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We are interested in looking at nonconstructive existence proofs in combinatorics where no
efficient algorithm is known for solving the corresponding search problem. This lecture presents
three examples illustrating topological methods, algebraic methods, and probabilistic methods.

1 Topological Methods

For the first example we consider a problem of spliting up a necklace (a string of beads).

Theorem 1

Let N be an opened necklace with kai beads of type i, where 1 ≤ i ≤ t and t is the number of
types of beads. It is possible to cut N in at most (k − 1)t places and split the resulting intervals
into k collections, each with exactly ai beads of type i.

Figure 1 gives an example for k = 2 and t = 3. We see that (k− 1)t = (2− 1)3 = 3 cuts suffice.
In fact, the Example in the figure can be done with just 2 cuts.

Figure 1:

There are situations where all (k− 1)t cuts from the theorem are necessary. For instance, if the
beads are grouped by type on the string as in Figure 2 then each of the t bead types requires k− 1
cuts. So, we see that the bound from the theorem is tight.

Figure 2:

The problem of finding these cuts is known to be NP-Hard even for the case when k = 2. We
will use the Borsuk-Ulam Theorem to prove the Theorem for the k = 2 case. The version of the
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Borsuk-Ulam Theorem we will use states that for all continuous, antipodal maps f : St → Rt,
there is a point x in St such that f(x) = 0.
Proof:(of Theorem for k = 2) If N has n beads, split the unit interval [0, 1] into n equal segments
X1, . . . ,Xn and “color” Xj with color i if and only if jth bead is of type i. Given x = (x1, . . . , xt+1) ∈
St partition the unit interval into subintervals I1, . . . , It+1 of length x2

i . This is possible because for
all points x ∈ St,

∑t+1
i=1 x2

i = 1. (For our purposes, we don’t need to worry about the boundaries
between intervals).

This defines t continuous measures μ1, . . . μt on [0, 1], where if Y ⊆ [0, 1] then μi(Y ) is the
fraction of Ii that contains Y .

We now define the map f : St → Rt by f(x1, . . . , xt+1) = (f1, . . . , ft) where

fi(x) =
t+1∑
i=1

SIGN(xi)μj(Ii) (1)

Note that f is continuous and that f(x) = −f(−x). So, the Borsuk-Ulam Theorem implies
that there exists some x such that f(x) = 0. We can use this point to define the two collections of
intervals.

I+ =
⋃

j:xj>0

Ij

I− =
⋃

j:xj<0

Ij

We see that μj(I+) = μj(I−) for all j as desired.
The final step is to clear up any fractional beads. This is always possible by shifting the cuts

by a small amount.
�

The Algorithmic Question: Given a necklace N with t types of beads and 2ai beads of type i,
find (efficiently) t cuts as needed.

2 Algebraic Methods

Theorem 2

If G = (V,E) is a graph with maximum vertex degree 5 and average vertex degree > 4, then G
contains a 3-regular subgraph.

The Algorithmic Question: Given such a graph G, find the 3-regular subgraph.

Lemma 3

Let P be a multilinear function over a field F . So,

P (x1, . . . , xn) =
∑

U⊆{1,...,n}
aU

∏
i∈U

xi

If P (x1, . . . , xn) = 0 for all x ∈ {0, 1}n then P = 0 (i.e. aU = 0 for all U).
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Figure 3: A graph satisfying the conditions of the Theorem. A 3-regular subgraph is indicated with
bold lines.

Proof:(of Lemma) The proof will be by induction on n.

Base case: If n = 1 then P (x) = ax + b for some integer coefficients a and b. We see that
P (0) = 0a + b = 0 so it must be that b = 0. This implies that P (x) = ax, but P (1) = 0 so a = 0
as well.

Induction Step: Let P,P2 be polynomials so that

P (x1, . . . , xn) = P1(x1, . . . , xn−1)xn + P2(x1, . . . , xn−1).

Take xn = 0 and the induction hypothesis to get that P2 = 0. Take xn = 1 with the induction
hypothesis to get that P1 = 0. �

Proof:(of Theorem) We have G(V,E) where the maximum vertex degree is 5. The average vertex
degree is greater than 4 so |E| ≥ 2m + 1. Suppose that G does not contain a 3-regular subgraph.
For each edge e ∈ E, define a variable x(e). For each vertex/edge pair (v ∈ V, e ∈ E), define a
variable a

(e)
v where

a(e)
v =

{
1 v ∈ e

0 otherwise
(2)

Define the following polynomial over GF (3)

Q(x(e); e ∈ E) =
∏
v∈V

⎡
⎣1 −

(∑
e∈E

a(e)
v x(e)

)2
⎤
⎦ (3)

Intuitively, a choice of x(e) ∈ {0, 1}|E| corresponds to selecting a subset of edges to make a
subgraph. The sum squared on the RHS is 0 if deg(v) ≡ 0 (mod 3), and it is 1 otherwise. So,
Q(x(e)) �= 0 if and only if x(e) corresponds to a 3-regular subgraph. By assumption, no such 3-
regular subgraph exists, so Q(x(e)) = 0 for all x(e) ∈ {0, 1}|E| \ {0}. In order to use Lemma 3, we
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want to tweak Q to make it multilinear. So, we define a new polynomial.

P (x(e); e ∈ E) = Q −
∏
e∈E

(1 − x(e)) (mod (x(e)2 − x(e))) (4)

So now, P is multilinear and P (x(e)) = 0 for all x(e) ∈ {0, 1}|E|. So, P ≡ 0 by the Lemma.
However, it can be checked that the coefficients of P are not all 0, a contradiction.

�

3 Probabilistic Methods

Theorem 4

If G(V,E) is a digraph with maximum outdeg Δ and minimum indegree δ and if e(Δδ+1)(1− 1
k ) < 1

then G has a directed simple cycle of length 0 (mod k). [In particular, if all in and outdegrees are
between 20 and 30, there is a cycle of length 0 (mod 3).

The Algorithmic Question: Given such a digraph and the integer k, find a directed simple cycle
of length 0 (mod k).

Lemma 5

(Lovasz Local Lemma) Let A1, . . . , An be events in an arbitrary probability space such that each Ai

is mutually independent of all others but at most d ≥ 2 and for all i, Pr(Ai) ≤ p. If ep(d + 1) < 1
(here, e is the constant 2.71 . . .) then

Pr

(
n∧

i=1

Ai

)
> 0. (5)

Proof:(of Theorem) We may assume all indegrees are exactly δ. Let f be a random mapping
V → Zk (uniform, indepent). For each vertex v ∈ V define an event Av as follows.

Av = {�u : (u, v) ∈ E and f(u) ≡ f(v) + 1 (mod k)} (6)

Intuitively, Av is the event that none of the vertices u with edges directed into v have f(u) ≡
f(v) + 1 (mod k). The probability of Av is not hard to compute.

Pr(Av) =
(

1 − 1
k

)δ

(7)

Each Av is mutually independent of all Au but except those for which({u} ∪ N−(u)
) ∩ N−(v) = ∅

Here, N− denotes the predecessor set (i.e. N−(v) = {u : (u, v) ∈ E}). The number of u such
that Au is not mutually independent of Av is at most δ + δ(Δ − 1) = δΔ. So, by the Lovasz Local
Lemma (Lemma 5) there exists some function f so that for all v there exists u such that (u, v) ∈ E
and f(u) ≡ f(v) + 1 (mod k). This function f will give us the desired cycle.

take v0, v1 ∈ V so that (v1, v0) ∈ E and f(v0) ≡ f(v1) + 1 (mod k).
Similarly define v0, v1, . . . so that (vi+1, vi) ∈ E and f(vi+1) ≡ f(vi) + 1 (mod k)
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vi = vj

vi+1 vj-1

v0

v1

Figure 4:

At some point, we must get back to a vertex that we have already seen. Let j be the mini-
mum so that there exists some i < j such that vj = vi. Now we take the simple directed cycle
vivi+1vi+2 · · · vj = vi, and its length is f(vi) − f(vj) ≡ 0 (mod k) as desired.

�
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