, like
Euclidean distances for Euclidean graphs, to compute
lower bounds. We take a different approach. We select a
small set of landmarks and, for each vertex, precompute
distances to and from every landmark. Consider a land-
mark L and let d(·) be the distance to L. Then by the
triangle inequality, d(v) − d(w) ≤ dist(v, w). Similarly,
if d(·) is the distance from L, d(w)− d(v) ≤ dist(w, v).
To compute the tightest lower bound, one can take the
maximum, over all landmarks, of these lower bounds.

We use the following optimization. For a given



s and t, we select a fixed-size subset of landmarks
that give the highest lower bounds on the s-t distance.
During the s-t shortest path computation, we limit
ourselves to this subset when computing lower bounds.
Although Theorem 4.1 suggests that using a subset
of landmarks may lead to more vertex scans, for a
moderate number of landmarks (e.g. 16) and selecting a
small subset (e.g. 4), this increase is small relative to the
improved efficiency of the lower bound computations.
Note that a natural analog of the theorem holds for
the symmetric bidirectional algorithm, but there does
not seem to be an obvious analog for the consistent
bidirectional algorithm.

7 Landmark Selection

Finding good landmarks is critical for the overall perfor-
mance of lower-bounding algorithms. Let k denote the
number of landmarks we would like to choose. The sim-
plest way of selecting landmarks is to select k landmark
vertices at random. One can do better, however.

One greedy landmark selection algorithm works
as follows. Pick a start vertex and find a vertex v1

that is farthest away from it. Add v1 to the set of
landmarks. Proceed in iterations, at each iteration
finding a vertex that is farthest away from the current
set of landmarks and adding the vertex to the set. This
algorithm can be viewed as a quick approximation to
the problem of selecting a set of k vertices so that the
minimum distance between a pair of selected vertices
is maximized. Call this method the farthest landmark
selection.

For road graphs and other geometric graphs, having
a landmark geometrically lying behind the destination
tends to give good bounds. Consider a map or a
graph drawing on the plane where graph and geometric
distances are strongly correlated. The graph does not
need to be planar; for example, road networks are non-
planar. A simple landmark selection algorithm in this
case works as follows. First, find a vertex c closest to
the center of the embedding. Divide the embedding
into k pie-slice sectors centered at c, each containing
approximately the same number of vertices. For each
sector, pick a vertex farthest away from the center. To
avoid having two landmarks close to each other, if we
processed sector A and are processing sector B such that
the landmark for A is close to the border of A and B,
we skip the vertices of B close to the border. We refer
to this as planar landmark selection.

The above three selection rules are relatively fast,
and one can optimize them in various ways. In the
optimized farthest landmark selection algorithm, for
example, we repeatedly remove a landmark and replace
it with the farthest one from the remaining set of

Name # of vert. # of arcs Lat./long. range
M1 267,403 631,964 [34,37]/[-107,-103]
M2 330,024 793,681 [37,39]/[-123,-121]
M3 563,992 1,392,202 [33,35]/[-120,-115]
M4 588,940 1,370,273 [37,40]/[-92,-88]
M5 639,821 1,522,485 [31,34]/[-98,-94]
M6 1,235,735 2,856,831 [33,45]/[-130,-120]
M7 2,219,925 5,244,506 [33,45]/[-110,-100]
M8 2,263,758 5,300,035 [33,45]/[-120,-110]
M9 4,130,777 9,802,953 [33,45]/[-100,-90]
M10 4,469,462 10,549,756 [33,45]/[-80,-70]
M11 6,687,940 15,561,631 [33,45]/[-90,-80]

Table 1: Road network problems, sorted by size.

landmarks.
Another optimization technique for a given set of

landmarks is to remove a landmark and replace it by the
best landmark in a set of candidate landmarks. To select
the best candidate, we compute a score for each one and
select one with the highest score. We use a fixed sample
of vertex pairs to compute scores. For each pair in the
sample, we compute the distance lower bound b as the
maximum over the lower bounds given by the current
landmarks. Then for each candidate, we compute the
lower bound b′ given by it. If the b′ > b, we add b′ − b

to the candidate’s score. To obtain the sample of vertex
pairs, for each vertex we choose a random one and add
the pair to the sample.

We use this technique to get optimized random and
optimized planar landmark selection. In both cases, we
make passes over landmarks, trying to improve a land-
mark at each step. For the former, the set of candidates
for a given landmark replacement contains the landmark
and several other randomly chosen candidates. For the
latter, we use a fixed set of candidates for each sec-
tor. We divide each sector into subsectors and choose
the farthest vertex in each subsector to be a candidate
landmark for the sector. In our implementation the to-
tal number of candidates (over all sectors) is 64.

The optimized planar selection, although somewhat
computationally expensive, is superior to regular planar
selection, and in fact is our best landmark selection rule
for graphs with a given planar layout.

8 Experimental Setup

8.1 Problem Families We ran experiments on road
graphs and on several classes of synthetic problems.
The road graphs are subgraphs of the graph used
in MapPoint that includes all of the roads in North
America. There is one vertex for each intersection of
two roads and one directed arc for each road segment.
There are also degree two vertices in the middle of
some road segments, for example where the segments



intersect the map grid. Each vertex has a latitude and a
longitude, and each road segment has a speed limit and
a length. The full graph is too big for the computer used
in our experiments, so we ran experiments on smaller
subgraphs. Our subgraphs are created by choosing only
the vertices inside a given rectangular range of latitudes
and longitudes, then reducing to the largest strongly
connected component of the corresponding induced
subgraph. For bigger graphs, we took vertices between
33 and 45 degrees of Northern longitude and partitioned
them into regions between 130–120, 120–110, 110–100,
100–90, 90–80, and 80–70 degrees Western latitude.
This corresponds roughly to the dimensions of the
United States. Smaller graphs correspond to the New
Mexico, San Francisco, Los Angeles, St. Louis and
Dallas metropolitan areas.

Table 1 gives more details of the graphs used, as
well as the shorthand names we use to report data. This
leaves open the notion of distance used. For each graph,
we used two natural distance notions:

Transit time: Distances are calculated in terms
of the time needed to traverse each road, assuming that
one always travels at the speed limit.

Distance: Distances are calculated according to
the actual Euclidean length of the road segments.

The synthetic classes of graphs used are Grid

and Random. We omit the former due to the space
limit. A random graph with n vertices and m arcs
is random directed multigraph G(n,m) with exactly
m arcs, where each edge is chosen independently and
uniformly at random. Each edge weight is an integer
chosen uniformly at random from the set {1, . . . ,M}, for
M ∈ {10, 1000, 100000}. We tested on average degree
four random graphs with 65536, 262144, 1048576 and
4194304 vertices. Let Rij denote a random directed
graph with 65536 · 4i−1 vertices, 4 · 65536 · 4i−1 arcs,
and edge weights chosen uniformly at random from
{1, . . . , 10 · 100j−1}.

We study two distributions of s, t pairs:
rand: In this distribution, we select s and t

uniformly at random among all vertices. This natural
distribution has been used previously (e.g., [35]). It
produces “hard” problems for the following reason: s

and t tend to be far apart when chosen this way, thus
forcing Dijkstra’s algorithm to visit most of the graph.

bfs: This distribution is more local. In this
distribution, we chose s at random, run breadth-first
search from s to find all vertices that are c arcs away
from s, and chose one of these vertices uniformly at
random. On road and grid graphs, we use c = 50.
Note that the corresponding shortest paths tend to
have between 50 and 100 arcs. On road networks, this
corresponds to trips on the order of an hour, where one

passes through 50 to 100 road segments. In this sense it
is a more “typical” distribution. On random graphs we
use c = 6 because these graphs have small diameters.

Although we compared all variants of regular and
bidirectional search, we report only on the most promis-
ing or representative algorithms.

D: Dijkstra’s algorithm, to compare with the bidi-
rectional algorithm.

AE: A∗ search with Euclidean lower bounds. This
was previously studied in [27, 29].

AL: Regular ALT algorithm.

B: The bidirectional variant of Dijkstra’s algo-
rithm, to provide a basis for comparison.

BEA: The bidirectional algorithm with a consistent
potential function based on average Euclidean
bounds. This was previously studied in [21].

BLS: The symmetric bidirectional ALT algorithm.

BLA: The consistent bidirectional ALT algorithm
with the average potential function.

BLM: The consistent bidirectional ALT algorithm
with the max potential function.

8.2 Landmark Selection We leave to the full paper
a comparison of different landmark selection algorithms.

When comparing algorithms, we set the number
of landmarks to 16 with the optimized planar (P2)
landmark selection algorithm when it is applicable, and
the farthest (F) algorithm otherwise (for the case of
random graphs). We use the P2 algorithm because it
has the best efficiency on almost all test cases, and 16
because is the maximum number that fits in memory
for our biggest test problem.

8.3 Implementation Choices For road networks,
exact Euclidean bounds offer virtually no help, even for
the distance-based length function. To get noticeable
improvement, one needs to scale these bounds up. This
is consistent with comments in [21]. Such scaling may
result in non-optimal paths being found. Although we
are interested in exact algorithms, we use aggressive
scaling parameters, different for distance- and time-
based road networks. Even though the resulting codes
sometimes find paths that are longer than the shortest
paths (on the average by over 10% on some graphs), the
resulting algorithms are not competitive with landmark-
based ones.

In implementing graph data structure, we used a
standard cache-efficient representation of arc lists where
for each vertex, its outgoing arcs are adjacent in mem-
ory. Although in general we attempted to write efficient
code, to facilitate flexibility we used the same graph



Name D AE AL B BEA BLS BLM BLA

M1 0.44 0.46 5.34 0.67 0.69 7.43 13.13 13.51
57.14 112.42 8.01 41.49 121.18 5.91 6.12 6.25

M2 0.26 0.28 3.02 0.37 0.38 3.74 5.93 6.45
66.38 140.90 13.05 53.93 228.17 18.18 22.08 19.19

M3 0.17 0.18 2.90 0.29 0.29 3.16 5.77 7.22
137.46 326.12 15.50 94.14 290.00 15.58 14.03 11.88

M4 0.24 0.24 3.82 0.38 0.39 4.48 6.90 10.71
139.34 353.95 14.20 96.91 339.57 13.56 15.76 10.42

M5 0.22 0.23 4.21 0.35 0.36 4.29 5.23 7.70
240.52 521.61 13.04 175.21 319.05 14.39 21.93 14.98

M6 0.25 0.26 2.39 0.29 0.30 3.29 8.20 8.82
281.19 641.15 62.33 300.25 906.57 49.61 36.09 35.61

M7 0.14 0.15 3.13 0.20 0.21 3.61 6.58 7.56
605.04 1252.61 40.67 482.99 1332.02 38.77 38.75 36.19

M8 0.15 0.16 2.69 0.21 0.21 3.47 5.63 7.21
579.59 1325.01 59.78 492.49 1464.67 52.27 55.06 43.91

M9 0.09 0.10 1.87 0.14 0.14 2.02 3.27 3.87
1208.30 2565.61 92.88 954.08 2620.47 97.69 100.80 91.68

M10 0.10 0.10 1.56 0.14 0.14 1.91 3.31 4.69
1249.86 2740.81 147.54 1085.57 2958.20 146.22 132.64 102.53

M11 0.08 0.08 1.81 0.11 0.11 2.01 2.82 4.01
2113.80 4693.30 132.83 1736.52 4775.70 145.12 176.84 133.29

Table 2: rand s-t distribution on road networks with Distance lengths. Efficiency (%); time (ms).

data structure for all algorithms. As the result, perfor-
mance may suffer somewhat. However, the loss is prob-
ably less than a factor of two, and we use running times
as a supplement to a machine-independent measure of
performance which is not affected by these issues.

9 Experimental Results

In this section we present experimental results. As
a primary measure of algorithm performance, we use
an output-sensitive measure we call efficiency. The
efficiency of a run of a P2P algorithm is defined as
the number of vertices on the shortest path divided by
the number of vertices scanned by the algorithm.1 We
report efficiency in percent. An optimal algorithm that
scans only the shortest path vertices has 100% efficiency.
Note that efficiency is a machine-independent measure
of performance.

We also report the average running times of our al-
gorithms in milliseconds. Running times are machine-
and implementation-dependent. Despite their short-
comings, running times are important for sanity-
checking and complement efficiency to provide a better
understanding of practical performance of algorithms
under consideration. However, efficiency is closely cor-
related with running time. To save space, we report
running times only in the first data table (Table 2)).

1This does not include vertices that were labeled but not

scanned, which is an alternative measure.

From this table one can get a good idea of the overhead
for different algorithms.

All experiments were run under Redhat Linux 9.0
on an HP XW-8000 workstation, which has 4GB of
RAM and a 3.06 Ghz Pentium-4 processor. Due to
limitations of the Linux kernel, however, only a little
over 3GB was accessible to an individual process. All
reported data points are the average of 128 trials.

For most algorithms, we used priority queues based
on multi-level buckets [6, 17, 18]. For algorithms
that use Euclidean bounds, we used a standard heap
implementation of priority queues, as described in, for
example, [2]. This is because these algorithms use
aggressive bounds which can lead to negative reduced
costs, making the use of monotone priority queues, such
as multi-level buckets, impossible.

9.1 Road Networks Tables 2 and 3 give data for
road networks with distance arc lengths. The results
for transit time lengths are similar (see the full paper).
All algorithms perform better under the bfs s-t distri-
bution than under the rand distribution. As expected,
efficiency for rand problems generally goes down with
the problem size while for bfs problems, the efficiency
depends mostly on the problem structure. With minor
exceptions, this observation applies to the other algo-
rithms as well.

Next we discuss performance. A∗ search based on
Euclidean lower bounds offers little efficiency improve-



Name D AE AL B BEA BLS BLM BLA

M1 1.74 2.21 16.20 3.73 4.12 19.22 16.97 22.54
M2 0.82 1.10 9.48 1.58 1.78 9.86 9.84 12.55
M3 0.69 0.78 8.36 1.35 1.57 8.48 8.18 10.84
M4 1.58 1.72 22.43 3.19 3.32 22.50 20.52 26.40
M5 1.46 1.89 17.96 3.02 3.28 22.83 22.67 26.47
M6 1.40 1.99 12.43 2.80 3.21 13.53 11.77 16.89
M7 1.63 2.42 17.63 3.57 4.19 17.72 16.62 19.82
M8 1.27 1.38 10.68 2.53 2.79 11.57 9.29 14.46
M9 1.37 1.83 19.55 3.05 3.43 22.42 19.98 24.93
M10 1.03 1.34 12.79 2.37 2.59 13.96 11.48 17.74
M11 1.59 1.93 18.45 3.58 3.83 19.76 17.46 22.38

Table 3: Eff. for bfs source-destination distribution on road networks with Distance lengths.

ment over the corresponding variant of Dijkstra’s algo-
rithm but hurts the running time, both in its regular
and bidirectional forms. On the other hand, combining
A∗ search with our landmark-based lower bounds yields
a major performance improvement.

BLA is the algorithm with the highest efficiency. Its
efficiency is higher than that of B by roughly a factor
of 30 on the rand problems and about a factor of 6 on
the bfs problems. The three fastest algorithms are AL,
BLS, and BLA, with none dominating the other two.
Of the codes that do not use landmarks, B is the fastest,
although its efficiency is usually a little lower than that
of BEA.

Comparing AL with BLA, we note that on rand

problems, bidirectional search usually outperforms the
regular one by more than a factor of two in efficiency,
while for bfs problems, the improvement is usually less
that a factor of 1.5.

9.2 Random Graphs For random graphs, B out-
performs D by orders of magnitude, both in terms of
efficiency and running time. This is to be expected, as
a ball of twice the radius in an expander graph contains
orders of magnitude more vertices. Tables 4 and 5 give
data for these graphs. We report efficiency only.

Using landmark-based A∗ search significantly im-
proves regular search performance: AL is over an order
of magnitude faster and more efficient than D. However,
it is still worse by a large margin than B. Performance
of BLA is only slightly below that of B. Performance
of BLM is worse, but within a factor of two of that of
BLA. Performance of BLS is significantly worse, sug-
gesting that the symmetric algorithm is less robust.

For random graphs, our techniques do not improve
the previous state of the art: B is the best algorithm
among those we tested. This shows that ALT algo-
rithms do not offer a performance improvement on all
graph classes.

9.3 Number of Landmarks In this section we
study the relationship between algorithm efficiency and
the number of landmarks. We ran experiments with 1,
2, 4, 8, and 16 landmarks for the AL and BLA algo-
rithms. Tables 6-7 give results for road networks.

First, note that even with one landmark, AL and
BLA outperform all non-landmark-based codes in our
study. In particular, this includes BEA on road net-
works. As the number of landmarks increases, so does
algorithm efficiency. The rate of improvement is sub-
stantial for rand selection up to 16 landmarks and
somewhat smaller for bfs. For the former, using 32
or more landmarks is likely to give significantly better
results.

An interesting observation is that for a small num-
ber of landmarks, regular search often has higher effi-
ciency than bidirectional search.

9.4 Lower-Bound Quality In this section, we
study the quality of our lower bounds. For this test,
we picked two problems: the Bay Area road network
(M2) with the distance-based length function, and a
large random problem R41. For each of the problems,
we generated 16 landmarks, using the P2 heuristic for
the first two and the F heuristic for the last one.

For each of the problems, we ran two experiments,
one with rand vertex pair selection and the other with
bfs selection. For each pair of selected vertices, we
computed the ratio of the our lower bound on the
distance between them and the true distance. Each
experiment was repeated 128 times.

Table 8 gives a summary of the results. Note that
there is a clear correlation between lower bound quality
and algorithm performance. First consider the road
network and the grid problems where ALT algorithms
work well. For rand selection, the bounds are very
good, within a few percent of the true distances, leading
to good performance. For bfs selection, the bounds are
somewhat worse but still good. On the other hand, for



Name D AL B BLS BLM BLA

R11 0.035 0.322 1.947 0.329 1.095 1.618
R12 0.040 0.385 1.926 0.318 1.165 1.759
R13 0.040 0.385 1.924 0.317 1.163 1.764
R21 0.009 0.075 1.054 0.083 0.551 0.840
R22 0.010 0.087 1.036 0.075 0.545 0.867
R23 0.010 0.083 1.035 0.076 0.535 0.886
R31 0.003 0.025 0.600 0.025 0.317 0.464
R32 0.003 0.029 0.577 0.024 0.287 0.484
R33 0.003 0.029 0.577 0.024 0.285 0.485
R41 0.001 0.006 0.343 0.008 0.158 0.261
R42 0.001 0.008 0.340 0.008 0.154 0.268
R43 0.001 0.008 0.340 0.008 0.153 0.268

Table 4: Algorithm comparison for the rand source-
destination distribution on random networks.

Name D AL B BLS BLM BLA

R11 0.024 0.128 2.022 0.182 0.951 1.636
R12 0.026 0.210 2.111 0.249 1.241 2.248
R13 0.026 0.211 2.111 0.250 1.239 2.255
R21 0.007 0.051 1.318 0.079 0.652 1.125
R22 0.007 0.070 1.391 0.078 0.632 1.207
R23 0.007 0.064 1.390 0.079 0.614 1.147
R31 0.002 0.019 0.761 0.029 0.395 0.711
R32 0.002 0.025 0.799 0.027 0.385 0.721
R33 0.002 0.025 0.799 0.027 0.385 0.720
R41 0.001 0.003 0.379 0.005 0.155 0.298
R42 0.001 0.006 0.421 0.006 0.202 0.432
R43 0.001 0.006 0.422 0.006 0.201 0.432

Table 5: Algorithm comparison for the bfs source-
destination distribution on random networks.

the random graph, the lower bounds for the rand and
bfs selection are, respectively, almost a factor of four
and two below the true distances. This explains why
the bounds do not help much.

10 Concluding Remarks

When our experiments were near completion, we learned
about the work of Gutman [19], who studies the P2P
problem in a similar setting to ours. Gutman’s algo-
rithms are based on the concept of reach and need to
store a single “reach value” and Euclidean coordinates
of every vertex. Based on indirect comparison, perfor-
mance of his fastest algorithm is better than that of
ours with one landmark and worse than that of ours
with sixteen landmarks. Gutman’s approach requires
more assumptions about the input domain than ours,
his preprocessing is more time-consuming, and his ap-
proach does not seem to adapt to dynamic settings as
well as ours. However, his results are very interesting.
In particular, Gutman observes that his ideas can be
combined with A∗ search. It would be interesting to
see if using Gutman’s reach-based pruning in ALT al-
gorithms will noticeably improve their efficiency.

Name AL-1 AL-2 AL-4 AL-8 AL-16

M1 1.05 1.47 3.14 4.49 5.34
M2 0.73 1.02 2.03 2.55 3.02
M3 0.51 0.56 1.43 2.24 2.90
M4 0.55 0.76 2.07 3.06 3.82
M5 0.55 0.71 1.96 3.13 4.21
M6 0.77 1.06 1.53 2.11 2.39
M7 0.36 0.51 1.34 1.95 3.13
M8 0.42 0.61 1.31 2.00 2.69
M9 0.25 0.34 0.89 1.27 1.87
M10 0.27 0.38 0.73 1.18 1.56
M11 0.20 0.24 0.67 1.17 1.81

Table 6: Landmark quantity comparision for the rand

source-destination distribution on road networks with
Distance lengths.

Name AL-1 AL-2 AL-4 AL-8 AL-16

M1 4.84 9.50 14.06 14.75 16.20
M2 2.60 3.89 7.18 8.94 9.48
M3 2.44 3.74 6.87 8.47 8.36
M4 5.01 7.82 16.73 21.46 22.43
M5 4.95 7.37 15.52 18.36 17.96
M6 4.09 6.92 9.60 11.55 12.43
M7 4.90 7.70 14.80 17.46 17.63
M8 3.76 6.88 8.50 10.04 10.68
M9 4.66 8.25 15.93 19.01 19.55
M10 3.68 5.64 9.68 12.14 12.79
M11 5.60 8.71 14.19 16.72 18.45

Table 7: Landmark quantity comparision for the bfs

source-destination distribution on road networks with
Distance lengths.

Acknowledgments We are very grateful to Boris
Cherkassky for many discussions and for his help with
the design and implementation of landmark selection
algorithms. We would like to thank Jeff Couckuyt for
help with the MapPoint data, Gary Miller, Guy Blel-
loch, and Stefan Lewandowski for pointing us to some
of the literature, and Bob Tarjan, Satish Rao, Kris Hil-
drum, and Frank McSherry for useful discussions.

References

[1] B. V. Cherkassky, A. V. Goldberg, and T. Radzik.
Shortest Paths Algorithms: Theory and Experimental
Evaluation. In Proc. 5th ACM-SIAM Symposium on
Discrete Algorithms, pages 516–525, 1994.

Name rand bfs

M2 96.0 (4.5) 89.4 (9.97)
R41 28.5 (41.2) 60.0 (46.5)

Table 8: Ratio of the lower bound and the true distance
in percent (standard deviation).



[2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. MIT Press, Cambridge,
MA, 1990.

[3] L. J. Cowen and C. G. Wagner. Compact Roundtrip
Routing in Directed Networks. In Proc. Symp. on
Principles of Distributed Computation, pages 51–59,
2000.

[4] G. B. Dantzig. Linear Programming and Extensions.
Princeton Univ. Press, Princeton, NJ, 1962.

[5] D. de Champeaux. Bidirectional Heuristic Search
Again. J. ACM, 30(1):22–32, 1983.

[6] E. V. Denardo and B. L. Fox. Shortest–Route Methods:
1. Reaching, Pruning, and Buckets. Oper. Res., 27:161–
186, 1979.

[7] E. W. Dijkstra. A Note on Two Problems in Connexion
with Graphs. Numer. Math., 1:269–271, 1959.

[8] J. Doran. An Approach to Automatic Problem-Solving.
Machine Intelligence, 1:105–127, 1967.

[9] D. Dreyfus. An Appraisal of Some Shortest Path Algo-
rithms. Technical Report RM-5433, Rand Corporation,
Santa Monica, CA, 1967.

[10] J. Fakcharoenphol and S. Rao. Planar Graphs, Neg-
ative Weight Edges, Shortest Paths, and Near Linear
Time. In Proc. 42nd IEEE Annual Symposium on Foun-
dations of Computer Science, pages 232–241, 2001.

[11] L. Ford, Jr. Network Flow Theory. Technical Report
P-932, The Rand Corporation, 1956.

[12] L. Ford, Jr. and D. R. Fulkerson. Flows in Networks.
Princeton Univ. Press, Princeton, NJ, 1962.

[13] M. L. Fredman and R. E. Tarjan. Fibonacci Heaps
and Their Uses in Improved Network Optimization
Algorithms. J. Assoc. Comput. Mach., 34:596–615,
1987.

[14] G. Gallo and S. Pallottino. Shortest Paths Algorithms.
Annals of Oper. Res., 13:3–79, 1988.

[15] A. Goldberg and C. Harrelson. Computing the Shortest
Path: A∗ Search Meets Graph Theory. Technical
Report MSR-TR-2004-24, Microsoft Research, 2004.

[16] A. V. Goldberg. A Simple Shortest Path Algorithm
with Linear Average Time. In Proc. 9th Annual Euro-
pean Symposium on Algorithms, volume 2161 of Lecture
Notes in Computer Science, pages 230–241. Springer-
Verlag, 2001.

[17] A. V. Goldberg. Shortest Path Algorithms: Engineer-
ing Aspects. In Proc. ESAAC ’01, Lecture Notes in
Computer Science. Springer-Verlag, 2001.

[18] A. V. Goldberg and C. Silverstein. Implementations of
Dijkstra’s Algorithm Based on Multi-Level Buckets. In
P. M. Pardalos, D. W. Hearn, andW. W. Hages, editors,
Lecture Notes in Economics and Mathematical Systems
450 (Refereed Proceedings), pages 292–327. Springer
Verlag, 1997.

[19] R. Gutman. Reach-based Routing: A New Approach
to Shortest Path Algorithms Optimized for Road Net-
works. In Proc. 6th International Workshop on Al-
gorithm Engineering and Experiments, pages 100–111,
2004.

[20] P. E. Hart, N. J. Nilsson, and B. Raphael. A Formal

Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on System Science and
Cybernetics, SSC-4(2), 1968.

[21] T. Ikeda, M.-Y. Hsu, H. Imai, S. Nishimura, H. Shi-
moura, T. Hashimoto, K. Tenmoku, and K. Mitoh. A
Fast Algorithm for Finding Better Routes by AI Search
Techniques. In Proc. Vehicle Navigation and Informa-
tion Systems Conference. IEEE, 1994.

[22] R. Jacob, M. Marathe, and K. Nagel. A Computational
Study of Routing Algorithms for Realistic Transporta-
tion Networks. Oper. Res., 10:476–499, 1962.

[23] P. Klein. Preprocessing an Undirected Planar Network
to Enable Fast Approximate Distance Queries. In Proc.
13th ACM-SIAM Symposium on Discrete Algorithms,
pages 820–827, 2002.

[24] J. Kwa. BS*: An Admissible Bidirectional Staged
Heuristic Search Algorithm. Artif. Intell., 38(1):95–109,
1989.

[25] U. Meyer. Single-Source Shortest Paths on Arbitrary
Directed Graphs in Linear Average Time. In Proc. 12th
ACM-SIAM Symposium on Discrete Algorithms, pages
797–806, 2001.

[26] T. A. J. Nicholson. Finding the Shortest Route Between
Two Points in a Network. Computer J., 9:275–280,
1966.

[27] I. Pohl. Bi-directional Search. In Machine Intelligence,
volume 6, pages 124–140. Edinburgh Univ. Press, Edin-
burgh, 1971.

[28] F. Schulz, D. Wagner, and K. Weihe. Using Multi-
Level Graphs for Timetable Information. In Proc. 4th
International Workshop on Algorithm Engineering and
Experiments, volume 2409 of Lecture Notes in Computer
Science, pages 43–59. Springer-Verlag, 2002.

[29] R. Sedgewick and J. Vitter. Shortest Paths in Eu-
clidean Graphs. Algorithmica, 1:31–48, 1986.

[30] L. Sint and D. de Champeaux. An Improved Bidirec-
tional Heuristic Search Algorithm. J. ACM, 24(2):177–
191, 1977.

[31] R. E. Tarjan. Data Structures and Network Algo-
rithms. Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA, 1983.

[32] M. Thorup. Undirected Single-Source Shortest Paths
with Positive Integer Weights in Linear Time. J. Assoc.
Comput. Mach., 46:362–394, 1999.

[33] M. Thorup. Compact Oracles for Reachability and Ap-
proximate Distances in Planar Digraphs. In Proc. 42nd
IEEE Annual Symposium on Foundations of Computer
Science, pages 242–251, 2001.

[34] D. Wagner and T. Willhalm. Geometric Speed-Up
Techniques for Finding Shortest Paths in Large Sparse
Graphs. In European Symposium on Algorithms, 2003.

[35] F. B. Zhan and C. E. Noon. Shortest Path Algorithms:
An Evaluation using Real Road Networks. Transp. Sci.,
32:65–73, 1998.

[36] F. B. Zhan and C. E. Noon. A Comparison Be-
tween Label-Setting and Label-Correcting Algorithms
for Computing One-to-One Shortest Paths. Journal of
Geographic Information and Decision Analysis, 4, 2000.


