
Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

Shortest Paths

shortest path from Princeton CS department to Einstein's house

2

Shortest Path Problem

Shortest path problem. Given a weighted digraph, find the shortest

directed path from s to t.

Versions.

! Point-to-point, single source, all pairs.

! Nonnegative edge weights, arbitrary weights, Euclidean weights.

Path: s!6!3!5!t

Cost: 14 + 18 + 2 + 16 = 50

cost of path = sum of edge costs in path

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

3

Brief History

Shimbel (1955). Information networks.

Ford (1956). RAND, economics of transportation.

Leyzorek, Gray, Johnson, Ladew, Meaker, Petry, Seitz (1957).

Combat Development Dept. of the Army Electronic Proving Ground.

Dantzig (1958). Simplex method for linear programming.

Bellman (1958). Dynamic programming.

Moore (1959). Routing long-distance telephone calls for Bell Labs.

Dijkstra (1959). Simpler and faster version of Ford's algorithm.

4

Applications

More applications.

! Robot navigation.

! Texture mapping.

! Typesetting in TeX.

! Urban traffic planning.

! Optimal pipelining of VLSI chip.

! Telemarketer operator scheduling.

! Subroutine in higher level algorithms.

! Routing of telecommunications messages.

! Approximating piecewise linear functions.

! Network routing protocols (OSPF, BGP, RIP).

! Exploiting arbitrage opportunities in currency exchange.

! Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

Dijkstra's Algorithm

6

Single Source Shortest Path

Assumptions.

! Digraph G.

! Single source s.

! Edge weights c(v, w) are nonnegative.

Goal. Find shortest path from s to every other vertex.

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

0

9 32

14

15
50

34

45

shortest path tree

7

 Edge Relaxation

Valid weights. For all vertices v, "(v) is length of some path from s to v.

Edge relaxation.

! Consider edge e = v !w.

! If current path from s to v plus edge v!w is shorter than

current path to w, then update current path to w.

s w

v

33

0 47

44

if ("(w) > "(v)+ c(v, w)) {

 "(w) = "(v)+ c(v, w)

 pred(w) = v
}

11

8

Dijkstra's Algorithm

Dijkstra's algorithm. Maintain a valid set of weights "(v) and a set of

explored vertices S for which "(v) is the length shortest s-v path.

! Initialize: S = { s }, "(s) = 0.

! Repeatedly choose unexplored node w which minimizes:

– set pred(w) = v

– add w to S, and set "(w) = "(v) + c(v, w)

s

w

v

"(v)
S

c(v, w)

!

" (w) = min
(v ,w) : v# S

" (v) + c(v,w)

shortest path to some v in explored
part, followed by a single edge (v, w)

9

Dijkstra's Algorithm

Dijkstra's algorithm. Maintain a valid set of weights "(v) and a set of

explored vertices S for which "(v) is the length shortest s-v path.

! Initialize: S = { s }, "(s) = 0.

! Repeatedly choose unexplored node w which minimizes:

– set pred(w) = v

– add w to S, and set "(w) = "(v) + c(v, w)

shortest path to some v in explored
part, followed by a single edge (v, w)

s

w

v

"(v)
S

c(v, w)

!

" (w) = min
(v ,w) : v# S

" (v) + c(v,w)

10

Invariant. For each vertex v in S, "(v) is the length of shortest s-v path.

Pf. (by induction on |S|)

! Let w be next vertex added to S.

! "(w) = "(v) + c(v, w) is length of some s-v path.

! Consider any s-v path P, and let x be first node on path outside S.

! P is already too long as soon as it reaches x by greedy choice.

S

s

x

w

P

v

Dijkstra's Algorithm: Proof of Correctness

11

Dijkstra's Algorithm

12

Shortest Path Tree

50%

75% 100%

25%

13

Dijkstra's Algorithm: Implementation

Critical step. Choose unexplored node w which minimizes:

Brute force implementation. Test all edges.

Efficient implementation. Maintain a priority queue of unexplored

vertices, prioritized by "(w).

Q. How to maintain "?

A. When exploring v, for each (v, w) leaving v, update

!

" (w) = min { " (w), " (v)+ c(v, w) }.

!

" (w) = min
(v ,w) : v# S

" (v) + c(v, w)

14

Dijkstra's Algorithm: Java Implementation

Dijkstra's algorithm.

! Initialize pi[v] = # and pi[s] = 0.

private void dijkstra(WeightedDigraph G, int s) {

 IndexMinPQ<Double> pq = new IndexMinPQ<Double>(G.V());

 pq.insert(s, pi[s]);

 while (!pq.isEmpty()) {

 int v = pq.delMin();

 for (Edge e : G.adj(v)) {

 int w = e.other(v);

 if (pi[w] > pi[v] + e.weight()) {

 pi[w] = pi[v] + e.weight();

 pred[w] = e;

 if (pq.contains(w)) pq.decrease(w, pi[w]);

 else pq.contains(w) pq.insert(w, pi[w]);

 }

 }

 }

}

relax v-w

15

Indexed Priority Queue

Indexed PQ.

! Assume elements k are named 0 to N-1.

! Insert, delete min, test if empty. [PQ ops]

! Decrease key, contains. [ST-like ops]

Return Type

IndexMinPQ(int N)

Method Action

create empty pq on N elements

void decrease(int k, Value val) decrease value of element k

int delMin() delete and return the smallest element

boolean isEmpty() is the PQ empty?

insert(int k, Value val) add element k with given value

boolean contain(int k) does the PQ contain element k?

void

16

Indexed Priority Queue: Array Implementation

Indexed PQ: array implementation.

! Maintain vertex indexed array vals[k].

! Insert key: change vals[k].

! Decrease key: change vals[k].

! Delete min: scan through vals[k] for each vertex v.

! Maintain a boolean array marked[k]to mark vertices in the PQ.

insert 1 $ V

delete-min V $ V

decrease-key 1 $ E

is-empty 1 $ V

contains 1 $ V

total V2

Operation Array Dijkstra

17

Indexed Priority Queue

Indexed PQ: binary heap implementation.

! Assume elements k are named 0 to N-1.

! Store priorities in a binary heap.

How to decrease key of element i? Bubble it up.

How to know which heap node to bubble up? Maintains an extra array

qp[i] that stores the heap index of element i.

7

14

78 18

81 7791

42

4547

83

decrease key
of element 5
from 83 to 31

0

1

2

3

4

5

6

7

8

9

10

-

8

4

3

6

1

0

10

5

2

9

k pq

6

5

9

3

2

8

4

11

1

10

7

qp

47

18

91

42

14

83

78

77

7

81

45

pri

0 10

3

16

8

4

95 2 7 11 7 - -

18

Indexed Binary Heap: Java Implementation

public class IndexMinPQ<Value extends Comparable> {

 private int N;

 private int[] pq, qp;

 private Comparable[] vals;

 public IndexMinPQ(int MAXN) {

 vals = new Comparable[MAXN + 1];

 pq = new int[MAXN + 1];

 qp = new int[MAXN + 1];

 for (int i = 0; i <= MAXN; i++) qp[i] = -1;

 }

 private boolean greater(int i, int j) {

 return vals[pq[i]].compareTo(vals[pq[j]]) > 0;

 }

 private void exch(int i, int j) {

 int swap = pq[i]; pq[i] = pq[j]; pq[j] = swap;

 qp[pq[i]] = i; qp[pq[j]] = j;

 }

19

Indexed Binary Heap: Java Implementation

public void insert(int k, Value val) {

 N++;

 qp[k] = N;

 pq[N] = k;

 vals[k] = val;

 swim(N);

}

public int delMin() {

 int min = pq[1];

 qp[min] = -1;

 exch(1, N--);

 sink(1);

 return min;

}

public void decrease(int k, Value val) {

 vals[k] = val;

 swim(qp[k]);

}

public boolean contains(int k) { return qp[k] != -1; }

20

Dijkstra's Algorithm: Priority Queue Choice

The choice of priority queue matters in Dijkstra's implementation.

! Array: %(V2).

! Binary heap: O(E log V).

! Fibonacci heap: O(E + V log V).

Operation

insert

delete-min

decrease-key

Array

1

V

1

is-empty 1

contains 1

Dijkstra

$ V

$ V

$ E

$ V

Binary heap

log V

log V

log V

1

1

Fib heap

1 †

log V †

1 †

1

1

† amortized

total V2 E log V E + V log V

$ V

21

Dijkstra's Algorithm: Priority Queue Choice

The choice of priority queue matters in Dijkstra's implementation.

! Array: %(V2).

! Binary heap: O(E log V).

! Fibonacci heap: O(E + V log V).

Best choice depends on whether graph is sparse or dense.

! 2,000 vertices, 1 million edges. Heap: 2-3x slower.

! 100,000 vertices, 1 million edges. Heap: 500x faster.

! 1 million vertices, 2 million edges. Heap: 10,000x faster.

Bottom line.

! Array implementation optimal for dense graphs.

! Binary heap far better for sparse graphs.

! Fibonacci heap best in theory, but not in practice.

22

Priority First Search

Priority first search. Maintain a set of explored vertices S, and

grow S by exploring edges with exactly one endpoint leaving S.

DFS. Edge from vertex which was discovered most recently.

BFS. Edge from vertex which was discovered least recently.

Prim. Edge of minimum weight.

Dijkstra. Edge to vertex which is closest to s.

w

vS

23

Edsger W. Dijkstra

The question of whether computers can think is like
the question of whether submarines can swim.

Do only what only you can do.

In their capacity as a tool, computers will be but a
ripple on the surface of our culture. In their
capacity as intellectual challenge, they are without
precedent in the cultural history of mankind.

The use of COBOL cripples the mind; its teaching
should, therefore, be regarded as a criminal offence.

APL is a mistake, carried through to perfection. It is
the language of the future for the programming
techniques of the past: it creates a new generation
of coding bums.

Edger Dijkstra
Turing award 1972

Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

Bellman-Ford-Moore

25

Currency

UK Pound

Euro

Japanese Yen

Swiss Franc

£

1.0000

1.4599

189.050

2.1904

US Dollar

Gold (oz.)

1.5714

0.004816

Euro

0.6853

1.0000

129.520

1.4978

1.0752

0.003295

¥

0.005290

0.007721

1.0000

0.011574

0.008309

0.0000255

Franc

0.4569

0.6677

85.4694

1.0000

0.7182

0.002201

$

0.6368

0.9303

120.400

1.3929

1.0000

0.003065

Gold

208.100

304.028

39346.7

455.200

327.250

1.0000

Application: Currency Conversion

Currency conversion. Given currencies and exchange rates, what is

best way to convert one ounce of gold to US dollars?

! 1 oz. gold & $327.25.

! 1 oz. gold & £208.10 & 208.10 (1.5714) & $327.00.

! 1 oz. gold & 455.2 Francs & 304.39 Euros & $327.28.

26

Application: Currency Conversion

Graph formulation.

! Vertex = currency.

! Edge = transaction, with weight equal to exchange rate.

! Find path that maximizes product of weights.

$G

£ EF

0.003065

0.7182
208.100

 455.2

2.1904 0.6677

1.0752
0.004816

327.25

¥

129.520

0.008309

27

Application: Currency Conversion

Reduction to shortest path problem.

! Let '(v, w) be exchange rate from currency v to w.

! Let c(v, w) = - lg '(v, w).

! Shortest path with costs c corresponds to best exchange sequence.

Difficulty. Shortest path problem with negative weights.

-lg(455.2) = -8.8304

0.5827

-0.1046

$G

£ EF

0.003065

0.7182
208.100

 455.2

2.1904 0.6677

1.0752
0.004816

327.25

¥

129.520

0.008309

28

Shortest Paths with Negative Weights: Failed Attempts

Dijkstra. Can fail if negative edge costs.

Re-weighting. Adding a constant to every edge weight can fail.

0

3

1

2

4

2-9

6

0

3

1

11

13

20

15

Dijkstra selects vertex 3 immediately after 0.

But shortest path from 0 to 3 is 0!1!2!3.

Adding 9 to each edge changes the shortest path.

29

Shortest Paths: Negative Cost Cycles

Negative cycle. Directed cycle whose sum of edge costs is negative.

Observation. If negative cycle C on path from s to t, then shortest

path can be made arbitrarily negative by spinning around cycle;

otherwise, there exists a shortest s-t path that is simple.

s t

C

cost(C) < 0

-6

7

 -4

30

Review: Edge Relaxation

Valid weights. For all v, pi[v] is length of some path from s to v.

Edge relaxation.

! Consider edge e = v!w.

! If current path from s to v plus edge v!w is better than

current path to w, then update current path to w.

s w

v

33

0 47

44

if (pi[w] > pi[v] + e.weight()) {

 pi[w] = pi[v] + e.weight());

 pred[w] = v;
}

11

31

Dynamic Programming

Dynamic programming.

! Initialize pi[v] = #, pi[s]= 0.

! Repeat V times: relax each edge.

for (int i = 1; i <= V; i++) {

 for (int v = 0; v < G.V(); v++) {

 for (Edge e : G.adj(v)) {

 int w = e.other(v);

 if (pi[w] > pi[v] + e.weight()) {

 pi[w] = pi[v] + e.weight())

 pred[w] = v;
 }
 }
 }
}

phase i

relax v-w

32

Dynamic Programming: Analysis

Running time. %(E V).

Invariant. At end of phase i, pi[v] (length of any path from s to v

using at most i edges.

Theorem. Assuming no negative cycles, upon termination pi[v] is the

length of the shortest path from from s to v.

and pred[v] are the shortest paths

33

Observation. If pi[v] doesn't change during phase i, no need to relax

any edges leaving v in phase i+1.

FIFO implementation. Maintain queue of vertices whose distance

changed.

Running time. Still)(E V) in worst case, but much faster in practice.

Bellman-Ford-Moore

be careful to keep at most one copy of each vertex on queue

34

Queue<Integer> q = new Queue<Integer>();

q.enqueue(s);

while (!q.isEmpty(v)) {

 int v = q.dequeue();

 marked[v] = false;

 for (Edge e : G.adj(v)) {

 int w = e.other(v);

 if (pi[w] > pi[v] + e.weight()) {

 pi[w] = pi[v] + e.weight();

 pred[w] = e;

 if (!marked[w]) {

 marked[w] = true;

 q.enqueue(w);

 }

 }

 }

}

Bellman-Ford-Moore Algorithm

Bellman-Ford-Moore. Initialize pi[v] = #, pi[s]= 0.

35

Single Source Shortest Paths Implementation: Cost Summary

Remark 1. Negative weights makes the problem harder.

Remark 2. Negative cycles makes the problem intractable.

Algorithm

Dijkstra (classic) †

Dijkstra (heap) †

Worst Case

V2

E log V

Best Case

V2

E + V

Space

E + V

E + V

Dynamic programming ‡

Bellman-Ford ‡

E V

E V

E V

E + V

E + V

E + V

† nonnegative costs
‡ no negative cycles

36

Arbitrage

Arbitrage. Is there an arbitrage opportunity in currency graph?

! Ex: $1 & 1.3941 Francs & 0.9308 Euros & $1.00084.

! Is there a negative cost cycle?

! Fastest algorithm very valuable!

$G

£ EF

0.003065

1.3941
208.100

 455.2

2.1904 0.6677

1.0752
0.004816

327.25

¥

129.520

0.008309

 -0.4793 + 0.5827 - 0.1046 < 0

 -0.4793

-lg(0.6677) = 0.5827

-0.1046

37

Negative Cycles

If negative cycle reachable from s. Bellman-Ford gets stuck in infinite

loop, updating vertices in a cycle.

Finding a negative cycle. If any vertex v is updated in phase V, there

must be a negative cycle, and we can trace back pred[v] to find it.

s 3

v

2 6

7

4

5
pred[v]

38

Negative Cycle Detection

Goal. Identify a negative cycle (reachable from any vertex).

Solution. Add 0-cost edge from artificial source s to each vertex v.

Run Bellman-Ford from vertex s.

 -0.48 -0.11

0.58

s

