Computer Science 345 The Efficient Universe

Homework 7 Due Wednesday, April 19, 2006

You may collaborate with other students, but you should write up the solutions entirely on your own.

Problem 1 You are given a program A which computes an unknown polynomial $P(x_1, \ldots, x_m)$ of degree d over the field \mathbb{Z}_p but makes an error on an ε fraction of the inputs. Design a probabilistic program B (which can use A as a subroutine) that for EVERY input x_1, \ldots, x_m computes $P(x_1, \ldots, x_m)$ with probability 99%. The running time of your program should be polynomial in n, where n is the length of p in binary (d and m are bounded by polynomials of n; and p is much larger than d and m).

Hint: Consider a random line in $(\mathbb{Z}_p)^d$ and reduce the problem to the one dimensional case.

Problem 2 Let g be a generator of the group \mathbb{Z}_p^* (p is a prime number) and let f(x) be the discrete logarithm of x (i.e. $g^{f(x)} = x \mod p$). Assume that

$$\Pr_{x \in \mathbb{Z}_p^*} \left(A(x) = f(x) \right) \ge \varepsilon,$$

for some algorithm A. Prove that for every δ there exists a probabilistic algorithm B (which can use A as a black box) such that for every x:

$$\Pr\left(B(x) = f(x)\right) \ge 1 - \delta.$$

Estimate the runtime of B in terms of ε and δ .

Hint: Use the fact that exponentiation is easy to verify correctness of A.

Problem 3 Let f(x) be as in Problem 2. Prove that computing the least significant bit of f(x) is easy.

Hint: It depends on whether $x^{(p-1)/2}$ is 1 or -1.

Problem 4 Consider the following Hadamard matrix $H = (h_{st})$ indexed by binary strings (vectors) s and t of length ℓ :

$$h_{st} = \langle s, t \rangle \mod 2 \equiv \sum_{i=1}^{\ell} s_i t_i \mod 2.$$

Note that the size of the matrix is $2^{\ell} \times 2^{\ell}$. In class we showed that this matrix can be used to derandomize a simple MAX CUT algorithm. Consider a program that picks a random string s in $\{0,1\}^{\ell}$ and a random bit b in $\{0,1\}$. Then it outputs the bits of the matrix in the row s XOR (exclusive or) b. Prove that this program is not a pseudorandom generator.