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9.4 Lift and Project Methods

In both examples we saw thus far, the integrality gap proved was tight. Can we design tighter
relaxations for these problems? Researchers have looked at this question in great detail. Next,
we consider an more abstract view of the process of writing better relaxation.

The feasible region for the ILP problem is a polytope, namely, the convex hull of the integer
solutions 2. We will call this the integer polytope. The set of feasible solutions of the relaxation
is also a polytope, which contains the integer polytope. We call this the relaxed polytope; in the
above examples it was of polynomial size but note that it would suffice (thanks to the Ellipsoid
algorithm) to just have an implicit description of it using a polynomial-time separation oracle.
On the other hand, if P ≠ NP the integer polytope has no such description. The name of the
game here is to design a relaxed polytope that as close to the integer polytope as possible. Lift-
and-project methods give, starting from any relaxation of our choice, a hierarchy of relaxations
where the final relaxation gives the integer polytope. Of course, solving this final relaxation
takes exponential time. In-between relaxations may take somewhere between polynomial and
exponential time to solve, and it is an open question in most cases to determine their integrality
gap.

Basic idea

The main idea in the Lift and Project methods is to try to simulate non-linear programming
using linear programming. Recall that nonlinear constraints are very powerful: to restrict a
variable x to be in {0,1} we simply add the quadratic constraint x(1− x) = 0. Of course, this
means nonlinear programming is NP-hard in general. In lift-and-project methods we introduce
auxiliary variables for the nonlinear terms.

Example 10 Here is a quadratic program for the vertex cover problem.
0 ≤ xi ≤ 1 for each i ∈ V
(1− xi)(1− xj) = 0 for each {i, j} ∈ E
To simulate this using an LP, we introduce extra variables yij ≥ 0, with the intention that

yij represents the product xixj . This is the lift step, in which we lift the problem to a higher
dimensional space. To get a solution for the original problem from a solution for the new
problem, we simply project it onto the variables xi. Note that this a relaxation of the original
integer linear program, in the sense that any solution of that program will still be retained as a
solution after the lift and project steps. Since we have no way of ensuring yij = xixj in every
solution of the lifted problem, we still may end up with a relaxed polytope. But note that this
relaxation can be no worse than the original LP relaxation (in which we simply dropped the
integrality constraints), because 1− xi − xj +yij = 0, yij ≥ 0 ⇒ xi + xj ≥ 1, and any point in
the new relaxation is present in the original one.

(If we insisted that the matrix (yij) formed a positive semi-definite matrix, it would still be
a (tighter) relaxation, and we get a Semi-definite Programming problem. We shall see this in the
next lecture.)

9.5 Sherali-Adams Lift and Project Method

Now we describe the method formally. Suppose we are given a polytope P ⊂ Rn (via a separation
oracle) and we are trying to get a representation for P0 ⊂ P defined as the convex hull of
P ∩ {0,1}n. We proceed as follows:

2By integer solutions, we refer to solutions with co-ordinates 0 or 1. We assume that the integrality constraints
in the ILP correspond to restricting the solution to such points.
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The first step is homogenization. We change the polytope P into a cone K in Rn+1. (A cone
is a set of points that is closed under scaling: if x is in the set, so is c · x for all c ≥ 0.) If a
point (α1, . . . , αn) ∈ P then (1, α1, . . . , αn) ∈ K. In terms of the linear constraints defining P
this amounts to multiplying the constant term in the constraints by a new variable x0 and thus
making it homogeneous: i.e.,

∑n
i=1 aixi ≥ b is replaced by

∑n
i=1 aixi ≥ bx0. Let K0 ⊂ K be the

cone generated by the points K ∩ {0,1}n+1 (x0 = 0 gives the origin; otherwise x0 = 1 and we
have the points which define the polytope P0).

For r = 1,2, . . . , n we shall define SAr (K) to be a cone in RVn+1(r), where Vn+1(r) =∑r
i=0

(
n+1
i

)
. Each co-ordinate corresponds to a variable ys for s ⊂ [n + 1], |s| ≤ r . The in-

tention is that the variable ys stands for the homogenuous term (
∏
i∈s xi) × xr−|s|0 . Let y(r)

denote the vector of all the Vn+1(r) variables.

Definition 28 Cone SAr (K) is defined as follows:

• SA1(K) = K, with y{i} = xi and yφ = x0.

• SAr (K)The constraints defining SAr (K) are obtained from the constraints defining SAr−1(K):
for each constraint ay(r−1) ≥ 0, for each i ∈ [n], form the following two constraints:

(1− xi)∗ ay(r−1) ≥ 0

xi ∗ ay(r−1) ≥ 0

where the operator “∗” distributes over the sum ay(r−1) = ∑s⊂[n]:|s|≤r asys and xi ∗ys is
a shorthand for ys∪{i}.

Suppose (1, x1, . . . , xn) ∈ K ∩ {0,1}n+1. Then we note that the cone SAr (K) contains the
points defined by ys =

∏
i∈s xi. This is true for r = 1 and is maintained inductively by the

constraints we form for each r . Note that if i ∈ s then xi ∗ ys = ys , but we also have x2
i = xi

for xi ∈ {0,1}.
To get a relaxation of K we need to come back to n+ 1 dimensions. Next we do this:

Definition 29 Sr (K) is the cone obtained by projecting the cone SAr (K) to n + 1 dimensions
as follows: a point u ∈ SAr (K) will be projected to u|s:|s|≤1; the variable uφ is mapped to x0 and
for each i ∈ [n] u{i} to xi.

Example 11 This example illustrates the above procedure for Vertex Cover, and shows how
it can be thought of as a “simulation” of non-linear programming. The constraints for S1(K)
come from the linear programming constraints:

∀j ∈ V,0 ≤ y{j} ≤ yφ
∀{i, j} ∈ E,y{i} +y{j} −yφ ≥ 0

Among the various constraints for SA2(K) formed from the above constraints for SA1(K), we
have (1 − xi) ∗ (yφ − y{j}) ≥ 0 and (1 − xi) ∗ (y{i} + y{j} − yφ) ≥ 0 The first one expands
to yφ − y{i} − y{j} + y{i,j} ≥ 0 and the second one becomes to y{j} − y{i,j} − yφ − y{i} ≥ 0,
together enforcing yφ − y{i} − y{j} + y{i,j} = 0. This is “simulating” the quadratic constraint
1 − xi − xj + xixj = 0 or the more familiar (1 − xi)(1 − xj) = 0 for each {i, j} ∈ E. It can be
shown that the defining constraints for the cone S2(K) are the odd-cyle constraints: “for an
odd cycle C ,

∑
xi∈C ≥ (|C| + 1)/2.” An exact characterization of S((K)r) for r > 2 is open.

Intuitively, as we increase r we get tighter relaxations ofK0, as we are adding more and more
“valid” constraints. Let us prove this formally. First, we note the following characterization of
SAr (K).
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Lemma 49

u ∈ SAr (K) iff ∀i ∈ [n] we have vi,wi ∈ SAr−1(K), where ∀s ⊂ [n], |s| ≤ r − 1, vi = us∪{i}
and wi = us − us∪{i}.

Proof: To establish the lemma, we make our notation used in defining SAr (K) from SAr−1(K)
explicit. Suppose SAr−1(K) has a constraint ay(r−1) ≥ 0. Recall that from this, for each i ∈ [n]
we form two constraints for SAr (K), say a′y(r) ≥ 0 and a′′y(r) ≥ 0, where a′y(r) ≡ xi ∗ ay(r−1)

is given by

a′s =
{

0 if i 
∈ s
as + as\{i} if i ∈ s (9.5.1)

and a′′y(r) ≡ (1− xi)∗ ay(r−1) by

a′′s =
{

as if i 
∈ s
−as\{i} if i ∈ s (9.5.2)

Then we see that

a′u =
∑
s�i

(
as + as\{i}

)
us

=
∑
s�i

asv
i
s +

∑
s 
�i

asv
i
s = avi

where we used the fact that for s � i, us = vis = vis\{i}. Similarly, noting that for s � i, wi
s = 0

and for s 
� i, wi
s = us − us\{i}, we have

a′′u =
∑
s�i
−as\{i}us +

∑
s 
�i

asus

=
∑
s 
�i

(−asus∪{i} + asus
) = awi

Therefore, u satisfies the constraints of SAr (K) iff for each i ∈ [n] vi and wi satisfy the
constraints of SAr−1(K). �

Now we are ready to show that Sr (K), 1 ≤ r ≤ n form a hierarchy of relaxations of K0.

Theorem 50

K0 ⊂ Sr (K) ⊂ Sr−1(K) ⊂ K for every r .

Proof: We have already seen that each integer solution x in K0 gives rise to a corresponding
point in SAr (K): we just take y()s =∏i∈s xi. Projecting to a point in Sr (K), we just get x back.
Thus K0 ⊂ Sr (K) for each r .

So it is left to only show that Sr (K) ⊂ Sr−1(K), because S1(K) = K.
Suppose x ∈ Sr (K) is obtained as u|s:|s|≤1, u ∈ SAr (K). Let vi,wi ∈ SAr−1(K) be two vectors

(for some i ∈ [n]) as given by Lemma 49. Since SAr−1(K) is a convex cone, vi+wi ∈ SAr−1(K).
Note that for each s ⊂ [n], |s| ≤ r − 1, wi

s + vis = us . In particular this holds for s, |s| ≤ 1. So
x = (vi +wi)|s:|s|≤1 ∈ Sr−1(K). �

Theorem 51

Sn(K) = K0
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Proof: Recall from the proof of Theorem 50 that if x ∈ Sr (K), then there are two points
vi,wi ∈ SAr−1(K) such that x = vi|s:|s|≤1 +wi|s:|s|≤1. It follows from the definition of vi and
wi that viφ = vi{i} and wi

{i} = 0. So vi|s:|s|≤1 ∈ Sr−1(K)|y{i}=yφ and wi|s:|s|≤1 ∈ Sr−1(K)|y{i}=0.

Hence, Sr (K) ⊂ Sr−1(K)|y{i}=yφ + Sr−1(K)|y{i}=0. Further, this holds for all i ∈ [n]. Thus,

Sr (K) ⊂
⋂
i∈[n]

(
Sr−1(K)|y{i}=yφ + Sr−1(K)|y{i}=0

)

Repeating this for r − 1 and so on, we get

Sr (K) ⊂
⋂

{i1,...,ir }⊂[n]

⎛
⎜⎝ ∑
T∈{0,yφ}r

K|(y{i1},...,y{ir })=T

⎞
⎟⎠

For r = n this becomes simply

Sn(K) ⊂
∑

T∈{0,yφ}n
K|(y{1},...,y{n})=T = K0

Along with K0 ⊂ Sn(K) this gives us that Sn(K) = K0. �

Finally we note that for small r we can solve an optimization problem over Sr (K) relatively
efficiently.

Theorem 52

If there is a polynomial (in n) time separation oracle for K, then there is an nO(r) algorithm for
optimizing a linear function over Sr (K).

Proof: Note that using Lemma 49, a separation oracle for Sr (K) can be formed by calling
the separation oracle for Sr−1(K) 2n times (for vi and wi, i ∈ [n]), and therefore, calling the
separation oracle for K nO(r) times. Given access to the separation oracle, the optimization
can be carried out using the ellipsoid method in polynomial time. �

Thus, on the one hand a higher value of r gives a tighter relaxation (a smaller integrality gap)
and possibly a better approximation (with r = n giving the exact solution), but on the other
hand the time taken is exponential in r . So to use this method, it is crucial to understand this
trade-off. It has been shown by Arora, Bollobas and Lovasz that in applying a related method
by Lovasz and Schriver to the Vertex cover problem, even for r = Ω(√logn) the integrality gap
is as bad as 2− o(1). Sanjeev conjectures that for somewhat higher r the integrality gap may
go down significantly. But this problem is open.


