
princeton u. sp’02 cos 598B: algorithms and complexity

Lecture 20: Lift and Project,
SDP Duality

Lecturer: Sanjeev Arora Scribe:Yury Makarychev

Today we will study the Lift and Project method. Then we will prove the SDP duality theorem.

1 Lift and Project

Consider the following integer program for the Vertex Cover problem:

min
∑

i∈V

xi

xi + xj ≥ 1 ∀ {i, j} ∈ E

xi ∈ {0, 1} ∀i ∈ V

Replacing the last constraint with the constraint

0 ≤ xi ≤ 1,

we get an LP relaxation for the problem. Unfortunately, the integrality gap of this LP is 2. However,
we can rewrite the integer program as an equivalent quadratic program:

min
∑

i∈V

xi

(1 − xi)(1 − xj) = 0 ∀ {i, j} ∈ E

(1 − xi)xi = 0 ∀i ∈ V

0 ≤ xi ≤ 1 ∀i ∈ V

The idea of Lift and Project is to simulate quadratic programming (or degree k programming)
with an LP/SDP. We introduce new variables Yij that represent product terms:

Yij
intended

= xixj .

For brevity, let x0 = 1, and then Yi0 = xi. The condition that (1 − xi)(1 − xj) = 0 can be now
expressed as

1 − Yi0 − Yj0 + Yij = 0.

We also introduce new constraints on Yij :

1. Yij = Yji;

2. Yi0 = Yii;

3. the matrix Y is positive semidefinite;
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4. If aT x ≥ b was a linear constraint for the original LP then we add the following linear
constraints on Yij (for all i):

(aT x)xi ≥ bxi

(aT x)(1 − xi) ≥b(1 − xi)

Fact: All SDP’s we saw (or that have been useful) can be derived using this process from
the obvious linear relaxations1. The following section borrowed from the paper “Towards strong
nonapproximability results in the Lovász-Schrijver hierarchy” by Mikhail Alekhnovich, Sanjeev
Arora and Iannis Tourlakis presents the details.

2 LS+ derivation of popular SDP relaxations

To illustrate the power of the LS+ procedure, we sketch how to use a few rounds of LS+ to derive
popular SDP relaxations used in famous approximation algorithms. (This was suggested by the
reviewers, who pointed out that this is not very well-known.)

It will be more convenient to view LS+ as a method for generating new inequalities. Given any
relaxation

aT
r x ≥ b r = 1, 2, . . . , m (1)

(where the trivial constraints 0 ≤ xi ≤ 1 are assumed to be included), one round of LS+ produces
a system of inequalities in (n + 1)2 variables Yij for i, j = 0, 1, . . . , n. As mentioned, the intended
“meaning” is that Yij = xixj and Y00 = 1, Y0i = xi = xix0, and Y00 = 1 so every quadratic
expression in the xi’s can be viewed as a linear expression in the Yij ’s. This is how the quadratic
inequalities below should be interpreted.

(1 − xi)a
T
r x ≥ (1 − xi)b ∀i = 1, . . . , n, ∀r = 1, . . . , m

xia
T
r x ≥ xib ∀i = 1, . . . , n, ∀r = 1, . . . , m

xixi = xix0 ∀i = 1, 2, . . . , n

(The last constraint corresponds to the fact that x2
i = xi for 0/1 variables.) Finally, one imposes

the condition that (Yij) is positive semidefinite. Obviously, any positive combination of the above
inequalities is also implied, and the derivations below will use this fact.

2.1 Deriving the GW relaxation

The Goemans-Williamson relaxation for max-cut [GW’94] involves finding unit vectors u1, u2, . . . , un

so as to minimize
∑

{i,j}∈E

1

4
|ui − uj |2 .

This SDP relaxation can be derived by one round of LS+ on the trivial linear relaxation. This
relaxation has 0/1 variables xi and dij . In the integer solution, xi indicates which side of the cut

1this process may involve several rounds of Lift and Project
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vertex i is on, and dij is 1 iff i, j are on opposite sides of the cut.

max
{i,j}∈E

dij (2)

dij ≥ xi − xj ∀i, j = 1, 2, . . . , n (3)

dij ≤ xi + xj ∀i, j = 1, 2, . . . , n (4)

dij ≤ 2 − (xi + xj) ∀i, j = 1, 2, . . . , n (5)

Then one round of LS+ generates the following inequalities on dij :

xidij ≥ xi(xi − xj) (6)

(1 − xi)dij ≥ (1 − xi)(xj − xi). (7)

Adding these and simplifying using the fact that x2
i = xi for 0/1 variables, one obtains dij ≥ (xi −

xj)
2. Similarly one can obtain dij ≤ (xi−xj)

2 whereby it follows dij = (xi−xj)
2 = Yii +Yjj −2Yij .

Now if (Yij) is any feasible solution then its Cholesky decomposition v0, v1, . . . , vn ∈ ℜn+1 are
vectors such that Yij =< vi, vj >. Then dij = |vi−vj |2. Now define the set of vectors u1, u2, . . . , un

as ui = v0 − 2vi. These satisfy

dij = 1

4
|ui − uj |2 (8)

|ui|2 = |v0|2 − 4 < v0, vi > +4 |vi|2 = 1. (9)

Thus the ui’s are a feasible solution to the GW relaxation. We conclude that one round of LS+

produces a relaxation at least as tight as the GW relaxation (and in fact one can show that the
two relaxations are the same).

2.2 Deriving the ARV relaxation

Arora, Rao, and Vazirani [ARV’04] derive their
√

log n-approximation for sparsest cut using a
similar SDP relaxation whose salient feature is the triangle inequality:

|ui − uj |2 + |uj − uk|2 ≥ |ui − uk|2 ∀i, j, k.

(In other words, dij = |ui − uk|2 forms a metric space.) This relaxation minus the triangle inequality
is derived similarly to the GW relaxation above (details omitted). The claim is that the triangle
inequality is implied after three rounds of LS+. As shown in [LS’91], r rounds of LS+ imply all
inequalities on subsets of size r that are true for the integer solution. In other words, the induced
solution on subsets of size r lies in the convex hull of integer solutions. Thus after three rounds the
dij variables restricted to sets of size three lie in the cut cone. Since the cut cone is just the set of
ℓ1 (pseudo)metrics, it follows that the dij variables form a (pseudo)metric. Thus three rounds of
LS+ give a relaxation that is at least as strong as the ARV relaxation.

3 Sherali–Adams Relaxations

Now let us generalize the Lift and Project method to k-ary programming [Sherali-Adams’91]. For
every subset F of indices of size at most k, we introduce a new variable YS . The intended value of
YS is

YS =
∏

i∈S

xi.
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First we require that for every set S (s.t. |S| ≤ k − 2), the matrix (YS∪{i}∪{j})ij is positive
semidefinite. Then we add another family of generic constraints:

∀S, T : S ∩ T = ∅, |S| + |T | ≤ k
∏

i∈S

(1 − xi)
∏

j∈T

xj ≥ 0.

As it often happens in theoretical CS the case k > 2 is much more complicated than the case k = 2.

4 Discrepancy

4.1 Two Party Case

We are now interested in applying the Lift and Project method to analyze the discrepancy. Recall
the definition of the discrepancy for two parties.

Definition 1 (2 party case) Discrepancy of a matrix M is

‖M‖C = max
x1,...,xn∈{0,1}
y1,...,yn∈{0,1}

|
∑

i,j

Mijxiyj |.

We saw in the last lecture that the cut norm ‖M‖C is well approximated by the norm ‖ · ‖∞7→1:

‖M‖∞7→1 = max
x1,...,xn∈{−1,1}
y1,...,yn∈{−1,1}

|
∑

i,j

Mijxiyj |.

Alon and Naor showed that this norm is approximated within a constant factor by the following
SDP relaxation:

‖M‖C = max
u1,...,un∈S2n−1

v1,...,vn∈S2n−1

|
∑

i,j

Mij〈uivj〉|.

4.2 Multiparty Case

We are interested in extending this method to multiparty communication complexity. Recall that
in the multiparty case we have a “multidimensional matrix” Mij...k (i.e. a covariant tensor); our
objective function is to maximize the sum of entries in a set S over all sets S that are cylinder
intersections.

Definition 2 (3 party case) In the 3 party case, each cylinder intersection is determined by its
projections on the planes Oij, Oik, and Ojk. Let xij∗, yi∗k, and z∗jk be indicator functions of these
projections. Then

cylinder intersection = {(i, j, k) : xij∗ = yi∗k = z∗jk = 1} = {(i, j, k) : 1 − xij∗yi∗kz∗jk = 0} .

So the discrepency is equal to

Disc(M) = max
xij∗∈{0,1}
yi∗k∈{0,1}
z
∗jk∈{0,1}

|
∑

i,j,k

Mi,j,k xij∗ yi∗k z∗jk|.
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Figure 1: We maximize |∑i,j,k Mi,j,k xij∗ yi∗k z∗jk| over all cylinder intersections.

We now represent this optimization problem as a Sherali-Adams relaxation. Denote the opti-
mum value of this relaxation by SDPopt(M). Clearly, SDPopt(M) ≤ Disc(M). How well does
SDPopt(M) approximate Disc(M) ?

Question 1: Is SDPopt = O(“small” · Disc(M)) ?
Question 2: Show for some natural function (e.g. clique) that SDPopt is small.
Guess: Perhaps, the answer to the first question is No.

How to solve these problems? The natural way is to use duality.

5 SDP Duality

A general semidefinite program is an optimization program of the following form:

min C ◦ X

subject to

A1 ◦ X = b1

A2 ◦ X = b2

...

Am ◦ X = bm

X � 0

where C, A1,. . . , Am are n × n symmetric matrices; the inner product A ◦ B is defined as

A ◦ B
def
=

∑

i,j

AijBij = tr(AB).

Note that this program is a convex program since the set of all positive semidefinite matrices
forms a convex cone. This follows from the following two observations:
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• If A is a positive semidefinite, then so is λA for every λ > 0.

• If A and B are positive semidefinite matrices, then so is A + B. Indeed, for every vector v,
we have

vT (A + B)v = vT Av + vT Bv ≥ 0 + 0.

Theorem 1 (Fact at the root of duality)
A matrix Y is positive semidefinite iff for every positive semidefinite matrix A, A ◦ Y ≥ 0.

Proof: First, assume Y � 0. Let A be an arbitrary semidefinite matrix. Consider Cholesky
decompositions of matrices A and Y : A = V T V , and Y = ZT Z. Then

A ◦ Y = tr(AY ) = tr(V T V ZT Z) = tr(ZV T V ZT ) = tr(ZV T (ZV T )T ) ≥ 0.

Note that if A is a positive definite matrix and Y 6= 0, then A ◦ Y > 0. Indeed, since A is
nonsingular, V is also nonsingular, therefore ZV T 6= 0, which implies A ◦ Y > 0.

The other direction is trivial:
vT Y v = Y ◦ (vvT )

︸ ︷︷ ︸

�0

≥ 0.

Therefore Y is positive semidefinite. 2

Theorem 2
The following system of equations is infeasible

A1 ◦ X = 0

A2 ◦ X = 0

· · ·
Am ◦ X = 0

X � 0

X 6= 0

iff ∃x1, . . . , xm ∈ R s.t.
∑

i xiAi ≻ 0.

Proof: Suppose there are no x1, . . . , xm ∈ R s.t.
∑

i xiAi ≻ 0. This means that the linear
subspace {∑i xiAi} is disjoint from the cone of positive definite matrices (which equals the interior
of the cone of positive semidefinite matrices).

By Farkas lemma, there exists a separating hyperplane that contains this linear space s.t. the
semidefinite cone lies on one side of the hyperplane. Let Y be the normal to this hyperplane. Then
Y ◦ Ai = 0, and, by Theorem 1, Y � 0. In other words, Y is a feasible solution of the system of
the equations. We get a contradiction.

The proof of the other direction is straight forward. Assume that there exist x1, . . . , xn for
which

∑

i xiAi ≻ 0; but the system of equations has a feasible solution X. We have

∑

i

xiAi ◦ X =
∑

i

xi(Ai ◦ X) =
∑

i

xi · 0 = 0;
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Figure 2: The SDP cone is disjoint from the set
∑

i xiAi.

on the other hand ∑

i

xiAi ◦ X = (
∑

i

xiAi)

︸ ︷︷ ︸

≻0

◦X > 0.

We get a contradiction. This concludes the proof. 2


