
COS 116
 The Computational Universe

How To Design A Finite State Machine

Here is an example of a designing a finite state machine, worked out from start to finish.

Step 1: Describe the machine in words.

In this example, we’ll be designing a controller for an elevator. The elevator can be at one
of two floors: Ground or First. There is one button that controls the elevator, and it has
two values: Up or Down. Also, there are two lights in the elevator that indicate the
current floor: Red for Ground, and Green for First. At each time step, the controller
checks the current floor and current input, changes floors and lights in the obvious way.

Step 2: Draw the FSM diagram

Up

Ground
[Red on, Green off]

First
[Red off, Green on]

Up Down

Down

In this diagram, the bubbles represent the states, and the arrows represent state
transitions. The arrow labels indicate the input value corresponding to the transition. For
instance, when the elevator is in the Ground state, and the input is Up, the next state is
First. The information in the brackets indicates the output values for the lights in each
state.

Step 3: Select numbers to represent states and values

Before converting the above FSM diagram to a circuit, we need to represent every value
in our example as a binary number. Here is some convenient numbers to use.

Ground = 0 Down = 0 Off = 0
First = 1 Up = 1 On = 1

So here’s the FSM diagram with the words replaced by numbers:

tep 4: Write the truth table

1

0
[Red = 1, Green = 0]

1
[Red = 0, Green = 1]

1 0

0

S

rom the FSM diagram, it’s easy to read off the correct truth table.

CurrentState Input NextState Red Green

F

0 0 0 1 0
0 1 1 1 0
1 0 0 0 1
1 1 1 0 1

tep 5: Draw a “big picture” view of the circuit

S

ere is the finite-state machine circuit, with many details missing. The variable names

ll FSM circuits will have a form similar to this. Our example has two states, and so we
need only one D flip-flop. An FSM with more states would need more flip-flops. Our

H
have been abbreviated. The dashed boxes indicate the parts (let’s call them “sub-
circuits”) that we still need to design.

D
Flip
Flop

CLK

R

G

CS

I
NS CS Next-State

Sub-Circuit
Output
Sub-Circuit

A

example has one input (labeled “I” in the figure), but in general there may be many
inputs, or none at all. Also, an FSM may not have any outputs, in which case the “Outp
Sub-Circuit” would be omitted.

In our example, the Output Sub-C

ut

ircuit has two outputs, R and G. To make things
mpler, let’s break this into two further sub-circuits: a sub-circuit that computes R, and

esign) has exactly one output. This is the easiest form to work with.

si
another sub-circuit that computes G. This is shown below.

After making this change, every dashed box (i.e. every sub-circuit that we still need to
d

Step 6: Find Boolean expressions

For each sub-circuit that we need to design, we’ll write a Boolean expression that
xpresses its output as a function of its inputs. We derive these expressions from the truth

l

ts, I and CS, and one output, NS. From the truth
ble, we see that NS is 1 in exactly two cases:

2. CS = 1 and I = 1

So we s n expression that covers all and only these cases:

y an AND subexpression, and the whole expression
 the OR of these subexpressions. This technique can be used on a truth table of any size.

oolean logic. Here are the most useful ones:

e
table we wrote in Step 4. There is a very general method for doing this, which we’l
illustrate on the Next-State Sub-Circuit.

The Next-State Sub-Circuit has two inpu
ta

1. CS = 0 and I = 1

imply write a Boolea

NS = ((not CS) and I) or (CS and I)

Notice that each case is represented b
is

Of course, this Boolean expression can be simplified. To do this, we need some rules of
B

1. A or 1 = 1

D
Flip
Flop

CLK

R

G

CS

I
NS CS Next-State

Sub-Circuit

Sub-Circuit
for
Red

Sub-Circuit
for

Green

2. A or 0 = A

 1
 = 0

 and C) or (B and C)

Now w

 = ((not CS) or CS) and I [using rule 8]
 [using rule 5]

ld have been easily seen just
y inspecting the truth table.

 expressions for the other sub-circuits are:

 = CS

raw the rest of the circuit

3. A and 1 = A
4. A and 0 = 0
5. (not A) or A =
6. (not A) and A
7. not (not A) = A
8. (A or B) and C = (A

e can simplify our Boolean expression:

NS = ((not CS) and I) or (CS and I)

 = 1 and I
 = I [using rule 3]

And so NS = I. Of course, for this simple example, this cou
b

Similarly, we find the Boolean

R = not CS
G

Step 7: D

The only thing left to do is to draw the sub-circuits represented by our Boolean
xpressions.

ill apply.

e

D
Flip
Flop

CLK

R

G

CS

I
NS CS

Naturally, a more complicated example will require more gates, but the same methods
w

