
On the resemblance and containment of documents

Andrei Z. Broder
digital Systems Research Center

130 Lytton Avenue, Palo Alto, CA 94301, USA
broder@pa.dec.com

Abstract

Given two documents A and B we define two mathematical notions: their
resemblance r(A,B) and their containment c(A,B) that seem to capture well
the informal notions of “roughly the same” and “roughly contained.”

The basic idea is to reduce these issues to set intersection problems that can
be easily evaluated by a process of random sampling that can be done inde-
pendently for each document. Furthermore, the resemblance can be evaluated
using a fixed size sample for each document.

This paper discusses the mathematical properties of these measures and the
efficient implementation of the sampling process using Rabin fingerprints.

1 Introduction

The on-line information explosion, and in particular the World Wide Web, has led a
proliferation of documents that are identical or almost identical. In many situations it
is necessary to determine whether two documents are “roughly the same” or “roughly
contained” in each other.

These informal concepts do not seem to be well captured by any of the standard
distances defined on strings (Hamming, Levenshtein, etc.). Furthermore the compu-
tation of these distances usually requires the pairwise comparison of entire documents.
For a very large collection of documents this is not feasible, and a sampling mechanism
per document is necessary.

To attack this problem we use two mathematical concepts resemblance and con-
tainment defined precisely below.

The resemblance r(A,B) of two documents, A and B, is a number between 0 and
1, such that when the resemblance is close to 1 it is likely that the documents are
roughly the same. Similarly, the containment c(A,B) of A in B is a number between
0 and 1 that, when close to 1, indicates that A is roughly contained within B. The
resemblance has the additional property that d(A,B) = 1 − r(A,B), is a metric
(obeys the triangle inequality), which is useful for the design of algorithms intended
to cluster a collection of documents into sets of closely resembling documents.

1



To compute the resemblance and/or the containment of two documents it suffices
to keep for each document a relatively small sketch. The sketches can be computed
fairly fast (linear in the size of the documents) and given two sketches the resemblance
or the containment of the corresponding documents can be computed in linear time
in the size of the sketches. For computing resemblance, it suffices to keep a fixed size
sketch. For computing containment, we need a sketch proportional to the size of the
underlying document; however as it will be explained this problem can be finessed at
the cost of a loss of precision.

Our approach to determining syntactic similarity is related to the sampling ap-
proach developed independently by Heintze [6], though there are differences in detail
and in the precise definition of the measures used. Related sampling mechanisms for
determining similarity were also developed by Manber [7] and within the Stanford
SCAM project [2, 8, 9].

We tested the ideas discussed above by building a clustering of a collection of over
30,000,000 documents into sets of closely resembling document. The documents were
retrieved from a walk of the World Wide Web performed by the Alta Vista search
engine. The total input data was over 150 Gbytes. We calculated our clusters based on
a 50% resemblance. We found 3.6 million clusters containing a total of 12.3 million
documents. Of these, 2.1 million clusters contained only identical documents (5.3
million documents). The remaining 1.5 million clusters contained 7 million documents
(a mixture of exact duplicates and similar). For further details see [5].

The basic approach has two aspects: First, resemblance and containment are
expressed as set intersection problems (this is explained in Section 2) and second,
the relative size of these intersections is evaluated by a process of random sampling
that can be done independently for each document (this is explained in Section 3).
This process of estimating the relative size of intersection of sets can be applied to
arbitrary sets, and thus might be of independent interest.

2 Definitions as set intersection problems

We view each document as a sequence of tokens. We can take tokens to be letters, or
words, or lines. From a mathematical point of view all what we need is for the set of
tokens to be countable.

We assume that we have a parser program that takes an arbitrary document
and reduces it to a canonical sequence of tokens. (Here “canonical” means that any
two documents that differ only in formatting or other information that we chose to
ignore, for instance punctuation, formatting commands, capitalization, and so on, will
be reduces to the same sequence.) So from now on a document means a canonical
sequence of tokens.

Our immediate goal is to associate to every document D a set of subsequences of
tokens S(D,w) where w is a parameter defined below.

A contiguous subsequence contained in D is called a shingle. Given a document
D we can associate to it its w-shingling defined as the bag (multiset) of all shingles

2



of size w contained in D. So for instance the 4-shingling of

(a,rose,is,a,rose,is,a,rose)

is the bag

{(a,rose,is,a), (rose,is,a,rose), (is,a,rose,is),

(a,rose,is,a), (rose,is,a,rose)}.

There are now two ways to proceed. Option A keeps more information about the
document; option B is more efficient.
Option A. By labelling each element of a w-shingling with its occurrence number we
obtain its labelled w-shingling. Option A is to define S(D,w) as this set. Continuing
the example above this would be the set

{(a,rose,is,a,1), (rose,is,a,rose,1), (is,a,rose,is,1),

(a,rose,is,a,2), (rose,is,a,rose,2)}.

Option B. This is to take S(D,w) to be the set of shingles in D. For the example
above this is the set

{(a,rose,is,a), (rose,is,a,rose), (is,a,rose,is)}

Once we fixed a shingle size and one of the options above, the resemblance r of
two documents A and B is defined as

rw(A,B) =
|S(A,w) ∩ S(B,w)|
|S(A,w) ∪ S(B,w)| ,

and the containment of A in B is defined as

cw(A,B) =
|S(A,w) ∩ S(B,w)|

|S(A,w)| .

Hence the resemblance is some number between 0 and 1, and r(A,A) = 1, in another
words A resembles itself 100%, for any size. Similarly, the containment is some num-
ber between 0 and 1 and if A is a contiguous subsequence of B then c(A,B) = 1.
Furthermore computing the resemblance and the containment boils down to evaluat-
ing the relative size of set intersections.

As an example if

A = (a,rose,is,a,rose,is,a,rose)

and
B = (a,rose,is,a,flower,which,is,a,rose)

then under the first option A resembles B 70% for shingle size 1, 50% for size 2, 30%
for size 3, etc. Under the second option, A resembles B 60% for size 1, 50% for size
2, 42.85% for size 3, etc.

3



Notice however that even under the first option, if A resembles B 100% for shingle
size 1, it only means that B is an arbitrary permutation of A; for larger sizes if A re-
sembles B 100% it is still the case that B could be a permutation of A but only certain
permutations are possible: for instance (a, c, a, b, a) resembles (a, b, a, c, a)
100% for size 2. To make resemblance more sensitive to permutation changes we have
to take a larger size; on the other hand a large size is possibly over-sensitive to small
alterations since the change in one token affects w shingles.

Notice also that resemblance is not transitive (a well-known fact bemoaned by
grandparents all over), but neither is our informal idea of “roughly the same;” for
instance consecutive versions of a paper might well be “roughly the same,” but version
100 is probably quite far from version 1.

Another fact to note is that the resemblance distance defined as

dw(A,B) = 1− rw(A,B)

is a metric. (The tedious proof is omitted in this preliminary version.) This might
be useful in choosing a clustering algorithm. (See Section 4.4 below.)

Experiments show that strong resemblance and strong containment (that is, close
to 1) capture our informal notion of “roughly the same” and “roughly contained.”

3 Estimating the resemblance and the containment

Fix a shingle size w, and let Ω be the set of all labelled (for option A) or unlabelled
(for option B) shingles of size w. Without loss of generality we can assume that Ω is
totally ordered. Now fix a parameter s. For a set W ⊆ Ω define MINs(W ) as

MINs(W ) =

{
the set of the smallest s elements in W , if |W | ≥ s;
W, otherwise.

where “smallest” refers to the order defined on Ω and and for a set I ⊆ N define

MODm(I) = the set of elements of W that are 0 mod m.

Theorem 1 Let g : Ω→N be an arbitrary injection, let π : Ω→ Ω be a permutation
of Ω chosen uniformly at random and let M(A) = MINs(π(S(A,w))) and L(A) =
MODm(g(π(S(A,w)))). Define M(B) and L(B) analogously.

• The value
|MINs(M(A) ∪M(B)) ∩M(A) ∩M(B)|

|MINs(M(A) ∪M(B))|
is an unbiased estimate of the resemblance of A and B.

• The value
|L(A) ∩ L(B)|
|L(A) ∪ L(B)|

is an unbiased estimate of the resemblance of A and B.

4



• The value
|L(A) ∩ L(B)|
|L(A)|

is an unbiased estimate of the containment of A in B.

Proof: Clearly

MINs(M(A) ∪M(B)) = MINs

(
π
(
S(A,w)

)
∪ π

(
S(B,w)

))
= MINs

(
π
(
S(A,w) ∪ S(B,w)

))
Let α be the smallest element in π(S(A,w) ∪ S(B,w)). Then

Pr(α ∈M(A) ∩M(B)) = Pr(π−1(α) ∈ S(A,w) ∩ S(B,w))

=
|S(A,w) ∩ S(B,w)|
|S(A,w) ∪ S(B,w)| = rw(A,B).

Since we can repeat this argument for every element of MINs(π(S(A,w)∪ S(B,w)))
this proves the first claim. The proof of the other two claims is straightforward. 2

In view of the above, we can choose a random permutation and afterwards keep for
each document D a sketch consisting only of the set M(D) and/or L(D). The sketches
suffice to estimate the resemblance or the containment of any pair of documents
without any need for the original files.

The set M(D) has the advantage that it has a fixed size, but it allows only
the estimation of resemblance. The size of L(D) grows as D grows, but allows the
estimation of both resemblance and containment.

To limit the size of L(D) we can proceed as follows: for documents that have size
between (say) 100 ∗ 2i and 100 ∗ 2i+1, we store the set Li(D) = MOD2i(g(π(S(D)))).
The expected size of Li(D) is always between 50 and 100. On the other hand, we can
easily compute Li+1(D) from Li(D). (We simply keep only those elements divisible
by 2i+1.) Thus, if we are given two documents, A and B, and 2i was the modulus used
by the longer document, we use Li(A) and Li(B) for our estimates. The disadvantage
of this approach is that the estimation of the containment of very short documents
into subtantially larger ones is rather error prone due to the paucity of samples.

4 Implementation issues

4.1 Choosing a random permutation and a sample

The total size of a shingle is relatively large: for instance if shingles are made of 7
(English) words each, a shingle will contain about 40-50 bytes on average. Hence to
reduce storage we first associate to each shingle a (shorter) id of ` bits, and then use
a random permutation π of the set {0, 1, . . . , 2`}. (Here we can commute g and π in
Theorem 1.) There is a trade-off here: if we take ` large then we can ensure that

5



most/all id’s will be unique, but we will have to pay a storage penalty. On the other
hand, a large number of collisions will degrade our estimate as explained below.

Let f : Ω → {0, . . . , 2` − 1} be the function that produces this id. Once f fixed,
what we are estimating is

rw,f(A,B) =
|f(S(A,w))∩ f(S(B,w))|
|f(S(A,w))∪ f(S(B,w))|

rather than

rw(A,B) =
|S(A,w) ∩ S(B,w)|
|S(A,w) ∪ S(B,w)| .

Fix an arbitrary set S ⊆ Ω of size n. Then if f is chosen uniformly at random

E(|f(S)|) = 2l
(

1−
(

1− 1

2`

)n)
= n−

(
n

2

)
1

2`
+

(
n

3

)
1

22`
+ · · ·

If ` is substantially larger than log n then

E(|f(S)|) ≈ n−
(
n

2

)
1

2`
,

in other words in this case we can ignore the effect of multiple collisions, that is, three
or more distinct elements of S having the same image under f . Furthermore, it can
be argued that the size of f(S) is fairly well concentrated. By Azuma’s inequality [1]
we have

Pr
(∣∣∣|f(S)| − E(|f(S)|)

∣∣∣ > λ
√
n
)
< e−λ

2/2.

However, for practical situations, ` is sufficiently large so that it is simpler to
use Markov inequality. (E.g.: the probability that the numbe of collisions exceeds(
n
2

)
1

2`−10 is less than 1/1000.)
Omitting many details this leads to the fact that with probability better than

99.9% (over the choices of f)

|rw,f(A,B)− rw(A,B)| < |S(A,w) ∪ S(B,w)|
2`−11

.

In an actual implementation, f is not totally random, and the probability of
collision might be higher. A good choice is to take f to be Rabin’s fingerprinting
function [10] in which case the probability of collision of two strings s1 and s2 can be
bounded (in a adversarial model for s1 and s2) by max(|s1| , |s2|)/2l−1 where |s1| is
the length of the string s1 in bits.

The advantage of choosing Rabin fingerprints (which are based on random irre-
ducible polynomials) rather than some arbitrary hash functions is that their probabil-
ity of collision is well understood. Furthermore Rabin fingerprints can be computed
very efficiently in software (see [3]) and we can take advantage of their algebraic
properties when we compute the fingerprints of “sliding windows.” (See section 4.3.)

6



For the clustering experiment discussed in the introduction the size of a typical
set of shingles is about 1000 and the length in bits of a shingle is about 400. We used
Rabin fingerprints with l = 40.

To produce our sample we need a random permutation π : {0, 1, . . . , 2`} →
{0, 1, . . . , 2`}. In practice we can imagine that the fingerprints implement π(f(·))
rather than f(·) or use random linear transformations. (See [4] for an in-depth dis-
cussion of this topic.)

Using Rabin fingerprints, in which strings are viewed as polynomials over Z2, we
can imagine that the underlying polynomial is first multiplied by a suitable power
or, equivalently, we can imagine that a suitable number of nulls are appended to the
underlying string. This changes slightly the way the fingerprints are computed but
there is no computing time extra cost. It has the effect that the fingerprints will
appear “more random.” (Without this trick two strings that differ only in the last
letter will differ only in the last eight bits of their fingerprint.)

For further efficiency, rather than keep the set MINs(π(S(A,w))) we can keep the
MINs of the set of fingerprints that are 0 mod m for a suitable chosen m. (That is,
we construct the set MINs(MODm(π(S(A,w)))).)

For option A the set MINs should be kept in a heap, with the maximum at
the root. A new fingerprint should replace the current root whenever it is smaller
than it and then we should re-heapify. The expected number of times this happens is
O(s log(n/m)) where n is the number of tokens in the document andm is the modulus
discussed above, because the probability that the k’th element of a random permuta-
tion has to go into the heap is s/k. The cost per heap operation is O(log s) and thus
the expected total cost for the heap operations is O(s log s log(n/m)). For option B
we need to keep a balanced binary search tree. Some possibilities are red-black trees,
randomized search trees, and skip lists. The cost is still O(s log s log(n/m)) but the
constant factor is probably larger. Yet another possibility at the same cost is a heap
as before, plus a hash table to check for duplication.

4.2 The size of the sample

The larger the sample, the more accurate the results are likely to be. But we pay for
a larger sample in storage costs. The number of common shingles in the sample has
a hypergeometric distribution. Since the size of the sample is usually much smaller
than the size of the document we can approximate the hypergeometric distribution
by the binomial distribution. Under this approximation, if r is the resemblance, then
the probability that our estimate is within [r − ε, r + ε] is given by

p(s, r, ε) =
∑

s(r−ε)≤k≤s(r−ε)

(
s

k

)
rk(1− r)s−k.

For a fixed s our estimate is likely to be worse if r is close to 0.5, but often
we are interested only in the case where r is larger. For practical applications, 100
samples seems reasonable and 200 seems more than enough. Depending on the length
chosen for the fingerprints this means that the sketches should be between 300 to 800

7



bytes long. For the entire web the number of pairs where the estimate is relatively
far off can be of course substantial. However even for the entire web it is unlikely
(probability less than 0.1%) that any pair of documents that resembles less than 50%
will be estimated as resembling more than 90%.

4.3 Computing the fingerprints

Computing the fingerprints is fairly fast even if we do each shingle from scratch. The
total cost in this case is O(wn) where the O notation hides the width of the token.
However, for Rabin fingerprints, we can gain a factor of w if we take advantage of
the fact that we are computing the fingerprint of a “sliding window,” particularly if
the window’s width in bytes is fixed or within a narrow range. This is automatic
if the tokens have fixed width. Otherwise we can define the tokens to have a small
maximum width and pad them as necessary to get this effect.

For instance we can define a word to have at most 8 bytes. Longer words will be
viewed as the catenation of several words. When we compute fingerprints we can pad
shorter words to 8 bytes.

If we adopt option A then we have to check for each shingle how many time it was
encountered before. This can be done by fingerprinting it and then searching a hash
table. Once the proper label is decided, a second fingerprint needs to be computed.
Some care is needed to avoid too much dependence among the fingerprints of the same
shingle with different labels. Option B avoids these computations altogether, but as
explained above we must keep a binary search tree rather than a heap to make sure
we don’t insert the same value twice. Nevertheless option B seems faster in practice.

4.4 Evaluating resemblance

We store each sketch as a list sorted in increasing order. Then all we have to do is
to merge-sort removing duplicates, and count how many duplicates were encountered
within the first s outputs. This is O(s).

It is likely that we are interested in more than two documents. For r documents
evaluating all resemblances takes O(r2s) time. However we can try to do a “greedy
clustering” as follows: keep a set of current clusters (initially empty) and process
the sketches in turn. For each cluster keep a representative sketch. If a new sketch
sufficiently resembles a current cluster then add the sketch to it (and possibly recom-
pute the representative); otherwise start a new cluster. It is likely that in practice
every fingerprint belongs only to a few distinct clusters. Under this assumption, if for
each fingerprint we encounter we remember to which clusters it belongs and store the
fingerprints in a hash table, the entire procedure can be implemented in O(rs) time.
As a representative sketch, we can take the s most popular fingerprints in a cluster,
or simply, just the first member of the cluster.

For very large collections of documents where r is such that external storage is
needed, different approaches become necessary. For further details see [5].

8



5 Acknowledgments

Some essential ideas behind the resemblance definition and computation were devel-
oped in conversations with Greg Nelson. The clustering of the entire Web was done
in collaboration with Steve Glassman, Mark Manasse, and Geoffrey Zweig.

References

[1] N. Alon and J. H. Spencer. The Probabilistic Method. John Wiley and Sons, 1992.

[2] S. Brin, J. Davis, H. Garcia-Molina. Copy Detection Mechanisms for Digital Doc-
uments. Proceedings of the ACM SIGMOD Annual Conference, May 1995.

[3] A. Z. Broder. Some applications of Rabin’s fingerprinting method. In R. Capocelli,
A. De Santis, and U. Vaccaro, editors, Sequences II: Methods in Communications,
Security, and Computer Science, pages 143–152. Springer-Verlag, 1993.

[4] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-Wise Inde-
pendent Permutations. In Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing, 1998, to appear.

[5] A. Z. Broder, S. Glassman, M. S. Manasse, and G. Zweig. Syntactic clustering of
the web. In Proceedings of the Sixth International WWW Conference, April 1997.

[6] Nevin Heintze. Scalable Document Fingerprinting. Proceedings of the Second
USENIX Workshop on Electronic Commerce, November 1996.

[7] U. Manber. Finding similar files in a large file system. Proceedings of the 1994
USENIX Conference, January 1994.

[8] N. Shivakumar, H. Garcia-Molina. SCAM: A Copy Detection Mechanism for Dig-
ital Documents. Proceedings of the 2nd International Conference on Theory and
Practice of Digital Libraries, 1995.

[9] N. Shivakumar and H. Garcia-Molina. Building a Scalable and Accurate Copy
Detection Mechanism. Proceedings of the 3nd International Conference on Theory
and Practice of Digital Libraries, 1996.

[10] M. O. Rabin. Fingerprinting by random polynomials. Center for Research in
Computing Technology, Harvard University, Report TR-15-81, 1981.

9


