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Lecture 2: Geometric Embeddings (continued)

Lecturer: Sanjeev Arora Scribe:Michael Dinitz

1 Focus on the �1 norm

In the last lecture we defined metric spaces, normed spaces, and considered the distortion resulting
from certain embeddings. In particular, we proved that l1 norms cannot always be embedded
isometrically into l2 by considering a specific four-point l1 norm and showing that it requires at
least

√
2 distortion.

Today’s lecture further explores the �1 norm. We see a couple of interesting examples of �1

spaces. We try to understand the distortion required to embed �1 into �2. We also see that
this apparently simple norm (“Manhattan distance”) is computationally very interesting. We will
explore this further in future lectures.

2 Lowerbound for embedding into �2.

The simplest example of an n-point �1 metric is the k-dimensional hypercube {−1, 1}k, assuming
n = 2k. Here the �1 distance between two points is 2 × number of coordinates they differ on.
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Figure 1: The hypercube in three dimensions

Today we show that this simple example of �1 requires large distortion for embedding into �2.

Theorem 1 (Enflo 1969)

Every embedding of the hypercube {−1, 1}k into l2 has distortion at least
√

k. (Thus denoting the

number of points by n = 2k, the distortion is
√

log n.)

Proof: Recall the proof technique that we used previously: we come up with two weight functions,
w1 : X × X → R+ ∪ {0} and w2 : X × X → R+ ∪ {0}, such that for all embeddings f ,

∑
w1(x, y)d(x, y)2

∑
w2(x, y)d(x, y)2

(1)

1
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is different by a factor of k from

∑
w1(x, y)‖f(x) − f(y)‖2

∑
w2(x, y)‖f(x) − f(y)‖2

(2)

Here w1 will put a weight 1 on all diametrically opposite pairs, and w2 will put a weight 1 on
all edges (i.e., adjacent pairs). Then (1) has value

2k/2 · k2

2k−1 · k · 1 = k.

We show by induction on k that for every embedding f , the value of (2) is at most 1, which will
prove the theorem.

The base case k = 2 is exactly the problem that we considered last time. Assuming truth
for k − 1 we prove it for k. A dimension k hypercube can be thought of as two k − 1 dimension
hypercubes that have the corresponding points attached. By the quadrilateral inequality, the sum
of the squares of the diagonals (where a diagonal refers to the distance between a point i and −i)
of the k dimensional hypercube is less than or equal to the sum of the squares of the diagonals of
the k − 1 dimensional hypercube plus the sum of the squares of the edges between corresponding
points of the two k − 1 dimensional hypercube. In Figure 1, k = 3 and the inequality we are using
is AG2 + CE2 ≤ AC2 + EG2 + AE2 + GC2. Note that AC,EG are diagonals of k − 1-dimensional
hypercubes. So equation (2) becomes (in shorthand)

∑
diagonals from k−1 +

∑
new adjacencies∑

adjacencies from k−1 +
∑

new adjacencies

(3)

By the inductive hypothesis,
∑

diagonals from k−1 ≤ ∑
adjacencies from k−1, so equation (2) is at

most 1. �

3 Understanding the l1 norm

We saw in the last lecture that we can test a metric to see if it come from an l2 space in polynomial
time. This is more difficult in l1, though, and is in fact NP-hard. The l1 norm, while simple (anyone
can understand the concept of Manhattan distance), seems to actually be more complicated than
the l2 norm. While we will not give a formal proof of this, we will show some of the intuition behind
it.

3.1 Tree metrics

One class of metrics are the tree metrics, which are metrics that come from the shortest path metric
on a weighted tree.

Theorem 2

Every tree metric embeds isometrically into l1

Proof: We do this by using induction on the number of vertices of the tree. The base case, when
there is only one vertex, is obvious. For the inductive step, we assume that all trees with fewer
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that k vertices can be embedded isometrically into l1. Let T be a tree with k vertices, and let i
and j be any two adjacent vertices with dij the weight of the edge between them. If we remove the
edge {i, j} then we have two smaller trees T1 and T2 with i ∈ T1 and j ∈ T2, so by the inductive
hypothesis each of them can be embedded into l1. They may require different dimensions, though,
so say that T1 is embedded in Rm and T2 is embedded in Rk with the l1 norm. We assign each
vertex to an element of Rm+k+1. Let v be a vertex of T . If v is in T1, then its first m coordinates
are the coordinates assigned to v by the embedding of T1 into Rm, the next coordinate is 0, and
the last k coordinates are the coordinates assigned to j by the embedding of T2 into Rk. Similarly,
if v is in T2, then the first m coordinates are the m coordinates assigned to i by the embedding of
T1 into Rm, the next coordinate is dij , and the last k coordinates are the coordinates assigned to
v by the embedding of T2 into Rk. For any two vertices u and v, if they are both in T1 or both in
T2 then the distance between them is clearly equal to the distance between them in the embedding
of their subtree, which we know is the same as in the tree metric. If u ∈ T1 and v ∈ T2 then the
distance between them in the l1 norm is clearly equal to the distance from u to i plus the distance
from i to j (which we know is dij by the way we assigned the vectors) plus the distance from j to
v. Since each of the subtrees embedded isometrically, this is also the distance between them in the
tree metric. �

3.2 A characterization of �1: Cone of cut metrics

In this section we think of an n-point metric space as a subset of R(n
2), since the space can be

completely described by describing all
(
n
2

)
pairwise distances.

A convex cone in Rk is a subset S ⊆ Rk where (i) if x1, x2 ∈ S then λ1 · x1 + λ · x2 ∈ S for all
λ1, λ2 ≥ 0.

Note that the set of n-point l1 metrics form a convex cone. (If d1, d2 are two finite �1 metrics
on an n-point set, and if they are realizable in l,m dimensionions respectively then λ1d1 + λ2d2 is
realizable in l + m dimensions, where the first l dimensions correspond to a copy of d1 scaled by λ1

and the last m dimensions correspond to a copy of d1 scaled by λ2.)

Definition 1 A cut metric is a subset (i.e. a cut) S ⊆ [n] with dS(i, j) = 1 if i and j are not on
the same side of the cut and dS(i, j) = 0 if they are.

Note that a cut metric is not an actual metric but a pseudo-metric, since dS(i, j) = 0 does not
imply that i = j. The cone of cut pseudo-metrics consists of any d ∈ R(n

2) such that d is expressible
as d =

∑
S⊆[n] αSdS , where αS ≥ 0. Now we see that the two cones defined above are exactly the

same. (As a sanity check you may wish to express both the hypercube metric and a tree metric as
combination of cut metrics.)

Theorem 3

The set of all l1 metrics is the same as the cone of cut metrics.

Proof: To show that any element d of the cut cut cone is an l1 metric, we assign elements to
vectors in R2n

, where each coordinate corresponds to a cut. Then if the element is in the ith cut
we make its ith coordinate equal to αS , otherwise we set it to 0. Clearly the l1 distance between
the vectors corresponding to elements i and j is equal to d(i, j), so d is an l1 metric.
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Now we show that any l1 metric d is expressible as an element of the cut cone. First take a
realization of the metric as l1 distances. It suffices to express each coordinate as a member of the
cut cone, since the sum of elements of the cut cone is also in the cut cone. So consider the l1 metric
in R1 corresponding to each coordinate. This is simply a weighted tree (in fact just a path) and
thus a tree metric, and therefore an element of the cut cone. �

This gives some intuition for why l1 is complicated, since an l1 metric could be a combination of
an exponential number of cuts. Cut metrics and the cone of cut metrics are related to a certain class
of problems known as cut problems. The most well-known problem in this class is the minimum-

cut problem, which is the problem of determining, given a graph G = (V,E), the cut S ⊂ V that
minimizes

∣
∣E(S, S̄)

∣
∣. This is obviously in P since there are many efficient algorithms for it (e.g.

Ford-Fulkerson). Another cut problem is the min ratio cut or sparsest cut problem, which is

the problem of finding the cut S ⊂ V with |S| ≤ |V | /2 that minimizes |E(S,S̄)|
|S| . This problem is

NP-hard, as are most of the cut problems. These problems are obviously related to cut metrics,
and the min-cut problem can be restated as finding the cut S that minimizes

∑
{i,j}∈E dS(i, j). For

the min ratio cut, we use the formula
∑

{i,j}∈E dS(i, j)
∑

i<j dS(i, j)
=

∣
∣E(S, S̄)

∣
∣

|S| ∣∣S̄∣∣ . (4)

Note that |V |
2 ≤ ∣∣S̄

∣∣ ≤ |V |, so if we multiply by |V | then we have the min ratio cut problem up
to a factor of 2. Thus the min ratio cut problem is simply to find the cut S with |S| ≤ |V | /2
that minimizes equation (4). By rescaling, we can think of this as minimizing the numerator of the
LHS, subject to the denominator of the RHS. One of the consequences of the ellipsoid algorithm
for convex optimization is that testing for membership in a convex set is equivalent to optimizing
a linear function over the set. Therefore if we can test to see if a metric is an l1 metric then we can
optimize over the set of l1 metrics. Since the set of l1 metrics is the same as the cone of cut metrics,
we can optimize over the cone of cut metrics and thus solve all manners of cut problems (including
min ratio cut). Therefore deciding if a metric is an l1 metric is NP-hard. Those who wish to
formalize the above intuition should try to reduce from max-cut. (Or see a paper of Karzanov.)


