Computer Science 345
The Efficient Universe

Solutions

1 Problem Set 6

Problem 1 Prove or disprove the following statements:
1. f A, Be NP, then ANB e NP and AUB € NP.
2. If A and B are two N'P-complete languages, then A N B is N'P-complete.
3. If A and B are two N'P-complete languages, then AU B is N'P-complete.

Solution.

1. Answer: TRUE. ANB e NP and AUB e NP.

If A and B are in NP, then, by the definition, there exist polynomial time algorithms
M4 and Mp such
x € Aif and only if Jwa My(z,w4) = 1;

x € B if and only if Jwg Mp(x,wp) = 1.

Let us construct an algorithm that decides whether “x € AN B”, given a witness w.

Input: z and a witness w. The algorithms expects w to be a pair (wa,wp),
where w, is a witness for r € A; wg is a witness for x € B.
Output: 1 — accept; or 0 — reject

1. Let w4 and wp be the first and the second components of the pair w;
that is, (wa, wp) = w (if w is not a pair of words, then Reject.)

2. if Ma(z,ws) =1 and Mp(xz,wg) = 1, then
Accept;
else
Reject.

If © € AN B, then the algorithm accepts x with the witness w = (wa,wpg), since
Ma(z,ws) =1 and Mp(x,was) = 1.

If v ¢ ANB, then z ¢ A or x ¢ B. Assume without loss of generality that « ¢ A. Hence
for every wa, Ma(x,ws) = 0. Therefore, the if-condition is false and the algorithm rejects x.

Similarly, we can prove that AU B € N'P.



2. Answer: FALSE. There exist NP-complete languages A and B such that AN B
is not N'P-complete. Example:
A={l#z:2€ SAT};
B ={0#x:2 € SAT}.

Remark: # denotes concatenation e.g. 0410111 = 010111).

The languages A and B are N'P-complete (why?). On the other hand, AN B is the
empty set; and thus it is not NP-complete.

3. Answer: FALSE. There exist N'P-complete languages A and B such that AU B
is not N'’P-complete. Example:

A={1#zx:x € SAT} U{0#z : z € {0,1}'};
B={0#x:x € SAT}U{1#x: 2 € {0,1}"};.

The languages A and B are N'P-complete (prove it). On the other hand, AU B contains all
binary strings (i.e. AU B = {0,1}"); and thus it is not A/P-complete.
O

Definition 1 (Circuit Minimization Problem). Given a circuit C' determine if there
exists a smaller circuit that computes the same function as C'.

Problem 2 Prove that if the SAT problem is in P, then the Circuit Minimization Problem
is solvable in polynomial time.

Solution. We will show that
1. The Circuit Minimization Problem is in Ily = co-Xo;
2. If P = NP, then Xy = P.

Therefore, if SAT € P, then P = NP (since SAT is N'P-complete) and the Circuit Mini-
mization Problem is in Il = P.
Recall, that a language L is in 35 (by the definition) if there exists a polynomial algorithm
A such that
z € L if and only if Fw; Vws Az, wy,wq) = 1. (1)

Here the witnesses w; and ws, are of polynomial size.
I. A circuit C is not minimal, if there exists a smaller circuit C’ that is equivalent to C.
In other words, C' is not minimal if there exists a circuit C’ such that for every input x:

o ('(x) = C(x) (that is, C' is equivalent to C);
o size(C”) < size(C).



From this characterization, we get that the complement to the Circuit Minimization Problem
is in 5. Thus the problem itself is in co-¥y = Ils.

II. We now need to show that if P = NP, then ¥y = P. Consider an arbitrary language
L in Y, defined as follows:

x € L if and only if Jw; Ywy A(z, wy,ws) = 1. (2)
Define a new language L'
L' = {(z,w) : Ywy A(z,wy,wy) = 1}.
Now rewrite (2) in a slightly different way:

r €L ifand only if Jw; s.t. (z,wy) € L. (3)

Observe, that L’ is in co-NP. Thus there exists a polynomial time algorithm B deciding
the language L' (we assume that P = N'P). Hence (3) is equivalent to

r € L ifand only if Jw; s.t. B(x,wy).

But this is an N"P-statement, thus the problem can be solved in polynomial time (again, we
assume that P = N'P). O



