
1

1

Activation Records/Stack FramesActivation Records/Stack Frames

COS 320

Compiler Implementation

Princeton University
Spring 2006

Prof. David August (guest)

2

Activation Records (Activation Records (ARsARs))

• Modern imperative PLs typically have local variables
• Created upon call to function (or entry to region of code)
• Destroyed upon return of function (or exit of region of code)

• Each invocation has own instance of locals
• Recursive calls require several instances to exist simultaneously
• Function instance dies only after all callees have died (LIFO)
• Need LIFO structure to hold each instance: Stack

• The portion of “The Stack” used for an invocation of a
function is called the stack frame or activation record

• Callee/Caller terminology?

3

The StackThe Stack

• Essentially:
• A large (resizable) array
• Grows downward (upward) in memory addresses
• Shrinks upward (downward)

• push(r1):
stack_pointer--;
M[stack_pointer] = r1;

• r1 = pop():
r1 = M[stack_pointer];
stack_pointer++;

• Notes:
• Push and pop entire activation records?
• Previous activation records need to be accessed? Implications?

4

2

5

Stack Frame ExampleStack Frame Example

6

9

Recursive ExampleRecursive Example

10

3

14

What about Functional Languages?What about Functional Languages?
Some functional PLs (ML, Scheme) cannot use a stack

15

17

Functional LanguagesFunctional Languages

Combination of nested functions and nested returned
results (higher-order functions):

1. Requires locals to remain after enclosing function
returns

2. Activation records must be allocated on heap, not stack

Concentrate on languages using the stack…

Prof. Walker adds:
Comment that I already talked about closure
conversion, which deals with the problem of creating
"activation records" (closures) for ML-style nested
functions (or at least reduces it to the problem of
creating activation records for C).

18

Stack Frame OrganizationStack Frame Organization

• In isolation, compiler can use any layout scheme
• Microprocessor manufacturers specify standards

• Called: Calling Conventions
• Allows code from different compilers to work together
• Essential for library interaction

4

19

Typical Calling ConventionTypical Calling Convention

• Frame Pointer points to top (bottom) of previous frame
• Stack Pointer points to slot above (below) current frame

20

Stack Frame ExampleStack Frame Example

21

Stack Frame ExampleStack Frame Example

Dynamic Link (AKA Control Link) points to AR of the caller
• Optional if size of caller AR is static and known
• Used to restore stack pointer during return sequence

22

Stack Frame ExampleStack Frame Example

5

23

Parameter PassingParameter Passing

24

Parameter PassingParameter Passing

If register argument has address taken,
callee materializes it on the stack

25

RegistersRegisters

26

RegistersRegisters

• Compilers typically place a variable on stack until it can
determine whether or not it can be promoted to a
register (e.g. no references)

• The assignment of variables to registers is done by the
Register Allocator

6

27

RegistersRegisters

Register’s value must be saved before callee can reuse

Calling convention defines two types of registers:
• Caller-save registers are responsibility of the caller

• Caller-save register values saved only if used after call/return
• The callee function can use caller-saved registers with concern

• Callee-save register are the responsibility of the callee
• Values must be saved by callee before they can be used
• Caller can assume that these registers will be restored

Allocation of variables to callee-saved vs. caller-saved
done by register allocator

28

Return Address and Return Return Address and Return Value(sValue(s))

Return Address:
• A called function must be able to return to caller
• Return address is address of instruction following call
• Return address can be placed on the stack or register
• A call instruction (if present in ISA) places return

address in a designated register
• The return address is written to stack by callee in non-

leaf functions

Return Value is placed in designated register or on stack

29

Frame Resident VariablesFrame Resident Variables

• A variable escapes if:
• it is passed by reference,
• its address is taken, or
• it is accessed from a nested function

• Variables cannot be assigned a location at declaration
time
• Escape conditions not known
• Assign provisional locations, decide later if variables can be

promoted to registers

• escape set to true by default

30

Static LinksStatic Links

In languages that allow nested functions,
functions must access other function’s stack frame.

7

31

Static LinksStatic Links

Whenever f is called, it is passed a pointer to most recent AR of
g that immediately encloses f in program text

Static Link (AKA Access Link)

32

Static LinksStatic Links

33

Static LinksStatic Links

• Need a chain of indirect memory references for each
variable access
• Example: M[M[M[FP]]]

• Number of indirect references = difference in nesting
depth between variable declaration function and use
function

