Activation Records (ARS)

Modern imperative PLs typically have /ocal variables
* Created upon call to function (or entry to region of code)
« Destroyed upon return of function (or exit of region of code)

Activation Records/Stack Frames

COS 320

Each invocation has own J/nstance of locals

Compiler Implementation * Recursive calls require several instances to exist simultaneously
« Function instance dies only after all callees have died (LIFO)

* Need LIFO structure to hold each instance: Stack

Princeton University
Spring 2006

The portion of “The Stack” used for an invocation of a
function is called the stack frame or activation record

Prof. David August (guest)

Callee/Caller terminology?

The Stack

Essentially:
e A large (resizable) array
e Grows downward (upward) in memory addresses
e Shrinks upward (downward)
push(rl):
stack_pointer--;
M[stack_pointer] = ri;
rl = pop(Q):
rl = M[stack_pointer];
stack_pointer++;

Notes:
e Push and pop entire activation records?
* Previous activation records need to be accessed? Implications?

Stack Frame Example

let
function g(x:int) =
let
var y := 10
in
X+ Yy
end
function h(y:int) :int =
y + gly)
in
hi4)
end
Recursive Example
let
function fact (n:int) :int =
if n = 0 then 1
else n * fact(n - 1)
in

fact (3)
end

What about Functional Languages?

Some functional PLs (ML, Scheme) cannot use a stack
fun f£(x) =
let
fun g(y) = x + ¥
in
g
end

Consider:

- val z
- val w

£(4)
z(5)

Assume variables are stack-allocated.

Functional Languages

Combination of nested functions and nested returned
results (higher-order functions):

1. Requires locals to remain after enclosing function
returns

2. Activation records must be allocated on heap, not stack

Concentrate on languages using the stack...

Prof. Walker adds:

Comment that | already talked about closure
conversion, which deals with the problem of creating
"activation records" (closures) for ML-style nested
functions (or at least reduces it to the problem of
creating activation records for C).

Stack Frame Organization

< In isolation, compiler can use any layout scheme
e Microprocessor manufacturers specify standards
e Called: Calling Conventions
* Allows code from different compilers to work together
« Essential for library interaction

Typical Calling Convention

e Frame Pointer points to top (bottom) of previous frame
e Stack Pointer points to slot above (below) current frame

Higher Addresses

Frame Pointer(FP) -> [

Previous Frame Callee can access al’gumcnts hy

local var 2

local var m
Remim Address
Temporaries
Saved Registers

Stack Pointer(SP) - |

Current Frame

Garbage

Lower Addresses

offset from FP:

argument 1: M[FE]
argument 2: M[FP + 1]

Local variables accessed by offset
from FP:

local wvariable 1: M[FP - 1]
local wvariable 2: M[FP - 2]

Stack Frame Example

Suppose £ (al, a2) callsg(bl,
Step 1:

Frame Pointer(FP) -~

Stack Pointer(SP) -

Step 2:

Frame Pointer(FP) -

Stack Pointer(SP) -

b3)

Garbage

bl

bi

Previons Frame

Frame for [

Previous Frame

Frame for f

20

Garbage

Stack Frame Example

Suppose £ (al, a2) callsg(bl,

Step 3:

. Frame Pointer(FP) - |

Stack Pointer(SP) -=

b2, b3)
Previous Frame
a2
- al
Frame for
bl
b2

b3

| OLD FP/Dynamic Link|

Frame for g

Garbage

Dynamic Link (AKA Control Link) points to AR of the caller
e Optional if size of caller AR is static and known
e Used to restore stack pointer during return sequence

Stack Frame Example

Suppose £ (al, a2) callsg(bl,
Step 4

Frame Pointer(FP) -= |

Stack Pointer(SP) - |

b3, and returns.

bl
b2
b3

Previous Frame

Frame for £

Step 5

Frame Pointer(FP) - |

Garbags

Previous Frame

Stack Pointer(SP) - |

bl

Frame for £

22

b2 Garbags
biGarbage
Garbage

Parameter Passing

£la;, a2, ..., au)
® Registers are faster than memory.
o Compiler should keep values in register whenever possible.
e Modern calling convention: rather than placing a,. a., ..., a, on stack frame, put a,,
o ap (k= d) inregisters 1, 1,p 1, Typo, Ty and aj.q, a0, 4540, ..o, @,
® I, 100, 100, 10 are needed for other purposes, callee function must save incom-
ing argument(s) in stack frame.
o C language allows programmer to take address of formal parameter and guarantees
that formals are located at consecutive memory addresses.
— If address argument has address taken, then it must be written into stack frame.
— Saving it in “saved registers” area of stack won’t make it consecutive with mem-
ory resident arguments.

— Space must be allocated even if parameters are passed through register.

Parameter Passing

24

If register argument has address taken,
callee materializes it on the stack

Frame Pointer(FP) ->

a(n)

alk+1)
space for a(k)

space for a(2)
Stack Pointer(SP) -> space fora(l)
Garbage

Registers

Registers hold:
L SUTI]C Parameters
o Return Value
e Local Variables
e Intermediate results of expressions (temporaries)
Stack Frame holds:
e Variables passed by reference or have their address taken (&)
e Variables that are accessed by procedures nested within current one.
e Variables that are too large to fit into register file.
* Array variables (address arithmetic needed to access array elements).
e Variables whose registers are needed for a specific purpose (parameter passing)

e Spilled registers. Too many local variables to fit into register file, so some must be
stored in stack frame.

Registers

26

* Compilers typically place a variable on stack until it can

determine whether or not it can be promoted to a
register (e.g. no references)

e The assignment of variables to registers is done by the

Register Allocator

Registers

Return Address and Return Value(s)

Register’s value must be saved before callee can reuse

Calling convention defines two types of registers:

e Caller-save registers are responsibility of the caller
e Caller-save register values saved only if used after call/return
* The callee function can use caller-saved registers with concern

e (Callee-save register are the responsibility of the callee
« Values must be saved by callee before they can be used
e Caller can assume that these registers will be restored

Allocation of variables to callee-saved vs. caller-saved
done by register allocator

Return Address:

» A called function must be able to return to caller

e Return address is address of instruction following call
e Return address can be placed on the stack or register

e A call instruction (if present in ISA) places return
address in a designated register

e The return address is written to stack by callee in non-
leaf functions

Return Value is placed in designated register or on stack

28

Frame Resident Variables

Static Links

e A variable escapes if:
e it is passed by reference,
e its address is taken, or
e it is accessed from a nested function

< Variables cannot be assigned a location at declaration
time
« Escape conditions not known

= Assign provisional locations, decide later if variables can be
promoted to registers

e escape set to true by default

In languages that allow nested functions,
functions must access other function’s stack frame.

let
function f£():int = let
var a:=5
function g(y:int):int = let
var b:=10

function h(z:int) :int =
if z > 10 then h(z / 2)

else z + b * a <- b, a of outer fn
in
v + a + h(1l6) <- a of outer fn
end
in
g(10)
end

in £() end

30

Static Links

Whenever f is called, it is passed a pointer to most recent AR of
g that immediately encloses f in program text >
Static Link (AKA Access Link)

0 g(10)

Frame Pointer(FP) - -—

Frame for £
Stack Pomter(SP) -=| | . v=10 .
FP->| STATICLINK —]
Dynamic Link —f - . v
b=10

Frame for f | |
|

Frame for g

SP -> &y=FP+ 1
&a=M[FP] - |

Static Links

Static Links

< Need a chain of indirect memory references for each
variable access
e Example: M[M[M[FP]1]

 Number of indirect references = difference in nesting
depth between variable declaration function and use
function

hil6)

" -

Frame for f
| ¥ =10
T STATIC LINK —
Dynamic Link
b=10

Frame for g
z=16
FP->| STATIC LINK —
~ Dynamic Link

Frame for
sp o= | &z

(%)

l—

y=10

STATIC LINK —

Frame for f

| ~

- Dynamic Link

b= 10

Frame for g

z=16

STATIC LINK ~—

SP->

- Dymamic Link

=5

STATIC LINK ~_

— Dynamic Link

Frame forh |

Frame for
&z=FP+1

&b =M[FP] - 2
&a = M[M[FP]] - |

