
Clustering Data Streams

Sudipto Guha ∗ Nina Mishra † Rajeev Motwani ‡ Liadan O’Callaghan §

Abstract

We study clustering under the data stream model
of computation where: given a sequence of points, the
objective is to maintain a consistently good clustering of
the sequence observed so far, using a small amount of
memory and time. The data stream model is relevant
to new classes of applications involving massive data
sets, such as web click stream analysis and multimedia
data analysis. We give constant-factor approximation
algorithms for the k–Median problem in the data stream
model of computation in a single pass. We also show
negative results implying that our algorithms cannot be
improved in a certain sense.

1 Introduction

A data stream is an ordered sequence of points
that can be read only once or a small number of
times. Formally, a data stream is a sequence of points
x1, . . . , xi, . . . , xn read in increasing order of the in-
dices i. The performance of an algorithm that op-
erates on data streams is measured by the number
of passes the algorithm must make over the stream,
when constrained in terms of available memory, in ad-
dition to the more conventional measures. The data
stream model is motivated by emerging application in-
volving massive data sets, e.g., customer click streams,
telephone records, large sets of web pages, multime-
dia data, and sets of retail chain transactions can be
modeled as data streams. These data sets are far too

∗Department of Computer Science, Stanford University, CA
94305. Email: sudipto@cs.stanford.edu. Research supported
by IBM Research Fellowship and NSF Grant IIS-9811904.

†Hewlett Packard Laboratories, Palo Alto, CA 94304, Email:
nmishra@hpl.hp.com

‡Department of Computer Science, Stanford University, CA
94305. Email: rajeev@cs.stanford.edu. Research supported
in part by NSF Grant IIS-9811904.

§Department of Computer Science, Stanford University, CA
94305. Email: loc@cs.stanford.edu. Research supported
in part by an NSF Graduate Fellowship, ARO MURI Grant
DAAH04-96-1-0007, and NSF Grant IIS-9811904.

large to fit in main memory and are typically stored
in secondary storage devices, making access, particu-
larly random access, very expensive. Data stream al-
gorithms access the input only via linear scans with-
out random access and only require a few (hopefully,
one) such scans over the data. Furthermore, since the
amount of data far exceeds the amount of space (main
memory) available to the algorithm, it is not possible
for the algorithm to “remember” too much of the data
scanned in the past. This scarcity of space necessitates
the design of a novel kind of algorithm that stores only
a summary of past data, leaving enough memory for
the processing of future data. We remark that this is
not the same as the model of online algorithms.

Clustering has recently been widely studied across
several disciplines, but only a few of the techniques de-
veloped scale to support clustering of very large data
sets. A common formulation of clustering is the k–
Median problem: find k centers in a set of n points so
as to minimize the sum of distances from data points
to their closest cluster centers. Most algorithms for k–
Median have large space requirements and involve ran-
dom access to the input data. We give constant-factor
approximation algorithms for the k–Median problem
that naturally fit into this data stream setting. Our
algorithms make a single pass over the data and use
small space. We first give a randomized constant-factor
approximation algorithm for k–Median, which makes
one pass over the data using nε memory (for ε < 1)
and requires only Õ(nk) time. We also prove that
any deterministic k–Median algorithm that achieves a
constant-factor approximation cannot run in time less
than Ω(nk). Finally, we give a deterministic Õ(nk)-
time, polylog(n)-approximation single-pass algorithm
that uses nε space, for ε < 1.

Related Work on Data Streams One of the first
results in data streams was the result of Munro and
Paterson [16], where they studied the space require-
ment of selection and sorting as a function of the num-
ber of passes over the data. The model was formal-
ized by Henzinger, Raghavan, and Rajagopalan [7],
who gave several algorithms and complexity results re-

1

lated to graph-theoretic problems and their applica-
tions. Other recent results on data streams can be
found in [4, 13, 14, 6].

Related Work on Clustering In this paper we
shall consider models in which clusters have a distin-
guished point, or “center.” In the k–Median problem,
the objective is to minimize the average distance from
data points to their closest cluster centers. The 1–
median problem was first posed by Weber [17]. In
the k–Center problem, the objective is to minimize
the maximum radius of a cluster. The above problems
are all NP-hard, so we will be concerned with approx-
imation algorithms. We will assume that the domain
space of points is discrete, i.e., the cluster centers must
be among the input points. The continuous case is
related to the discrete problem by small factors (see
Theorem 2.1). Throughout the paper we also assume
that the input points are drawn from a metric space.

In the recent past, several approximation algorithms
have been proposed for the k–Median problem [3, 10,
2]. These algorithms require O(n2) space to compute
the dual variables or primal constraints. We will be
interested in algorithms which use more than k medians
but run in linear space [12, 2, 9].

Charikar, Chekuri, Feder, and Motwani [1] gave a
constant-factor algorithm for the incremental k–Center
problem, which is also a single-pass algorithm requir-
ing O(nk log k) time and O(k) space. There is a large
difference, however, between the k–Center and the k–
Median problem since a set of k + 1 suitably separate
points provides a lower bound for the k–Center prob-
lem. These points can be thought of as a proof of the
goodness of the clustering. For the k–Median problem,
allowing weighted points, no such succinct proof exist
and the optimization problem takes on a more global
character.

Our Results We begin by giving an algorithm that
requires small space, and then later address the issue
of clustering in one pass. In Section 2 we give a simple
algorithm based on divide-and-conquer that achieves
a constant-factor approximation in small space. Ele-
ments of the algorithm and its analysis form the basis
for the constant-factor algorithm given in Section 3.
This algorithm runs in time O(n1+ε), uses O(nε) mem-
ory, and makes a single pass over the data. Next, in
Section 4, using randomization, we show how to reduce
the running time to O(nk) without requiring more than
a single pass. In Section 5 we show it is not possible
to obtain any bounded approximation ratio in deter-
ministic o(nk) time; we also show how to achieve a

poly-log n approximation ratio in a single pass in de-
terministic Õ(nk) time.

2 Clustering in Small Space

One of the first requisites of clustering a data stream
is that the computation be carried out in small space.
Our first goal will be to show that clustering can be
carried out in small (nε for n data points) space, with-
out being concerned with the number of passes. Sub-
sequently we will see how to implement the algorithm
in one pass.

In order to cluster in small space, we investigate al-
gorithms that examine the data in a piecemeal fashion.
In particular, we study the performance of a divide-
and-conquer algorithm, called Small-Space, that di-
vides the data into pieces, clusters each of these pieces,
and then again clusters the centers obtained (where
each center is weighted by the number of points closer
to it than to any other center). We show that this piece-
meal approach is good, in that: if we had a constant-
factor approximation algorithm, running it in divide-
and-conquer fashion would still yield a (slightly worse)
constant-factor approximation. We then propose an-
other algorithm (Smaller-Space) that is similar to the
piecemeal approach except that instead of recluster-
ing only once, it repeatedly reclusters weighted cen-
ters. For this algorithm, we prove that if we recluster
a constant number of times, a constant-factor approxi-
mation is still obtained, although, as expected, the con-
stant factor worsens with each successive reclustering.
The advantage of Small(er)-Space is that we sacrifice
somewhat the quality of the clustering approximation
to obtain an algorithm uses much less memory.

2.1 Simple Divide-and-Conquer and Separability
Theorems

We start with the version of the algorithm that
reclusters only once. Elements of the algorithm and
its analysis will be used in a black-box manner in the
algorithms in the rest of the paper.

Algorithm Small-Space(S)

Divide S into l disjoint pieces χ1, . . . , χl.

For each i, find O(k) centers in χi. Assign each point
in χi to its closest center.

Let χ′ be the O(lk) centers obtained in (2), where
each center c is weighted by the number of points
assigned to it.

2

Cluster χ′ to find k centers.

Since we are interested in clustering in small space,
l will be set so that both S and χ′ fit in main memory,
if possible. If S is very large, no such l may exist – we
will address this issue later.

Before analyzing algorithm Small-Space, we de-
scribe the relationship between the discrete and con-
tinuous clustering problem. The following is folklore
and is included for completeness.

Theorem 2.1 Given an instance of the k-median
problem with a solution of cost C, where the medians
may not belong to the set of input points, there exists
a solution of cost 2C where all the medians belong to
the set of input points.

Proof: Consider the solution of cost C, and let the
points j1, . . . , jq be assigned to median i. Since median
i may not be in the input, consider the point jl which
is closest to i as the median (instead of i). Thus the
assignment distance of every point jr at most doubles,
since cjrjl

can be bounded by cjli + cjri (where cxy

denotes the distance from x to y). Over all n points in
the original set, the assignment distance can at most
double, summing to at most 2C. 2

The following separability theorem sets the stage for
a divide-and-conquer algorithm. This theorem carries
over to other clustering metrics such as the sum of
squared distances.

Theorem 2.2 Consider any set of n points arbitrarily
partitioned into disjoint sets χ1, . . . , χ`. The sum of
the optimum solution values for the k-median problem
on the ` sets of points is at most twice the cost of the
optimum k-median problem solution for all n points. 1

Proof: Consider the medians used for the optimum
k-median solution. If each partition uses these medi-
ans, the cost of the solution will be exactly the cost
of the optimal solution. This follows since the objec-
tive function for k-median is the sum of distances to
the nearest median for every point. However the set
of medians chosen by the optimum solution need not
be present in a partition. But in the case where the
medians points can be arbitrary points in the space,
the above theorem is proved.

In case we have to choose the medians from the given
set of points, the medians used by the optimum solu-
tion will not be available to every partition. In this

1The factor 2 is avoided in the Euclidean case if we allow that
medians can be arbitrary points in space, rather than requiring
that they be points from the original data set.

case use Theorem 2.1 to construct a solution which is
at most 2 times the cost of the optimum solution. 2

Next we show that the new instance, where all the
points i that have median i′ shift their weight to the
point i′ (i.e., the weighted O(lk) centers S′ in Step 2 of
Algorithm Small-Space), has a good feasible clustering
solution. Notice that the set of points in the new in-
stance is much smaller and may not even contain the
medians of the optimum solution.

Theorem 2.3 If the sum of the costs of the l optimum
k–median solutions for χ1, . . . , χl is C and if C∗ is the
cost of the optimum k–median solution for the entire
set S, then there exists a solution of cost at most 2(C+
C∗) to the new weighted instance χ′. 2

Proof: As in the proof of the previous theorem, we
will consider the k medians in the optimum continuous
solution.

Let the median to which i′ is assigned to in the op-
timum continuous solution for χ′ be τ(i′). Further, let
di′ be the number of points assigned to the median i′.
The cost of χ′ can be expressed as

∑
i′ ci′τ(i′)di′ (where

again cxy is the distance from x to y). Each point i′

in the new instance χ′ can be viewed as a collection of
points, namely those points i assigned to the median i′.
Thus the cost of χ′ can also be expressed as

∑
i ci′τ(i′).

Let the median to which i is assigned to in the op-
timum continuous solution for S be σ(i). The cost of
the new instance χ′ is no more than

∑
i ci′σ(i) since τ

is optimum for χ′. This sum is in turn bounded by∑
i(ci′i +ciσ(i)). The first term summed over all points

i evaluates to C and the second term evaluates to C∗.
Thus we showed an assignment to the medians of the

optimal solution at cost C + C∗. Using Theorem 2.1,
the theorem follows. (Note that the theorem can also
be shown to hold when the original points in S are
weighted.) 2

We now show that if we run a bicriteria (a, b)-
approximation algorithm (where at most ak medians
are output with cost at most b times the optimum k–
Median solution) in Step 2 of Algorithm Small-Space
and we run a c-approximation algorithm in Step 4,
then the resulting approximation by Small-Space can
be suitably bounded.

Theorem 2.4 The algorithm Small-Space has an ap-
proximation factor of 2c(1 + 2b) + 2b.

Proof: Let the optimal k-median solution be of cost
C∗. Then the cost of the solution C at the end of the

2Again, the factor 2 is avoided if we use the Euclidean distance
and allow medians to be arbitrary points.

3

first stage is at most 2bC∗. This is true due to Theo-
rem 2.2, since we are adding the cost of the solutions
to each partition, each of which is a b-approximation
for that partition. Now by Theorem 2.3, there ex-
ists a solution to the k-median problem on the mod-
ified instance of cost 2(C + C∗). Since we have a c-
approximation, we have a solution of cost 2c(1+2b)C∗

to the modified instance. The theorem is obtained by
summing the two costs. 2

The black-box nature of this algorithm will allow us
to devise a new divide-and-conquer algorithm.

2.2 Divide-and-Conquer Strategy

We now generalize Small-Space so that the algo-
rithm recursively calls itself on a successively smaller
set of weighted centers.

Algorithm Smaller-Space(S,i)

Divide S into l disjoint pieces χ1, . . . , χl.

For each i, find O(k) centers in χi. Assign each point
in χi to its closest center.

Let χ′ be the O(lk) centers obtained in (2), where
each center c is weighted by the number of points
assigned to it.

Call Algorithm Smaller-Space(χ′, i− 1).

We can claim the following.

Theorem 2.5 For constant i, Algorithm Smaller-
Space(S, i) gives a constant-factor approximation to the
k–Median problem.

Proof: Assume that the approximation factor for the
jth level is Aj . From Theorem 2.2 we know that the
cost of the solution of the first level is 2b times opti-
mal. From Theorem 2.4 we get that the approximation
factor Aj would satisfy a simple recurrence,

Aj = 2Aj−1(2b + 1) + 2b

The solution of the recurrence is c · (2(2b + 1))j . This
is O(1) given j is a constant. 2

Since the intermediate medians in χ′ must be stored
in memory, the number of subsets l that we partition
S into is limited. In particular, if the size of main
memory is M , then we would need to partition S into
l subsets so that each subset fits in main memory, i.e.,
(n/l) ≤ M and so that the weighted lk centers in χ′

also fit in main memory, i.e., lk ≤ M . Such an l may
not always exist.

In the next section we will see a way to get around
this problem. In fact we will be able to implement the
hierarchical scheme more cleverly and obtain a cluster-
ing algorithm for an interesting model of computation.
We have two themes to develop this idea. The first is to
do away with the storage of the intermediate medians,
and the second is to design a more interesting recur-
sive algorithm. We take up the former and relegate the
second to a later section.

3 The Data Stream Model

Under the Data Stream Model, computation takes
place within bounded space M and the data can only
be accessed via linear scans (i.e., a data point can be
seen only once in a scan, and points must be viewed in
order).

In this section we will modify the multi-level algo-
rithm to operate on data streams. We will present a
one-pass, O(1)-approximation in this model assuming
that the bounded memory M is not too small, more
specifically nε where n denotes the size of the stream.

This model and the line of analysis have similarities
to incremental clustering and online models. However
our approach will be a bit different. We will maintain
a forest of assignments. We will complete this to k
trees, and all the nodes in a tree will be assigned to the
median denoted by the root of the tree. First we will
show how to solve the problem of storing intermediate
medians. Next we will inspect the space requirements
and running time.

Data Stream Algorithm To achieve this, we will
modify our multi-level algorithm slightly. The algo-
rithm will be the following:

1. Input the first m points; use a bicriterion algo-
rithm to reduce these to O(k) (say 2k) points.
As usual, the weight of each intermediate median
is the number of points assigned to it in the bi-
criterion clustering. (Assume m is a multiple of
2k.) This requires O(f(m)) space, which for a pri-
mal dual algorithm can be O(m2). We will see a
O(mk)-space algorithm later.

2. Repeat the above till we have seen m2/(2k) of the
original data points. At this point we have m in-
termediate medians.

3. Cluster these m first-level medians into 2k second-
level medians and proceed.

4. In general, maintain at most m level-i medians,
and, on seeing m, generate 2k level-i + 1 medians,
with the weight of a new median as the sum of

4

the weights of the intermediate medians assigned
to it.

5. When we have seen all the original data points (or
we want to have a clustering of the points we have
seen so far) we cluster all the intermediate medians
into k final medians.

Note that this algorithm is identical to the multi-level
algorithm described before.

The number of levels required by this algorithm is at
most O(log(n/m)/ log(m/k)). If we have k � m and
m = O(nε) for some constant ε < 1, we have an O(1)-
approximation. Using linear programming or primal
dual algorithms we will have m =

√
M where M is

the memory size (ignoring factors due to maintaining
intermediate medians of different levels). We argued
that the number of levels would be a constant when
m = nε and hence when M = n2ε for some ε < 1/2.

Linear Space Clustering The approximation qual-
ity which we can prove (and intuitively the actual qual-
ity of clustering obtained on an instance) will depend
heavily on the number of levels we have. From this
perspective it is profitable to use a space-efficient algo-
rithm.

We can use the local search algorithm in [2] to pro-
vide a bicriterion approximation in space linear in m,
the number of points clustered at a time. The ad-
vantage of this algorithm is that it maintains only an
assignment and therefore uses linear space. However
the complication is that for this algorithm to achieve
a bounded bicriterion approximation, we need to set a
“cost” to each median used, so that we penalize if many
more than k medians are used. The algorithm solves a
facility location problem after setting the cost of each
median to be used. However this can be done by guess-
ing this cost in powers of (1 + γ) for some 0 < γ < 1/6
and choosing the best solution with at most 2k medi-
ans. In the last step, to get k medians we use a two
step process to reduce the number of medians to 2k
and then use [10, 2] to reduce to k. This allows us to
cluster with m = M points at a time provided k2 ≤ M .

The Running Time The running time of this clus-
tering is dominated by the contribution from the first
level. The local search algorithm is quadratic and the
total running time is O(n1+ε) where M = nε. We ar-
gued before, however, that ε will not be very small and
hence the approximation quality which we can prove
will remain small.

We therefore claim the following theorem,

Theorem 3.1 We can solve the k–Median problem on
a data stream with time O(n1+ε) and space θ(nε) up to
a factor 2O(1

ε).

We have two avenues to pursue. The running time
will be lower-bounded by the space we require, and we
improve this bottleneck to get linear space clustering,
but first, to achieve scalability, our goal will be to get
clustering in time Õ(nk). This will mean an amortized
update of O(k polylog(n)). In the next section we will
motivate how to achieve this, and provide evidence that
ours is a hard bound for the running time of a clustering
algorithm.

The second issue is to present an algorithm with
approximation guarantee which is polynomial in 1

ε . We
will show how to achieve this in Section 5.

4 Clustering Data Streams in Õ(nk)
Time

Let us recall the algorithm we have developed so far.
We have k2 � M , and we are applying an alternate
implementation of a multi-level algorithm.

We are clustering m = O(M) (assuming M = O(nε)
for constant ε > 0) points and storing 2k medians to
“compress” the description of these data points. We
use the local search-based algorithm in [2]. We keep
repeating this procedure till we see m of these descrip-
tors or intermediate medians and compress them fur-
ther into 2k. Finally, when we are required to output
a clustering, we compress all the intermediate medi-
ans (over all the levels there will be at most O(M)
of them) and get O(k) penultimate medians which we
cluster into exactly k using the primal dual algorithm
as in [10, 2].

4.1 Earlier Work on Clustering in Õ(nk) Time

We will use the results in [9] on metric space algo-
rithms that are subquadratic. The algorithm as de-
fined will consist of two passes and will have constant
probability of success. For high probability results, the
algorithm will make O(log n) passes. As stated, the
algorithm will only work if the original data points are
unweighted. Consider the following algorithm:

1. Draw a sample of size s =
√

nk.

2. Find k medians from these s points using the pri-
mal dual algorithm in [10].

3. Assign each of the n original points to its closest
median.

4. Collect the n/s points with the largest assignment
distance.

5

5. Find k medians from among these n/s points.

6. We have at this point 2k medians.

Theorem 4.1 [9] The above algorithm gives an O(1)
approximation with 2k medians with constant probabil-
ity.

The above algorithm3 provides a constant-factor ap-
proximation for the k–Median problem (using 2k me-
dians) with constant probability. Repeat the above
experiment O(log n) times for high probability. We
will not run this algorithm by itself, but as a substep
in our algorithm. The algorithm requires Õ(nk) time
and space. Using this algorithm with the local search
tradeoff results in [2] reduces the space requirement to
O(
√

nk).
Alternate sampling-based results exist for the k–

Median measure that do extend to the weighted case
[15], however these results assume Euclidean space.

4.2 Extension to the Weighted Case

We need this sampling-based algorithm to work on
weighted input. It is necessary to draw a random sam-
ple based on the weights of the points; otherwise the
medians with respect to the sample do not convey much
information. The simple idea of sampling points with
respect to their weights does not help. The philosophy
of the above method is that a random sample will be
reasonable for most points, that there will not be many
outliers (at most n divided by the sample size, up to
constants), and that in the second phase it is sufficient
to account for these outliers.

If the points have weights, however, in the first step
we may only eliminate k points. Therefore sampling
according to weights does not carry through. Contrast
this with the algorithm in [5] where the points were in
Euclidean space and the measure was sum of squares
of distances. Both these facts were crucial for their
algorithm.

We suggest the following modification. The basic
idea is scaling. We can round the weights to the near-
est power of (1 + ε) for ε > 0. In each group we can
ignore the weight and lose a (1+ε) factor. Since we have
an Õ(nk) algorithm, summing over all groups, the run-
ning time is still Õ(nk). The correct way to implement
this is to compute the exponent values of the weights
and use only those groups which exist, otherwise the
running time will depend on the largest weight.

3The algorithm presented here, without the last step, is es-
sentially the same as in [9], however the primal dual algorithm
which requires O(n2) time to solve k–Median problem was not
known when the result was published. The result proved therein
was using O(n2k2) local search algorithm in [12] which was a
bicriterion approximation.

4.3 The Full Algorithm

We will use this sampling-based scheme to develop a
one-pass and O(nk)-time algorithm that requires only
O(nε) space.

• Input the first O(M/k) points, and use the ran-
domized algorithm above to cluster this to 2k in-
termediate median points.

• Use a local search algorithm to cluster O(M) in-
termediate medians of level i to 2k medians of level
i + 1.

• Use the primal dual algorithm of Jain and Vazirani
[10] to cluster the final O(k) medians to k medians.

Notice that the algorithm remains one pass, since
the O(log n) iterations of the randomized subalgorithm
just add to the running time. Thus, over the first phase,
the contribution to the running time is Õ(nk). Over
the next level, we have nk

M points, and if we cluster
O(M) of these at a time taking O(M2) time, the total
time for the second phase is O(nk) again. The con-
tribution from the rest of the levels decreases geomet-
rically, so the running time is Õ(nk). As shown in
the previous sections, the number of levels in this algo-
rithm is O(log M

k
n), and so we have a constant-factor

approximation for k � M = θ(nε) for some small ε. 4

Thus we claim the following theorem,

Theorem 4.2 The k–Median problem has a constant-
factor approximation algorithm running in time
O(nk log n), in one pass over the data set, using nε

memory, for small k.

5 Lower Bounds and Deterministic Al-
gorithms

In this section we explore whether our algorithms
could be speeded up further and whether randomiza-
tion is needed. For the former, note that we have a
clustering algorithm that requires time Õ(nk) and a
natural question is could we have done better? We’ll
show that we couldn’t have done much better since
a deterministic lower bound for k–Median is Ω(nk).
Thus, modulo randomization, our time bounds pretty
much match the lower bound. For the latter, we show
one way to get rid of randomization that yields a sin-
gle pass, small memory k–Median algorithm that is a

4We could have used the sampling-based algorithm in the
intermediate steps as well, however such a recursive, sampling-
based algorithm will have greater errors, in theory and very likely
in practice.

6

poly-log n approximation. Thus we do also have a de-
terministic algorithm, but with more loss of clustering
quality.

5.1 Lower Bounds

We now show that any constant-factor determinis-
tic approximation algorithm requires Ω(nk) time. We
measure the running time by the number of times the
algorithm queries the distance function.

We consider a restricted family of sets of points
where there exists a k-clustering with the property
that the distance between any pair of points in the
same cluster is 0 and the distance between any pair
of points in different clusters is 1. Since the optimum
k-clustering has value 0 (where the value is the dis-
tance from points to nearest centers), any algorithm
that doesn’t discover the optimum k-clustering does
not find a constant-factor approximation.

Note that the above problem is equivalent to the
following Graph k-Partition Problem: Given a graph
G which is a complete k-partite graph for some k, find
the k-partition of the vertices of G into independent
sets. The equivalence can be easily realized as follows:
The set of points {s1, . . . , sn} to be clustered naturally
translates to the set of vertices {v1, . . . , vn} and there is
an edge between vi, vj iff dist(si, sj) > 0. Observe that
a constant-factor k-clustering can be computed with t
queries to the distance function iff a graph k-partition
can be computed with t queries to the adjacency matrix
of G.

Kavraki, Latombe, Motwani, and Raghavan [8] show
that any deterministic algorithm that finds a Graph k-
Partition requires Ω(nk) queries to the adjacency ma-
trix of G. This result establishes a deterministic lower
bound for k–Median.

Theorem 5.1 A deterministic k–Median algorithm
must make Ω(nk) queries to the distance function to
achieve a constant-factor approximation.

5.2 Deterministic Algorithms Requiring Õ(nk)
Time

One natural question we can ask is what we can
achieve without randomization. We have already seen
how to get an O(n1+ε)-time clustering algorithm that
uses nε space and gives a constant-factor approxima-
tion. However this constant factor grows as 2

1
ε , and if

we were to ask for an Õ(nk)-time algorithm we would
have an approximation factor polynomial in (n/k).
Modifying our approach slightly, we can show the fol-
lowing:

Theorem 5.2 In Õ(nk) deterministic time, we have
a poly-log n approximation for the k–Median problem
in nε space and a single pass.

Proof: First we will have to construct an algorithm
that runs in time Õ(nk). Then we can reduce the space
required in the same way as for the previously described
randomized algorithm.

Consider the primal-dual algorithm that gives a
constant-factor (say c) approximation for the k–
Median problem. This algorithm takes time (and
space) an2 for some constant a. Consider the following
algorithm, which we will call A1: partition the n origi-
nal points into p1 equal-size subsets, apply the primal-
dual algorithm to each of these subsets, and then apply
it to the p1k weighted points so obtained, to get k final
medians. If we choose p1 = (n/k)

2
3 , the running time of

A1 is 2an
4
3 k

2
3 , and the space required is 2an

4
3 k

2
3 also.

By Theorem 2.4 we have an approximation of 4c2 +4c.

Now define A2 to split the dataset into p2 partitions
and apply A1 on each of them and on the resulting
intermediate medians (notice we can easily ensure an
implementation to get a one-pass algorithm). Solving
to minimize the running time will yield p2 = (n/k)4/5.
Therefore the running time and space required both
become 4an

16
15 k

14
15 .

If we continue this process so that Ai calls Ai−1

on pi partitions, we can prove without much difficulty
that the running time and the space required by the

algorithm will both be a2in

(
1+ 1

22i−1−1

)
k

(
1− 1

22i−1−1

)
.

However the approximation factor ci grows as ci =
4c2

i−1 + 4ci−1.

To get the exponent of n in the running time to be 1,
it is sufficient to have i = θ(log log log n). This makes
the running time nk (hiding poly log log n factors) and
gives approximation O(logp n) since the approximation
factor is 42i

. Thus we have a poly-log n approximation
in Õ(nk) space and time. Now we can use this in our
previous algorithm to get an O(logp n) approximation
in nε space and Õ(nk) time, without using randomiza-
tion. 2

The above actually shows that we have an O(n1+ε)-
time clustering with approximation guarantee polyno-
mial in 1

ε . Combining this with Theorem 3.1 we get
the following,

Theorem 5.3 The k–Median problem can be approxi-
mated in time Õ(n1+εδ) and space θ(nδ) up to a factor
of O(poly(1

ε)2
1
δ).

7

Acknowledgments

We thank Umesh Dayal, Aris Gionis, Meichun Hsu,
Piotr Indyk, Dan Oblinger, and Bin Zhang for numer-
ous fruitful discussions.

References

[1] M. Charikar, C. Chekuri, T. Feder and R. Mot-
wani. Incremental clustering and dynamic infor-
mation retrieval. In Proceedings of the 29th An-
nual ACM Symposium on Theory of Computing,
1997.

[2] M. Charikar, and S. Guha. Improved Combinato-
rial Algorithms for the Facility Location and and
k–Median Problems. In Proceedings of the 40th
Annual IEEE Symposium on Foundations of Com-
puter Science, pages 378-388, 1999.

[3] M. Charikar, S. Guha, É. Tardos and
D. B. Shmoys. A constant factor approxi-
mation algorithm for the k–Median problem. in
Proceedings of the 31st Annual ACM Symposium
on Theory of Computing, pages 1-10, 1999.

[4] P. Flajolet and G. N. Martin. Probabilistic Count-
ing In Proceedings of 24th Annual IEEE Sympo-
sium on Foundations of Computer Science, pages
76-82, 1983.

[5] A. Frieze, R. Kannan, and S. Vempala. Fast Monte
Carlo algorithms for finding low rank approxima-
tion. In Proceedings of the 39th Annual IEEE
Symposium on Foundations of Computer Science,
pages ,1998.

[6] J. Feigenbaum, S. Kannan, M. Strauss, and
M. Vishwanathan. An approximate L1–difference
algorithm for massive data sets. In Proceedings of
40th Annual IEEE Symposium on Foundations of
Computer Science, pages 501-511, 1999.

[7] M. R. Henzinger, P. Raghavan, and S. Ra-
jagopalan. Computing on Data Streams Technical
Report 1998-011, Digital Equipment Corporation,
Systems Research Center, May 1998.

[8] L. E. Kavraki, J. C. Latombe, R. Motwani, and
P. Raghavan. Randomized query processing in
robot path planning. In Journal of Computer and
System Sciences Special issue, vol 57, pages 50-60,
1998.

[9] P. Indyk, Sublinear time algorithms for metric
space problems. In Proceedings of the 31st Annual
ACM Symposium on Theory of Computing, pages
428-434, 1999.

[10] K. Jain and V. Vazirani, Primal-Dual Approx-
imation Algorithms for Metric Facility Location
and k–Median Problems. In Proceedings of the
40th Annual IEEE Symposium on Foundations of
Computer Science, pages 1-10, 1999.

[11] V. Kann, S. Khanna, J. Lagergren, and A. Pan-
conesi. On the hardness of approximating MAX
k–cut and its dual.

[12] M. R. Korupolu, C. G. Plaxton, and R. Rajara-
man. Analysis of a local search heuristic for fa-
cility location problems. In Proceedings of the 9th
Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 1–10, 1998.

[13] G. S. Manku, S. Rajagopalan, and B. Lindsay.
Approximate medians and other quantiles in one
pass with limited memory. In Proceedings of the
1998 ACM SIGMOD International Conference on
Management of Data, pages 426-435, 1998.

[14] G. S. Manku, S. Rajagopalan, and B. Lindsay.
Random sampling techniques for space efficient
online computation of order statistics of large
databases. In Proceedings of the 1999 ACM SIG-
MOD International Conference on Management
of Data, pages 251-262, 1999.

[15] N. Mishra, D. Oblinger, and L. Pitt. Way-
Sublinear Time Approximate (PAC) Clustering.
Manuscript, 2000.

[16] J. I. Munro and M. S. Paterson. Selection and
Sorting with Limited Storage. Theoretical Com-
puter Science, vol 12, pages 315-323, 1980.

[17] A. Weber. Ueber den Standort der Industrien. Er-
ster Teil. Reine Theorie der Standorte. Mit einem
mathematischen Anhang von G.PICK. (in Ger-
man). Verlag, J. C. B. Mohr, Tbingen, Germany,
1909.

8

