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Activation Records (Activation Records (ARsARs))

• Modern imperative PLs typically have local variables
• Created upon call to function (or entry to region of code)
• Destroyed upon return of function (or exit of region of code)

• Each invocation has own instance of locals
• Recursive calls require several instances to exist simultaneously
• Function instance dies only after all callees have died (LIFO)
• Need LIFO structure to hold each instance: Stack

• The portion of “The Stack” used for an invocation of a 
function is called the stack frame or activation record

• Callee/Caller terminology?
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The StackThe Stack

• Essentially:
• A large (resizable) array
• Grows downward (upward) in memory addresses
• Shrinks upward (downward)

• push(r1):
stack_pointer--;
M[stack_pointer] = r1;

• r1 = pop():
r1 = M[stack_pointer];
stack_pointer++;

• Notes:
• Push and pop entire activation records?
• Previous activation records need to be accessed?  Implications?
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Stack Frame ExampleStack Frame Example
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Recursive ExampleRecursive Example
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What about Functional Languages?What about Functional Languages?
Some functional PLs (ML, Scheme) cannot use a stack
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Functional LanguagesFunctional Languages

Combination of nested functions and nested returned 
results (higher-order functions):

1. Requires locals to remain after enclosing function 
returns

2. Activation records must be allocated on heap, not stack

Concentrate on languages using the stack…

Prof. Walker adds:
Comment that I already talked about closure 
conversion, which deals with the problem of creating 
"activation records" (closures) for ML-style nested 
functions (or at least reduces it to the problem of 
creating activation records for C). 
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Stack Frame OrganizationStack Frame Organization

• In isolation, compiler can use any layout scheme
• Microprocessor manufacturers specify standards

• Called: Calling Conventions
• Allows code from different compilers to work together
• Essential for library interaction 
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Typical Calling ConventionTypical Calling Convention

• Frame Pointer points to top (bottom) of previous frame 
• Stack Pointer points to slot above (below) current frame
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Stack Frame ExampleStack Frame Example
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Stack Frame ExampleStack Frame Example

Dynamic Link (AKA Control Link) points to AR of the caller
• Optional if size of caller AR is static and known
• Used to restore stack pointer during return sequence
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Stack Frame ExampleStack Frame Example
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Parameter PassingParameter Passing
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Parameter PassingParameter Passing

If register argument has address taken, 
callee materializes it on the stack
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RegistersRegisters
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RegistersRegisters

• Compilers typically place a variable on stack until it can 
determine whether or not it can be promoted to a 
register (e.g. no references)

• The assignment of variables to registers is done by the 
Register Allocator
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RegistersRegisters

Register’s value must be saved before callee can reuse

Calling convention defines two types of registers:
• Caller-save registers are responsibility of the caller

• Caller-save register values saved only if used after call/return
• The callee function can use caller-saved registers with concern

• Callee-save register are the responsibility of the callee
• Values must be saved by callee before they can be used
• Caller can assume that these registers will be restored

Allocation of variables to callee-saved vs. caller-saved 
done by register allocator
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Return Address and Return Return Address and Return Value(sValue(s))

Return Address:
• A called function must be able to return to caller
• Return address is address of instruction following call
• Return address can be placed on the stack or register
• A call instruction (if present in ISA) places return 

address in a designated register
• The return address is written to stack by callee in non-

leaf functions

Return Value is placed in designated register or on stack
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Frame Resident VariablesFrame Resident Variables

• A variable escapes if:
• it is passed by reference,
• its address is taken, or
• it is accessed from a nested function

• Variables cannot be assigned a location at declaration 
time
• Escape conditions not known
• Assign provisional locations, decide later if variables can be 

promoted to registers

• escape set to true by default
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Static LinksStatic Links

In languages that allow nested functions, 
functions must access other function’s stack frame.
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Static LinksStatic Links

Whenever f is called, it is passed a pointer to most recent AR of 
g that immediately encloses f in program text 

Static Link (AKA Access Link)
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Static LinksStatic Links
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Static LinksStatic Links

• Need a chain of indirect memory references for each 
variable access
• Example: M[M[M[FP]]]

• Number of indirect references = difference in nesting 
depth between variable declaration function and use 
function


