Computer Science 345 The Efficient Universe

Solutions

1 Problem Set 6

Problem 1 Prove or disprove the following statements:

1. If $A, B \in \mathcal{NP}$, then $A \cap B \in \mathcal{NP}$ and $A \cup B \in \mathcal{NP}$.

2. If A and B are two \mathcal{NP} -complete languages, then $A \cap B$ is \mathcal{NP} -complete.

3. If A and B are two \mathcal{NP} -complete languages, then $A \cup B$ is \mathcal{NP} -complete.

Solution.

1. Answer: TRUE. $A \cap B \in \mathcal{NP}$ and $A \cup B \in \mathcal{NP}$.

If A and B are in \mathcal{NP} , then, by the definition, there exist polynomial time algorithms M_A and M_B such

 $x \in A$ if and only if $\exists w_A M_A(x, w_A) = 1$;

 $x \in B$ if and only if $\exists w_B M_B(x, w_B) = 1$.

Let us construct an algorithm that decides whether " $x \in A \cap B$ ", given a witness w.

Input: x and a witness w. The algorithms expects w to be a pair (w_A, w_B) , where w_A is a witness for $x \in A$; w_B is a witness for $x \in B$. **Output:** 1 – accept; or 0 – reject

- 1. Let w_A and w_B be the first and the second components of the pair w; that is, $(w_A, w_B) = w$ (if w is not a pair of words, then Reject.)
- 2. if $M_A(x, w_A) = 1$ and $M_B(x, w_B) = 1$, then Accept; else Reject.

If $x \in A \cap B$, then the algorithm accepts x with the witness $w = (w_A, w_B)$, since $M_A(x, w_A) = 1$ and $M_B(x, w_A) = 1$.

If $x \notin A \cap B$, then $x \notin A$ or $x \notin B$. Assume without loss of generality that $x \notin A$. Hence for every w_A , $M_A(x, w_A) = 0$. Therefore, the *if-condition* is false and the algorithm rejects x. Similarly, we can prove that $A \cup B \in \mathcal{NP}$. 2. Answer: FALSE. There exist \mathcal{NP} -complete languages A and B such that $A \cap B$ is not \mathcal{NP} -complete. Example:

$$A = \{1 \# x : x \in SAT\};$$
$$B = \{0 \# x : x \in SAT\}.$$

Remark: # denotes concatenation e.g. 0#10111 = 010111).

The languages A and B are \mathcal{NP} -complete (why?). On the other hand, $A \cap B$ is the empty set; and thus it is not \mathcal{NP} -complete.

3. Answer: FALSE. There exist \mathcal{NP} -complete languages A and B such that $A \cup B$ is not \mathcal{NP} -complete. Example:

$$A = \{1 \# x : x \in SAT\} \cup \{0 \# x : x \in \{0, 1\}^*\};$$

$$B = \{0 \# x : x \in SAT\} \cup \{1 \# x : x \in \{0, 1\}^*\};.$$

The languages A and B are \mathcal{NP} -complete (prove it). On the other hand, $A \cup B$ contains all binary strings (i.e. $A \cup B = \{0, 1\}^*$); and thus it is not \mathcal{NP} -complete.

Definition 1 (Circuit Minimization Problem). Given a circuit C determine if there exists a smaller circuit that computes the same function as C.

Problem 2 Prove that if the SAT problem is in \mathcal{P} , then the Circuit Minimization Problem is solvable in polynomial time.

Solution. We will show that

- 1. The Circuit Minimization Problem is in $\Pi_2 = \text{co-}\Sigma_2$;
- 2. If $\mathcal{P} = \mathcal{N}\mathcal{P}$, then $\Sigma_2 = \mathcal{P}$.

Therefore, if $SAT \in \mathcal{P}$, then $\mathcal{P} = \mathcal{NP}$ (since SAT is \mathcal{NP} -complete) and the Circuit Minimization Problem is in $\Pi_2 = \mathcal{P}$.

Recall, that a language L is in Σ_2 (by the definition) if there exists a polynomial algorithm A such that

$$x \in L$$
 if and only if $\exists w_1 \forall w_2 A(x, w_1, w_2) = 1.$ (1)

Here the witnesses w_1 and w_2 are of polynomial size.

I. A circuit C is not minimal, if there exists a smaller circuit C' that is equivalent to C. In other words, C is not minimal if there exists a circuit C' such that for every input x:

- C'(x) = C(x) (that is, C' is equivalent to C);
- $\operatorname{size}(C') < \operatorname{size}(C)$.

From this characterization, we get that the complement to the *Circuit Minimization Problem* is in Σ_2 . Thus the problem itself is in $co-\Sigma_2 = \Pi_2$.

II. We now need to show that if $\mathcal{P} = \mathcal{NP}$, then $\Sigma_2 = \mathcal{P}$. Consider an arbitrary language L in Σ_2 defined as follows:

$$x \in L$$
 if and only if $\exists w_1 \forall w_2 A(x, w_1, w_2) = 1.$ (2)

Define a new language L':

$$L' = \{(x, w_1) : \forall w_2 \ A(x, w_1, w_2) = 1\}.$$

Now rewrite (2) in a slightly different way:

$$x \in L$$
 if and only if $\exists w_1 \text{ s.t. } (x, w_1) \in L'.$ (3)

Observe, that L' is in co- \mathcal{NP} . Thus there exists a polynomial time algorithm B deciding the language L' (we assume that $\mathcal{P} = \mathcal{NP}$). Hence (3) is equivalent to

 $x \in L$ if and only if $\exists w_1 \text{ s.t. } B(x, w_1)$.

But this is an \mathcal{NP} -statement, thus the problem can be solved in polynomial time (again, we assume that $\mathcal{P} = \mathcal{NP}$).