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In this lecture we will present the Borsuk-Ulam theorem and present two applications of it.

1 The Borsuk-Ulam Theorem

Let Sn denote the boundary of the n + 1 dimensional unit ball Bn+1 ⊆ Rn+1. Note that although
Sn lives in n + 1 dimensional space, its surface is an n-dimensional manifold.

Theorem 1 (Borsuk-Ulam)

For every continuous map f : Sn → Rn, there exists x ∈ Sn such that f(x) = f(−x).

(Note that the points x and −x on the sphere are called antipodal points.)

Example 1 Suppose we have a map from S2 to R2 (i.e., we can think of the map as “squishing”
a balloon onto the floor). Then the Borsuk-Ulam theorem says there are two antipodal points on
the balloon that will be “one on top of the other” in this mapping.

Example 2 Suppose each point on the earth maps continuously to a temperature-pressure pair.
Then there are two antipodal points on the earth with the same temperature and pressure.

The following celebrated theorem is implied by the Borsuk-Ulam Theorem.

Theorem 2 (Brouwer’s Fixed-Point Theorem)

If f : Bn → Bn is continuous, then there exists x ∈ Bn such that f(x) = x.

The following statements are all equivalent to the Borsuk-Ulam theorem.

1. For every antipodal continuous function f : Sn → Rn (i.e., f(−x) = −f(x)) there exists
x ∈ Sn such that f(x) = 0. (The Borsuk-Ulam theorem trivially implies this; to see the
converse, assume that f is any continuous function and consider the function g defined by
g(y) = f(y)−f(−y). Then g is antipodal and so, g(x) = 0 for some x. But then for the same
x, f(x) = f(−x).)

2. (Lyusternik and Shnirel’man, 1930). We say that F1, . . . , Fk is a cover of Sn if ∪Fi = Sn.
Then for every cover F1, . . . , Fn+1 of Sn where the Fi’s are closed sets, there exists a point
x ∈ Sn such that x,−x ∈ Fi for some i. We show why the Borsuk-Ulam theorem implies this
statement and leave the converse as an exercise: Assume we have a closed cover F1, . . . , Fn+1

of Sn. Define a function f : Sn → Rn by f(x) = (d(x, F1), . . . , d(x, Fn)). By the Borsuk-Ulam
theorem, there exists y such that f(y) = f(−y). There are two cases. Either there exists a
coordinate i such that fi(y) = fi(−y) = 0 in which case we are done (by the fact that Fi is
closed, and hence y,−y ∈ Fi); otherwise, neither y nor −y are in ∪n

i=1Fi and hence, must
both be covered by Fn+1.
Fact: This theorem is true even if we assume that each Fi is either open or closed.
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2 Knesser’s Conjecture

Let [n] denote the set {1, 2, . . . , n}. We will use the notation
([n]

k

)
to mean “all subsets of [n] of size

k”.

Definition 1 The Knesser graph Gn,k = (V,E) has V =
([n]

k

)
and E = {(F1, F2) : F1 ∩ F2 = ∅}.

What is the chromatic number χ(Gn,k) for the Knesser graph? Knesser observed that χ(Gn,k) ≤
n − 2k + 2, as we shall also shortly see, and conjectured that χ(Gn,k) = n − 2k + 2.

First, note that χ(Gn,k) ≤ n − 2k + 2 is an NP-style statement: if true, it has a short witness,
namely, a colouring using no more than n − 2k + 2 colours: Let the colour of F ∈ V be min(F ∪
{n − 2k + 2}). To see that this works, assume first that two different sets F1, F2 have the same
colour i < n− 2k + 2. Then i ∈ F1 ∩ F2, and hence (F1, F2) 	∈ E. If on the other hand F1, F2 both
have colour n − 2k + 2, then F1, F2 ⊆ {n − 2k + 2, n − 2k + 3, . . . , n} which is a set of size 2k − 1.
Hence, F1, F2 must have a non-empty intersection, and hence (F1, F2) 	∈ E.

Lovász proved Knesser’s conjecture in 1978 using the Borsuk-Ulam theorem. Note that he had
to prove a coNP-style statement, that χ(Gn,k) > n− 2k +1. Lovász’s proof was simplified by many
people, and the simplest version is from 2002 due to J. Greene (an undergrad at the time!):
Proof: Let d = n − 2k + 1. We want to show that χ(Gn,k) > d. Let X ⊆ Sd be any n
points in “general position” (by “general position” we mean that at most d points from X lie on
any hyperplane passing through the origin). We identify X with [n]. Suppose we have a valid
colouring of Gn,k using d colours. For a point x ∈ Sn, let H(x) denote the open hemisphere of
points y such that y · x > 0. Define a cover A1, . . . , Ad+1 of Sd as follows: For i = 1, . . . , d, let
Ai = {x : ∃F ∈ (X

k

)
with colour i such that F ⊆ H(x)}. Let Ad+1 = Sd\ ∪d

i=1 Ai.
By the Lyusternik-Shnirel’man version of the Borsuk-Ulam theorem, there exist x ∈ Sd, i ∈

[d + 1] such that x,−x ∈ Ai. We will now derive a contradiction.
Case 1: i ≤ d. Then both H(x) and H(−x) contain sets F1 and F2, respectively, both of colour

i. But since H(x) and H(−x) are disjoint, F1 and F2 are disjoint, and hence, they cannot have the
same colour (since there is an edge between them).

Case 2: i = d+1. Hence, x,−x ∈ Ad+1. Therefore, H(x) contains at most k−1 points from X
(otherwise, it would contain some F with colour j ≤ d and x would belong to Aj and not to Ad+1).
Similarly, H(−x) must also contain at most k−1 points from X. Hence Sn\(H(x)∪H(−x)), which
is contained in the hyperplane y ·x = 0, contains at least n− 2k + 2 = d+ 1 points, a contradiction
to the fact that the points in X are in “general position”. �

Note that to find points in general position one may draw n points from Sn uniformly and
independently at random. With probability 1 this will succeed. A deterministic way to pick the
points is to use the so-called moment generating curve. This curve is defined as {(t0, t1, . . . , td) :
t ∈ R+}. It is easy to see that no d distinct points from the curve together with the zero point
are on the same hyperplane (otherwise, we would have d + 1 distinct solutions to the equation∑d

i=0 cit
i = 0). By normalizing the d distinct points we get d points in Sd−1 with the required

properties.

3 Nash Equilibria

Let A and B be payoff matrices of size n×m. This means that when player 1 plays strategy i and
player 2 plays strategy j, then players 1 and 2 get payoffs Aij and Bij , respectively. A mixed strategy
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is a pair of vectors p ∈ (R+)n, q ∈ (R+)m such that
∑

pi =
∑

qj = 1 (i.e., they are probability
distributions). The expected payoffs are pT Aq and pT Bq for players 1 and 2, respectively.

A Nash equilibrium is a mixed strategy (p, q) such that for every p′, p′T Aq ≤ pT Aq and for every
q′, pT Aq′ ≤ pT Aq. This means that no player has an incentive to change his strategy, assuming
the other player plays according to the Nash equilibrium.

Theorem 3 (Nash)

For all payoff matrices A and B, there exists a Nash equilibrium.

Note that there is no known polynomial time algorithm for finding the Nash equilibrium. It is easy,
however, to verify that a mixed strategy is a Nash equilibrium using an LP.
Proof:[Sketch] Consider the space of all mixed strategies, that is, all vectors with n + m non-
negative coordinates such that the first n sum to 1 and the last m sum to 1. This space is
homeomorphic to Bn+m−2. Each vector is mapped to a “close neighbor” (p + ε, q + ε′) which
gives the highest increases to the payoffs of p and q. This map is defined continuously and so by
Brouwer’s theorem it has a fixed point. That is, it has a mixed strategy (p, q) such that no small
change of p or q improves the payoffs. �

4 Nonconstructive profos, NP statements, and coNP statements

In mathematics, nonconstructive proofs refer to proofs that use techniques like axiom of choice. For
us, this term refers to proofs of statements that cannot be verified in any obvious way in polynomial
time. To prove circuit lowerbounds, we need to show something like “Every short circuit for 3SAT
fails to compute 3SAT,” which has the flavor of a coNP statement. (Recall that in the context of
Natural Proofs, the “input” to the proof is the truth table for 3SAT, which has length N = 2n.
Enumerating over all circuits of size nk (say) is a conondeterministic computation that runs in
logk N time.) In fact, Rudich extended the notion of Natural proofs to NP-natural proofs and
showed that “NP-style reasoning” probably will not suffice to prove circuit lowerbounds.

In general, complexity lowerbounds seem to involve coNP statements (we’ll see some examples
in the context of communication complexity soon).

Unfortunately, there are not too many examples of coNP statements proved in discrete math-
ematics. This makes the Lovász-Kneser theorem special. (Actually there is a sub area in graph
theory that consists of many similar statements proved using fixed point theorem.) It is much more
common to find NP-style statements proved using nonconstructive methods. Next time Noga Alon
will talk about some of them.


