COS 320

March 7, 2006; Lecture 9

MinML (same definition as last lecture)
Types t ::= int | bool | T1 (T2
Expressions e ::= x | n | o(e e) | true | false | if e then e else e | fun f (x:T1):T2 = e | e
Ops o ::= + | < | - | *
Integers n

Γ |- e : T “In context Γ, e is well-typed and produces a value with type T”

Γ (function from variables to types

Γ [x:t] (is a new context

Γ(x) = T “look-up in the context”

Goal is to have typing rules defined to prevent the following kinds of errors when executing a program, (should never run into the situation in which it is necessary to do one of the following things).

1) Apply something that isn’t a value. Eg “3 e” or (where x is not a function) “x e”

2) Never execute “if V then…” where V is not a Boolean

3) Never apply a built-in operator to the wrong kind of argument

(note, I’m using
[image: image1.wmf]a

in place of |-)

Basic integer typing:
[image: image2.wmf]int

:

n

a

G

[image: image3.wmf]int

:

int

:

int

:

2

1

2

1

e

e

e

e

+

G

G

G

a

a

a

Basic Boolean typing:
[image: image4.wmf]bool

e

e

e

e

:

int

:

int

:

2

1

2

1

£

G

G

G

a

a

a

[image: image5.wmf]bool

true

:

a

G

 EMBED Equation.3 [image: image6.wmf]bool

false

:

a

G

Function definition
[image: image7.wmf]T2

T1

:

T2

:

T1)

:

(x

f

fun

T2

:

T2]

T1

:

T1][f

:

x

[

®

=

G

®

G

e

e

a

a

 (note that on top we don’t check x:T1)

[image: image8.wmf])

(

:

x

x

G

G

a

or
[image: image9.wmf])

(

:

x

)

(

T

and

)

(

dom

x

x

x

G

G

G

=

G

Î

a

[image: image10.wmf]2

1

2

1

T1

:

T2

T1

:

e

e

e

e

a

a

a

G

G

®

G

If statements (note that if
[image: image11.wmf]2

e

and
[image: image12.wmf]3

e

don’t share their types then it isn’t possible to determine at compile time the type of the if)
[image: image13.wmf]T

:

else

 then

if

T

:

T

:

bool

:

3

2

1

2

2

1

e

e

e

e

e

e

a

a

a

a

G

G

G

G

Another property of our MinML rules: given a context Γ and e, either there exists a unique type T such that the judgement Γ|-e:T or e does not type check (proof by induction…take COS 441 if this is your sort of thing) (type checking is syntax-directed. (this is not the case in all languages…eg in ML, the statement “let fun id x = x”).
Factorial function

[image: image14.wmf]int

:

 x

*

1))

-

(x

(fact

else

1

 then

1

 x

if

int

:

int)

:

(x

fact

fun

.

int

:

x

*

1)

-

(x

fact

else

1

 then

1

 x

if

int]

:

int][

int

:

fact

[

int

:

1

:

*

)

1

(

fact

int

:

int

:

)

1

(

fact

int

:

1)

-

(x

int

:

1

int

:

int

int

:

fact

int

:

1

bool

:

1

int

:

1

int

:

£

=

£

®

-

G

G

-

G

G

G

G

®

G

G

£

G

G

G

a

a

a

a

a

a

a

a

a

a

a

a

a

x

x

x

x

x

x

x

x

In a nutshell: the algorithm for type checking according to the MinML rules is:

Given Inputs: Context Γ and Expression e.

1) Identify the typing rule (by looking at e)

2) Recursively compute the types of the subexpressions.

3) Check constraints in rules and return the type of whole expression.
Now, since Professor Walker likes to mess with us…
Subtyping
Add to types T “float”, add to expressions e “f”, add to ops o “+.”
Define int
[image: image15.wmf]£

 float

“
[image: image16.wmf]£

” = “is a subtype”
Type T1 is a subtype of type T2 only if all values with type T1 count as values of type T2. Every operation that handles arguments with type T2 also must handle arguments with type T1.

Adding two new rules then
“+.”
[image: image17.wmf]float

:

.

float

:

float

:

2

1

2

1

e

e

e

e

+

G

G

G

a

a

a

 and “subsumption”
[image: image18.wmf]T2

:

T2

T1

T1

:

1

1

e

e

a

a

G

£

G

Now say you define int
[image: image19.wmf]£

int(int…then you can say

[image: image20.wmf]int

:

17

0

int

:

17

int

int

:

0

int

int

int

int

:

0

a

a

a

a

®

®

£

 this is bad, ‘nuff sed so we have to be careful when selecting / subtyping rules (or really any of the rules).
More extensions of MinML (moving towards ML / Fun)

Add to e “(e1, …, en) | #i e”
Add to T “T1 * ... * Tn”

Type rules for tuples / projs

[image: image21.wmf]Tn

*

...

*

T1

:

)

,...,

(

Tn

:

...

T1

:

1

2

1

n

e

e

e

e

a

a

a

G

G

G

and (1
[image: image22.wmf]£

i
[image: image23.wmf]£

n)
[image: image24.wmf]Ti

:

#

Tn

*

...

*

T1

:

e

i

e

a

a

G

G

[image: image25.wmf]Tm

*

...

*

T1

Tk

*

...

*

T1

m

k

£

³

 (if you do the converse and say k can be < m, then you can say something like int * int
[image: image26.wmf]£

 int * int * int, and so if you try doing “#3” on something of type int * int, then it will be considered safe when it really should crash / not be allowed).
Adding subtyping results in the loss of the property that every expression only has one type.
_1203251208.unknown

_1203252947.unknown

_1203253351.unknown

_1203253413.unknown

_1203253653.unknown

_1203253188.unknown

_1203252814.unknown

_1203252873.unknown

_1203251532.unknown

_1203252754.unknown

_1203252760.unknown

_1203251543.unknown

_1203251508.unknown

_1203250501.unknown

_1203250844.unknown

_1203250957.unknown

_1203250524.unknown

_1203250166.unknown

_1203250248.unknown

_1203250298.unknown

_1203250228.unknown

_1203250020.unknown

