Shortest Paths

Brief History

- **Shimbel (1955).** Information networks.
- **Ford (1956).** RAND, economics of transportation.
- **Dantzig (1958).** Simplex method for linear programming.
- **Bellman (1958).** Dynamic programming.
- **Moore (1959).** Routing long-distance telephone calls for Bell Labs.
- **Dijkstra (1959).** Simpler and faster version of Ford’s algorithm.

Applications

- **More applications.**
 - Robot navigation.
 - Texture mapping.
 - Typesetting in TeX.
 - Urban traffic planning.
 - Optimal pipelining of VLSI chip.
 - Telemarketer operator scheduling.
 - Subroutine in higher level algorithms.
 - Routing of telecommunications messages.
 - Approximating piecewise linear functions.
 - Network routing protocols (OSPF, BGP, RIP).
 - Exploiting arbitrage opportunities in currency exchange.
 - Optimal truck routing through given traffic congestion pattern.

Shortest Path Problem

Given a weighted digraph, find the shortest directed path from s to t.

Path: $s \rightarrow 6 \rightarrow 3 \rightarrow 5 \rightarrow t$

Cost: $14 + 18 + 2 + 16 = 50$

Versions.
- Point-to-point, single source, all pairs.
- Nonnegative edge weights, arbitrary weights, Euclidean weights.
Dijkstra's Algorithm

Assumptions.
- Digraph G.
- Single source s.
- Edge weights $c(v, w)$ are nonnegative.

Goal. Find shortest path from s to every other vertex.

Valid weights. For all vertices v, $\pi(v)$ is length of some path from s to v.

Edge relaxation.
- Consider edge $e = v \rightarrow w$.
- If current path from s to v plus edge $v \rightarrow w$ is shorter than current path to w, then update current path to w.

$$i \in E \ (\pi(w) > \pi(v) + c(v, w)) \{$$
 $$\pi(w) = \pi(v) + c(v, w)$$
 $$\text{pred}(w) = v$$
$$\}$$

Dijkstra's algorithm. Maintain a valid set of weights $\pi(v)$ and a set of explored vertices S for which $\pi(v)$ is the length shortest s-v path.
- Initialize: $S = \{ s \}$, $\pi(s) = 0$.
- Repeatedly choose unexplored node w which minimizes:
 $$\pi(w) = \min_{v \in S} \pi(v) + c(v, w)$$
 - set $\text{pred}(w) = v$
 - add w to S, and set $\pi(w) = \pi(v) + c(v, w)$
Dijkstra’s Algorithm

Dijkstra’s algorithm. Maintain a valid set of weights $\pi(v)$ and a set of explored vertices S for which $\pi(v)$ is the length shortest $s-v$ path.

- Initialize: $S = \{s\}$, $\pi(s) = 0$.
- Repeatedly choose unexplored node w which minimizes:

 $\pi(w) = \min_{v \in S, w \not\in S} \{\pi(v) + c(v, w)\}$

 - set $\text{pred}(w) = v$
 - add w to S, and set $\pi(w) = \pi(v) + c(v, w)$

Invariant. For each vertex v in S, $\pi(v)$ is the length of shortest $s-v$ path.

Pf. (by induction on $|S|$)

- Let w be next vertex added to S.
- $\pi(w) = \pi(v) + c(v, w)$ is length of some $s-v$ path.
- Consider any $s-v$ path P, and let x be first node on path outside S.
- P is already too long as soon as it reaches x by greedy choice.
Dijkstra’s Algorithm: Implementation

Critical step. Choose unexplored node \(w \) which minimizes:
\[
\pi(w) = \min_{v \in V - \{s\}} \{ \pi(v) + c(v, w) \}
\]

Brute force implementation. Test all edges.

Efficient implementation. Maintain a priority queue of unexplored vertices, prioritized by \(\pi(w) \).

Q. How to maintain \(\pi \)?
A. When exploring \(v \), for each \((v, w) \) leaving \(v \), update
\[
\pi(w) = \min \{ \pi(w), \pi(v) + c(v, w) \}.
\]

Indexed Priority Queue

Indexed PQ.
- Assume elements \(x \) are named \(0 \) to \(N-1 \).
- Insert, delete min, test if empty. \([PQ\ ops]\)
- Decrease key, contains. \([ST-like\ ops]\)

<table>
<thead>
<tr>
<th>Return Type</th>
<th>Method</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>void</td>
<td>insert(int (k), Value (val))</td>
<td>add element (k) with given value</td>
</tr>
<tr>
<td>void</td>
<td>decrease(int (k), Value (val))</td>
<td>decrease value of element (k)</td>
</tr>
<tr>
<td>int</td>
<td>delMin()</td>
<td>delete and return the smallest element</td>
</tr>
<tr>
<td>boolean</td>
<td>isEmpty()</td>
<td>is the PQ empty?</td>
</tr>
<tr>
<td>boolean</td>
<td>contain(int (k))</td>
<td>does the PQ contain element (k)?</td>
</tr>
</tbody>
</table>

Dijkstra’s Algorithm: Java Implementation

Dijkstra’s algorithm.
- Initialize \(\pi(v) = \infty \) and \(\pi(s) = 0 \).

```java
private void dijkstra(WeightedDigraph G, int s) {
    IndexedMinPQ<Double> pq = new IndexedMinPQ<Double>(G.V());
    pq.insert(s, pi[s]);
    while (!pq.isEmpty()) {
        int v = pq.delMin();
        for (Edge e : G.adj(v)) {
            int w = e.other(v);
            if (pi[w] > pi[v] + e.weight()) {
                pi[w] = pi[v] + e.weight();
                pred[w] = e;
                relax(v, w); // (w)=min{ (w), (v)+c(v, w) }
            }
        }
    }
}
```

Indexed Priority Queue: Array Implementation

Indexed PQ: array implementation.
- Maintain vertex indexed array \(\text{vals}[\(k \)] \).
- Insert key: change \(\text{vals}[\(k \)] \).
- Decrease key: change \(\text{vals}[\(k \)] \).
- Delete min: scan through \(\text{vals}[\(k \)] \) for each vertex \(v \).
- Maintain a boolean array \(\text{marked}[\(k \)] \) to mark vertices in the PQ.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Array</th>
<th>Dijkstra</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert</td>
<td>(V)</td>
<td>(V)</td>
</tr>
<tr>
<td>delete-min</td>
<td>(V)</td>
<td>(V)</td>
</tr>
<tr>
<td>decrease-key</td>
<td>(E)</td>
<td>(E)</td>
</tr>
<tr>
<td>is-empty</td>
<td>(V)</td>
<td>(V)</td>
</tr>
<tr>
<td>contains</td>
<td>(V)</td>
<td>(V)</td>
</tr>
<tr>
<td>total</td>
<td>(V^2)</td>
<td></td>
</tr>
</tbody>
</table>
Indexed PQ: binary heap implementation.
- Assume elements \(k \) are named 0 to \(N-1 \).
- Store priorities in a binary heap.

How to decrease key of element \(i \)? Bubble it up.

How to know which heap node to bubble up? Maintains an extra array \(\text{qp}[i] \) that stores the heap index of element \(i \).

Indexed Binary Heap: Java Implementation

```java
public class IndexMinPQ<Value extends Comparable> {
    private int N;
    private int[] pq, qp;
    private Comparable[] vals;

    public IndexMinPQ(int MAXN) {
        vals = new Comparable[MAXN + 1];
        pq = new int[MAXN + 1];
        qp = new int[MAXN + 1];
        for (int i = 0; i <= MAXN; i++) qp[i] = -1;
    }

    private boolean greater(int i, int j) {
        return vals[pq[i]].compareTo(vals[pq[j]]) > 0;
    }

    private void exch(int i, int j) {
        int swap = pq[i]; pq[i] = pq[j]; pq[j] = swap;
        qp[pq[i]] = i; qp[pq[j]] = j;
    }

    public void insert(int k, Value val) {
        N++;
        qp[k] = N;
        pq[N] = k;
        vals[k] = val;
        swim(N);
    }

    public int delMin() {
        int min = pq[1];
        qp[min] = -1;
        exch(1, N--);
        sink(1);
        return min;
    }

    public void decrease(int k, Value val) {
        vals[k] = val;
        swim(qp[k]);
    }

    public boolean contains(int k) { return qp[k] != -1; }
}
```

Dijkstra’s Algorithm: Priority Queue Choice

The choice of priority queue matters in Dijkstra’s implementation.
- Array: \(\Theta(V) \).
- Binary heap: \(O(E \log V) \).
- Fibonacci heap: \(O(E + V \log V) \).
Dijkstra's Algorithm: Priority Queue Choice

The choice of priority queue matters in Dijkstra’s implementation.
- Array: $\Theta(V^2)$
- Binary heap: $O(E \log V)$
- Fibonacci heap: $O(E + V \log V)$

Best choice depends on whether graph is sparse or dense.
- 2,000 vertices, 1 million edges. Heap: 2-3x slower.
- 100,000 vertices, 1 million edges. Heap: 500x faster.
- 1 million vertices, 2 million edges. Heap: 10,000x faster.

Bottom line.
- Array implementation optimal for dense graphs.
- Binary heap far better for sparse graphs.
- Fibonacci heap best in theory, but not in practice.

Edsger W. Dijkstra

The question of whether computers can think is like the question of whether submarines can swim.

Do only what only you can do.

In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind.

The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence.

APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums.

Priority First Search

Priority first search. Maintain a set of explored vertices S, and grow S by exploring edges with exactly one endpoint leaving S.

- DFS. Edge from vertex which was discovered most recently.
- BFS. Edge from vertex which was discovered least recently.
- Prim. Edge of minimum weight.
- Dijkstra. Edge to vertex which is closest to s.

Bellman-Ford-Moore

Priority first search. Maintain a set of explored vertices S, and grow S by exploring edges with exactly one endpoint leaving S.
Application: Currency Conversion

Currency conversion. Given currencies and exchange rates, what is best way to convert one ounce of gold to US dollars?
- 1 oz. gold ⇒ $327.25.
- 1 oz. gold ⇒ £208.10 ⇒ 208.10 (1.5714) ⇒ $327.00.
- 1 oz. gold ⇒ 455.2 Francs ⇒ 304.39 Euros ⇒ $327.28.

<table>
<thead>
<tr>
<th>Currency</th>
<th>£</th>
<th>Euro</th>
<th>¥</th>
<th>Franc</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK Pound</td>
<td>1.0000</td>
<td>0.6853</td>
<td>0.005290</td>
<td>0.4569</td>
<td>0.6368</td>
</tr>
<tr>
<td>Euro</td>
<td>1.4599</td>
<td>1.0000</td>
<td>0.007721</td>
<td>0.6677</td>
<td>0.9303</td>
</tr>
<tr>
<td>Japanese Yen</td>
<td>189.050</td>
<td>129.520</td>
<td>1.0000</td>
<td>85.4694</td>
<td>120.400</td>
</tr>
<tr>
<td>Swiss Franc</td>
<td>2.1904</td>
<td>1.4978</td>
<td>0.011574</td>
<td>1.0000</td>
<td>1.3929</td>
</tr>
<tr>
<td>US Dollar</td>
<td>1.5714</td>
<td>1.0752</td>
<td>0.008309</td>
<td>0.7182</td>
<td>1.0000</td>
</tr>
<tr>
<td>Gold (oz.)</td>
<td>0.004816</td>
<td>0.003295</td>
<td>0.0000255</td>
<td>0.002201</td>
<td>0.003065</td>
</tr>
</tbody>
</table>

Reduction to shortest path problem.
- Let \(y(v, w) \) be exchange rate from currency \(v \) to \(w \).
- Let \(c(v, w) = -\log y(v, w) \).
- Shortest path with costs \(c \) corresponds to best exchange sequence.

Difficulty. Shortest path problem with negative weights.

Graph formulation.
- Vertex = currency.
- Edge = transaction, with weight equal to exchange rate.
- Find path that maximizes product of weights.

Dijkstra. Can fail if negative edge costs.

Re-weighting. Adding a constant to every edge weight can fail.
Shortest Paths: Negative Cost Cycles

Negative cycle. Directed cycle whose sum of edge costs is negative.

Observation. If negative cycle C on path from s to t, then shortest path can be made arbitrarily negative by spinning around cycle; otherwise, there exists a shortest s-t path that is simple.

Dynamic Programming

Dynamic programming.
- Initialize \(pi[v] = \infty \), \(pi[s] = 0 \).
- Repeat \(V \) times: relax each edge.

```java
for (int i = 1; i <= V; i++) {
    for (int v = 0; v < G.V(); v++) {
        for (Edge e : G.adj(v)) {
            int w = e.other(v);
            if (pi[w] > pi[v] + e.weight()) {
                pi[w] = pi[v] + e.weight();
                pred[w] = v;
            }
        }
    }
}
```

Review: Edge Relaxation

Valid weights. For all \(v \), \(pi[v] \) is length of some path from \(s \) to \(v \).

Edge relaxation.
- Consider edge \(e = v \rightarrow w \).
- If current path from \(s \) to \(v \) plus edge \(v \rightarrow w \) is better than current path to \(w \), then update current path to \(w \).

Dynamic Programming: Analysis

Running time. \(\Theta(EV) \).

Invariant. At end of phase \(i \), \(pi[v] \) is length of any path from \(s \) to \(v \) using at most \(i \) edges.

Theorem. Assuming no negative cycles, upon termination \(pi[v] \) is the length of the shortest path from \(s \) to \(v \).

Weighted graphs.

Valid weighted. For all \(v \), \(pi[v] \) is length of some path from \(s \) to \(v \).

Valid edges. For all \(e \), \(pi[w] \) is length of any path from \(s \) to \(w \) using at most \(i \) edges.

Valid weights. For all \(v \), \(pi[v] \) is length of some path from \(s \) to \(v \).
Observation. If \(p_i[v] \) doesn't change during phase \(i \), no need to relax any edges leaving \(v \) in phase \(i+1 \).

FIFO implementation. Maintain queue of vertices whose distance changed.

be careful to keep at most one copy of each vertex on queue.

Running time. Still \(\Omega(EV) \) in worst case, but much faster in practice.

Single Source Shortest Paths Implementation: Cost Summary

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Worst Case</th>
<th>Best Case</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dijkstra (classic)</td>
<td>(V^2)</td>
<td>(V^2)</td>
<td>(E + V)</td>
</tr>
<tr>
<td>Dijkstra (heap)</td>
<td>(E \log V)</td>
<td>(E + V)</td>
<td>(E + V)</td>
</tr>
<tr>
<td>Dynamic programming</td>
<td>(E)</td>
<td>(E)</td>
<td>(E + V)</td>
</tr>
<tr>
<td>Bellman-Ford</td>
<td>(E)</td>
<td>(E)</td>
<td>(E + V)</td>
</tr>
</tbody>
</table>

\(\dagger \) nonnegative costs
\(\ddagger \) no negative cycles

Remark 1. Negative weights makes the problem harder.
Remark 2. Negative cycles makes the problem intractable.

Bellman-Ford-Moore

Bellman-Ford-Moore Algorithm

```java
Bellman-Ford-Moore. Initialize \( p_i[v] = \infty \), \( p_i[s] = 0 \).

Queue<Integer> q = new Queue<Integer>();
q.enqueue(s);

while (!q.isEmpty()) {
    int v = q.dequeue();
    marked[v] = false;
    for (Edge e : G.adj(v)) {
        int w = e.other(v);
        if (\( p_i[w] > p_i[v] + e.weight() \)) {
            \( p_i[w] = p_i[v] + e.weight() \);
            pred[w] = e;
            if (!marked[w]) {
                marked[w] = true;
                q.enqueue(w);
            }
        }
    }
}
```

Arbitrage

Is there an arbitrage opportunity in currency graph?

- Ex: \$1 \rightarrow 1.3941 \text{ Francs} \rightarrow 0.9308 \text{ Euros} \rightarrow \$1.00084.
- Is there a negative cost cycle?
- Fastest algorithm very valuable!
Negative Cycles

If negative cycle reachable from s. Bellman-Ford gets stuck in infinite loop, updating vertices in a cycle.

Finding a negative cycle. If any vertex v is updated in phase V, there must be a negative cycle, and we can trace back $\text{pred}[v]$ to find it.

Negative Cycle Detection

Goal. Identify a negative cycle (reachable from any vertex).

Solution. Add 0-cost edge from artificial source s to each vertex v. Run Bellman-Ford from vertex s.