Discussion

- What did you learn from the Boole/Clarke “proof” of the existence of God?

- How convincing was it?
Part 1: Wrapup of Boolean logic and Combinational circuits

COS 116
3/16/2006
Instructor: Sanjeev Arora

Pickup: HW3, Blogging Assignment.
Combinational circuit for binary addition

\[
\begin{array}{c@{}c@{}c@{}c@{}c@{}c@{}c@{}c}
& & & & & 1 & 0 & 0 \\
\end{array}
\begin{array}{c@{}c@{}c@{}c@{}c@{}c}
+ & & 1 & 1 & 0 & 0 & 1 \\
\end{array}
\begin{array}{c@{}c@{}c@{}c@{}c@{}c@{}c@{}c}
= & & 1 & 1 & 0 & 1 & 1 & 0 \\
\end{array}
\]

- Desired: circuit for adding any two \(N \)-bit integers
Modular design

\[
\begin{array}{cccccccc}
 c_{N-1} & c_{N-2} & \ldots & c_1 & c_0 \\
 a_{N-1} & a_{N-2} & \ldots & a_1 & a_0 \\
 + & b_{N-1} & b_{N-2} & \ldots & b_1 & b_0 \\
\end{array}
\]

\[
 s_N & s_{N-1} & s_{N-2} & \ldots & s_1 & s_0
\]

Need \(N \) 1-bit adders
1-bit adder

Do yourself: Write truth table, circuit.
A Full Adder (from handout)
Memory in boolean circuits

COS 116
3/16/2006
Instructor: Sanjeev Arora
Going beyond combinational circuits

- Need 2-way communication between circuits (i.e. need cycles!)
- Need memory (scratchpad)

- CPU
- Ethernet card
What do you understand by ‘memory’?

How can you tell that a 1-year old child has it?

Behaviorist’s answer: His/her actions depend upon past events.
Matt likes Sue but he doesn’t like changing his mind

- Represent with a circuit:
 Matt will go to the party if Sue goes or if he already wanted to go

Is this well-defined?
Enter Rita

- Matt will go to the party if Sue goes OR if the following holds: if Rita does not go and he already wanted to go

R, S: “control” inputs

What combination of R, S changes M?
Flip-Flop
Flip-Flop

- M becomes 1 if Set is turned on
- M becomes 0 if Reset is turned on
- Otherwise (if both are 0), M just remembers its value
Desired: more convenient form of memory

- If Write = 0, M just keeps its value. (It ignores D.)
- If Write = 1, then M becomes set to D

“Data Flip-Flop” or “D flip flop.”
Design of D Flip Flop

- Nothing happens unless Write = 1
The D Flip-Flop

- Nothing happens unless Write = 1
- If Write = 1, then M becomes set to D
- Once Write = 0 again, M just keeps its value. (It ignores D.)
A Subtle Problem

“Race condition.”

- When Write = 1, then $M = D$.
- If we have some feedback between M and D, then circuit could go haywire.
Example

- For example, suppose a NOT gate connects M and D.
- When Write = 1, M and D keep changing. We have no control.

Desired: M should invert only once when we make Write = 1
The “Airlock” Flip-Flop

- Two-Stage System to prevent D ever passing through directly to M (W₀, W₁ connected by NOT, so never 1 at the same time)
The "Airlock" Flip-Flop

- We start with Write = 0.
- Let’s say D is always NOT M; i.e. connected by NOT gate. Start with D = 0, M = 1.
The “Airlock” Flip-Flop

- We start with Write = 0.
- Let’s say D is always NOT M; i.e. connected by NOT gate
 Start with D = 0, M = 1.
The “Airlock” Flip-Flop

- Want to store D in memory.
- Set Write to 1
The “Airlock” Flip-Flop

- Want to store D in memory.
- Set Write to 1
- “Outer” flip-flop sets $M_0 = D_0 = 0$
- “Inner” flip-flop ignores D_1 since $W_1 = 0$
The “Airlock” Flip-Flop

- Now, set Write back to 0
The “Airlock” Flip-Flop

- Now, set Write back to 0
- Now “Inner” flip-flop sets M = D₁ = 0
The “Airlock” Flip-Flop

- Because of feedback, D might change to (NOT M), which is 1
- But Write = 0, so “Outer” flip-flop ignores D, so M₀ stays 0.
The “Airlock” Flip-Flop

- So memory does not change until we “toggle” Write.
- (“toggle” means change from 0 to 1 or vice versa)
The “Airlock” Flip-Flop

- This is Real Memory!
What controls the “Write” signal?

- Often, the system clock!
- “clock” = device that sends out a fluctuating voltage signal that looks like this

```
Write = 1
```

```
Write = 0
```

“Computer speed” often refers to the clock frequency (e.g. 2.4GHz)
Next time

Finite State Machines and Clocked Circuits
Memory “Register”: 4 bits