
Computer Science 345
The Efficient Universe

Solutions

1 Problem Set 6

Problem 1 Prove or disprove the following statements:

1. If A, B ∈ NP , then A ∩B ∈ NP and A ∪B ∈ NP .

2. If A and B are two NP-complete languages, then A ∩B is NP-complete.

3. If A and B are two NP-complete languages, then A ∪B is NP-complete.

Solution.
1. Answer: TRUE. A ∩B ∈ NP and A ∪B ∈ NP .

If A and B are in NP , then, by the definition, there exist polynomial time algorithms
MA and MB such

x ∈ A if and only if ∃wA MA(x, wA) = 1;

x ∈ B if and only if ∃wB MB(x, wB) = 1.

Let us construct an algorithm that decides whether “x ∈ A ∩B”, given a witness w.

Input: x and a witness w. The algorithms expects w to be a pair (wA, wB),
where wA is a witness for x ∈ A; wB is a witness for x ∈ B.
Output: 1 – accept; or 0 – reject

1. Let wA and wB be the first and the second components of the pair w;
that is, (wA, wB) = w (if w is not a pair of words, then Reject.)

2. if MA(x, wA) = 1 and MB(x, wB) = 1, then
Accept;

else
Reject.

If x ∈ A ∩ B, then the algorithm accepts x with the witness w = (wA, wB), since
MA(x, wA) = 1 and MB(x, wA) = 1.

If x /∈ A∩B, then x /∈ A or x /∈ B. Assume without loss of generality that x /∈ A. Hence
for every wA, MA(x, wA) = 0. Therefore, the if-condition is false and the algorithm rejects x.

Similarly, we can prove that A ∪B ∈ NP .

1



2. Answer: FALSE. There exist NP-complete languages A and B such that A ∩ B
is not NP-complete. Example:

A = {1#x : x ∈ SAT} ;

B = {0#x : x ∈ SAT} .

Remark: # denotes concatenation e.g. 0#10111 = 010111).
The languages A and B are NP-complete (why?). On the other hand, A ∩ B is the

empty set; and thus it is not NP-complete.
3. Answer: FALSE. There exist NP-complete languages A and B such that A ∪ B

is not NP-complete. Example:

A = {1#x : x ∈ SAT} ∪ {0#x : x ∈ {0, 1}∗} ;

B = {0#x : x ∈ SAT} ∪ {1#x : x ∈ {0, 1}∗} ; .

The languages A and B are NP-complete (prove it). On the other hand, A∪B contains all
binary strings (i.e. A ∪B = {0, 1}∗); and thus it is not NP-complete.

Definition 1 (Circuit Minimization Problem). Given a circuit C determine if there
exists a smaller circuit that computes the same function as C.

Problem 2 Prove that if the SAT problem is in P , then the Circuit Minimization Problem
is solvable in polynomial time.

Solution. We will show that

1. The Circuit Minimization Problem is in Π2 = co-Σ2;

2. If P = NP , then Σ2 = P .

Therefore, if SAT ∈ P , then P = NP (since SAT is NP-complete) and the Circuit Mini-
mization Problem is in Π2 = P .

Recall, that a language L is in Σ2 (by the definition) if there exists a polynomial algorithm
A such that

x ∈ L if and only if ∃w1 ∀w2 A(x, w1, w2) = 1. (1)

Here the witnesses w1 and w2 are of polynomial size.
I. A circuit C is not minimal, if there exists a smaller circuit C ′ that is equivalent to C.

In other words, C is not minimal if there exists a circuit C ′ such that for every input x:

• C ′(x) = C(x) (that is, C ′ is equivalent to C);

• size(C ′) < size(C).

2



From this characterization, we get that the complement to the Circuit Minimization Problem
is in Σ2. Thus the problem itself is in co-Σ2 = Π2.

II. We now need to show that if P = NP , then Σ2 = P . Consider an arbitrary language
L in Σ2 defined as follows:

x ∈ L if and only if ∃w1 ∀w2 A(x, w1, w2) = 1. (2)

Define a new language L′:

L′ = {(x, w1) : ∀w2 A(x, w1, w2) = 1} .

Now rewrite (2) in a slightly different way:

x ∈ L if and only if ∃w1 s.t. (x, w1) ∈ L′. (3)

Observe, that L′ is in co-NP . Thus there exists a polynomial time algorithm B deciding
the language L′ (we assume that P = NP). Hence (3) is equivalent to

x ∈ L if and only if ∃w1 s.t. B(x, w1).

But this is an NP-statement, thus the problem can be solved in polynomial time (again, we
assume that P = NP).

3


