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1 Background

According to the formulation of Yao (1979), 2-party communication complexity is defined as follows.
Two parties, A and B are each given a string in {0, 1}n and a function f : {0, 1}n×{0, 1}n → {0, 1}.
A protocol is devised in which at the ith round, the ith bit is communicated between A and B.
The computation is complete after both A and B know the value of f(x, y). The only complexity
measure we are interested in is the number of bits communicated. The individual parties may be
assumed to have unlimited computational resources.

We define a protocol more formally as follows.

Definition 1 A protocol P is a family of functions P1, . . . , Pr with the property that if b1, . . . , bi

are the first i bits communicated then

Pi : {x, y} × (b1, . . . , bi−1) → bi. (1)

At the end of R rounds both A and B have enough information to compute f(x, y).

For a given function f , we denote the communication complexity as

C(f) = min
protocols P

max
x,y

{Number of bits communicated by P on (x, y)} (2)

For any function f there is a trivial upperbound on the communication complexity, C(f) ≤ n+1.
This is achieved by the protocol that sends all of A’s bits to B in the first n rounds and sends the
value of f(x, y) to A in the (n + 1)st round.

2 Lowerbounding C(f)

The early motivation for studying communication complexity was in the analysis of distributed
computation. The goal was to find good lowerbounds on the time necessary to compute functions
on distributed systems. We will be looking at ways of proving lowerbounds on the communication
complexity of some different functions. Note that we are looking for coNP type statements.

Consider M(f), the 2n × 2n matrix defined by a function f : {0, 1}n × {0, 1}n → {0, 1}. A
comunication protocol gives a method for partitioning M(f) into monochromatic rectangles. That
is we can find subsets X,Y ∈ {0, 1}n where f(x, y) = f(x′, y′) for all x, x′ ∈ X and all y, y′ ∈ Y .
Here, the rectangle refers to the set X × Y . If C(f) ≤ k then there exists a way to partition M(f)
into 2k or fewer monochromatic rectangles.

Example 1 Equality testing.

f(x, y) =

{
1 if x=y
0 otherwise.

(3)

Note that no monochromatic rectangle can contain two 1s. So, we see that C(f) ≥ n.
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Example 2 The inner product function.

f(x, y) =
n∑

i=1

xiyi (mod 2) (4)

For our analysis of the inner product function it will be convenient to consider it as taking values
in {−1, 1} by mapping 0 → 1 and 1 → −1 in the matrix of values of f . Let M denote the matrix
M(f) ∈ {−1, 1}2n×2n

. For any subsets A,B ⊆ {0, 1}n, let M(A,B) denote 1AM1B where 1A and 1B

denote the characteristic vectors of A and B respectively. That is M(A,B) =
∣∣∣∑x∈A,y∈B f(x, y)

∣∣∣.
Theorem 1

For all A,B ∈ {0, 1}n,

M(A,B) ≤ 2
n
2

√
|A| |B| ≤ 2

3
2 (5)

Proof: Observe that for all x ∈ {0, 1}n,

|MT x|2 ≤ λmax||x||2, (6)

where λmax is th elargest eigenvalue of M . All rows of M are orthogonal and have length 2
n
2 . Thus,

MMT = 2nI and so all eigenvalues of M are ±2
n
2 . So it follows that

1AM1B ≤ |λmax||1A|2|1B |2 ≤ 2
n
2

√
|A||B|. (7)
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So, the theorem implies that every monochromatic rectangle has at least 2
n
2 rectangles and thus

C(f) ≥ n
2 .

3 Discrepancy

Definition 2 The Discrepancy of a function f is denoted by Disc(f) and is defined as

Disc(f) = max
A,B⊆{0,1}n

1
22n

∑
a∈Ab∈B

f(a, b) (8)

The discrepancy is obviously an upperbound on the size of the largest monocromatic rectangle
in M(f), so it follows that Disc(f) gives an immediate lowerbound on C(f).

C(f) ≥ log2

(
1

Disc(f)

)
. (9)

To prove lowerbounds on C(f), it suffices to upperbound Disc(f). In general, the problem of
upperbounding the discrepancy is a coNP-Complete problem.

We restrict our attention to 2 × 2 rectangles, {a1, a2} , {b1, b2}. Recall that we are considering
functions of the form f : {0, 1}n × {0, 1}n → {−1, 1}. Define the following rectangle product.

Πf,(a1,a2),(b1,b2) =
2∏

i=1

2∏
j=1

f(ai, bj) (10)
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We define the average E(f) of this product over all rectangles.

E(f) = E(a1,a2),(b1,b2)

[
Πf,(a1,a2),(b1,b2)

]
(11)

Theorem 2

|E(f)| ≥ (Disc(f))4.

Proof: The proof will have two main steps.

1. For all functions h, E(h) ≥ (Ea,b[h(a, b)])4.

2. There exists h such that Ea,b[h(a, b)] ≥ Disc(f) and E(f) = E(h).

Together, these prove the Theorem.
Proof of step 1.

(Ex[g(x)])2 = Ex1,x2[g(x1)g(x2)] (12)

E[z2] ≥ (E[z])2 (by Cauchy-Schwartz) (13)
E(h) = Ea1,a2

(
Eb1,b2 [Πh,(a1,a2),(b1,b2)]

)
(14)

= Ea1,a2 (Eb1,b2 [h(a1, b1)h(a1, b2)h(a2, b1)h(a2, b2)]) (15)

= Ea1,a2

[
(Eb[h(a1, b)h(a2, b)])

2
]

(16)

≥ (Ea1,a2Eb[h(a1, b)h(a2, b)])
2 (17)

=
(
Eb(Ea[h(a, b)]2)

)2 (18)

≥ (Ea,b[h(a, b)])4 (19)

Proof of step 2. Let A × B be the rectangle for which Disc(f) is attained. We prove the
existence of h by the probabilistic method. Define the following two functions.

g1(a, b) =

{
1 if a ∈ A

set randomly to ± 1 otherwise
(20)

g2(a, b) =

{
1 if b ∈ B

set randomly to ± 1 otherwise
(21)

These functions have the property that they depend only on the rows or the columns respectively.
That is, g1(a, b) = g1(a, b′) and g2(a, b) = g2(a′, b) for all a, b, a′, b′. Let h = fg1g2. That is

h(a, b) = f(a, b)g1(a, b)g2(a, b). (22)

We can now average over the choices for g1, g2 and also the pair (a, b) to see that

Eg1,g2Ea,b[h(a, b)] = Disc(f). (23)

So there exists some choice of g1, g2 such that Ea,b[h(a, b)] ≥ Disc(f). Finally, E(f) = E(h) for all
such g1, g2 because g1 is constant on the rows and g2 is constant on the columns so the products
cancel to 1.
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