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How To Design A Finite State Machine 
 
 
 
Here is an example of a designing a finite state machine, worked out from start to finish.  
 
Step 1: Describe the machine in words. 
 
In this example, we’ll be designing a controller for an elevator. The elevator can be at one 
of two floors: Ground or First. There is one button that controls the elevator, and it has 
two values: Up or Down. Also, there are two lights in the elevator that indicate the 
current floor: Red for Ground, and Green for First. At each time step, the controller 
checks the current floor and current input, changes floors and lights in the obvious way. 
 
Step 2: Draw the FSM diagram 
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In this diagram, the bubbles represent the states, and the arrows represent state 
transitions. The arrow labels indicate the input value corresponding to the transition. For 
instance, when the elevator is in the Ground state, and the input is Up, the next state is 
First. The information in the brackets indicates the output values for the lights in each 
state. 
 
Step 3: Select numbers to represent states and values 
 
Before converting the above FSM diagram to a circuit, we need to represent every value 
in our example as a binary number. Here is some convenient numbers to use. 
 
Ground = 0  Down = 0  Off = 0 
First = 1  Up = 1   On = 1 



 
So here’s the FSM diagram with the words replaced by numbers: 

tep 4: Write the truth table
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S  

rom the FSM diagram, it’s easy to read off the correct truth table. 

CurrentState Input NextState Red Green

 
F
 

0 0 0 1 0 
0 1 1 1 0 
1 0 0 0 1 
1 1 1 0 1 

 

tep 5: Draw a “big picture” view of the circuit
 
S  

ere is the finite-state machine circuit, with many details missing. The variable names 

ll FSM circuits will have a form similar to this. Our example has two states, and so we 
need only one D flip-flop. An FSM with more states would need more flip-flops. Our 

 
H
have been abbreviated. The dashed boxes indicate the parts (let’s call them “sub-
circuits”) that we still need to design.  
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example has one input (labeled “I” in the figure), but in general there may be many 
inputs, or none at all. Also, an FSM may not have any outputs, in which case the “Outp
Sub-Circuit” would be omitted.  
 
In our example, the Output Sub-C

ut 

ircuit has two outputs, R and G. To make things 
mpler, let’s break this into two further sub-circuits: a sub-circuit that computes R, and 

esign) has exactly one output. This is the easiest form to work with. 

si
another sub-circuit that computes G. This is shown below. 
 

 
 
After making this change, every dashed box (i.e. every sub-circuit that we still need to 
d
 
Step 6: Find Boolean expressions 
 
For each sub-circuit that we need to design, we’ll write a Boolean expression that 
xpresses its output as a function of its inputs. We derive these expressions from the truth 

l 

ts, I and CS, and one output, NS. From the truth 
ble, we see that NS is 1 in exactly two cases: 

2. CS = 1 and I = 1 
 
So we s n expression that covers all and only these cases: 

y an AND subexpression, and the whole expression 
 the OR of these subexpressions. This technique can be used on a truth table of any size. 

oolean logic. Here are the most useful ones: 

e
table we wrote in Step 4. There is a very general method for doing this, which we’l
illustrate on the Next-State Sub-Circuit. 
 
The Next-State Sub-Circuit has two inpu
ta
 

1. CS = 0 and I = 1 

imply write a Boolea
 
NS = ((not CS) and I) or (CS and I) 
 
Notice that each case is represented b
is
 
Of course, this Boolean expression can be simplified. To do this, we need some rules of 
B
 

1. A or 1 = 1 
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2. A or 0 = A 
 
 

 1 
 = 0 

 and C) or (B and C) 
 
Now w

    = ((not CS) or CS) and I   [using rule 8] 
 [using rule 5] 

ld have been easily seen just 
y inspecting the truth table. 

 expressions for the other sub-circuits are: 

 = CS 

raw the rest of the circuit

3. A and 1 = A
4. A and 0 = 0
5. (not A) or A =
6. (not A) and A
7. not (not A) = A 
8. (A or B) and C = (A

e can simplify our Boolean expression: 
 
NS = ((not CS) and I) or (CS and I) 
  
      = 1 and I    
      = I      [using rule 3] 
 
And so NS = I. Of course, for this simple example, this cou
b
 
Similarly, we find the Boolean
 
R = not CS 
G
 
Step 7: D
 
The only thing left to do is to draw the sub-circuits represented by our Boolean 
xpressions. 

ill apply. 

e
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Naturally, a more complicated example will require more gates, but the same methods 
w


