13. Randomized Algorithms

13.1 Contention Resolution

Protocol. Each process requests access to the database at time t with probability $p=1 / n$.

Claim. Let $S[i, t]=$ event that process i succeeds in accessing the database at time t. Then $1 /(e \cdot n) \leq \operatorname{Pr}[S(i, t)] \leq 1 /(2 n)$.

Pf. By independence, $\operatorname{Pr}[S(i, t)]=p(1-p)^{n-1}$.
process i requests access \quad none of remaining $n-1$ processes request access

- Setting $p=1 / n$, we have $\operatorname{Pr}[S(i, t)]=1 / n(1-1 / n)^{n-1}$.
value that maximizes $\operatorname{Pr}[S(i, t)] \quad \underbrace{}_{\text {between } 1 / e \text { and } 1 / 2}$

Useful fact. As n increases from 2, the function:

- ($1-1 / n)^{n}$ converges monotonically from $1 / 4$ up to $1 / e$
- ($1-1 / n)^{n-1}$ converges monotonically from $1 / 2$ down to $1 / e$.

Contention Resolution: Randomized Protocol

Claim. The probability that all processes succeed within $2 e \cdot n \ln n$ rounds is at least $1-1 / n$.

Pf. Let $F[t]=$ event that at least one of the n processes fails to access database in any of the rounds 1 through \dagger.

$$
\begin{aligned}
& \operatorname{Pr}[F[t]]=\operatorname{Pr}\left[\bigcup_{i=1}^{n} F[i, t]\right] \leq \sum_{i=1}^{n} \operatorname{Pr}[F[i, t]] \leq n\left(1-\frac{1}{e n}\right)^{t} \\
& \text { union bound previous slide }
\end{aligned}
$$

- Choosing $t=2$ [en $\rceil[c \ln n]$ yields $\operatorname{Pr}[F[t]] \leq n \cdot n^{-2}=1 / n$. -

Claim. The probability that process i fails to access the database in en rounds is at most $1 / e$. After e.n $(c \ln n)$ rounds, the probability is at most n^{-c}.

Pf. Let $\mathrm{F}[\mathrm{i}, \mathrm{t}]=$ event that process i fails to access database in rounds 1 through t . By independence and previous claim, we have $\operatorname{Pr}[F(i, t)] \leq(1-1 /(e n))^{\dagger}$.

- Choose $t=\lceil e \cdot n\rceil$:
$\operatorname{Pr}[F(i, t)] \leq\left(1-\frac{1}{e n}\right)^{[e n]} \leq\left(1-\frac{1}{e n}\right)^{e n} \leq \frac{1}{e}$
- Choose $t=\lceil e \cdot n\rceil\lceil c \ln n\rceil: \quad \operatorname{Pr}[F(i, t)] \leq\left(\frac{1}{e}\right)^{c \ln n}=n^{-c}$

13.2 Global Minimum Cut

Union bound. Given events $E_{1}, \ldots, E_{n}, \quad \operatorname{Pr}\left[\bigcup_{i=1}^{n} E_{i}\right] \leq \sum_{i=1}^{n} \operatorname{Pr}\left[E_{i}\right]$

Global min cut. Given an undirected graph $G=(V, E)$ find a cut (A, B) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of related documents, network reliability, network design, circuit design, TSP solvers.

Network flow solution

- Replace every edge (u, v) with two antiparallel edges (u, v) and (v, u)
- Pick some vertex s and compute min $s-v$ cut separating s from each other vertex $v \in V$.

False intuition. Global min-cut is harder than min s-t cut.

Contraction Algorithm

Claim. The contraction algorithm returns a min cut with $\mathrm{prob} \geq 2 / \mathrm{n}^{2}$.

Pf. Consider a global min-cut (A^{\star}, B^{\star}) of G. Let F^{\star} be edges with one endpoint in A^{*} and the other in B^{\star}. Let $k=\left|F^{\star}\right|=$ size of min cut.

- In first step, algorithm contracts an edge in F^{*} probability $k /|E|$.
- Every node has degree $\geq k$ since otherwise (A^{\star}, B^{\star}) would not be min-cut. $\Rightarrow|E| \geq \frac{1}{2} \mathrm{kn}$.
- Thus, algorithm contracts an edge in F^{*} with probability $\leq 2 / n$.

Contraction algorithm. [Karger 1995]

- Pick an edge $e=(u, v)$ uniformly at random.
- Contract edge e.
- replace u and v by single new super-node w
- preserve edges, updating endpoints of u and v to w
- keep parallel edges, but delete self-loops
- Repeat until graph has just two nodes v_{1} and v_{2}.
- Return the cut (all nodes that were contracted to form v_{1}).

$\xrightarrow[\text { contract } u-v]{ }$

Contraction Algorithm

Claim. The contraction algorithm returns a min cut with $\mathrm{prob} \geq 2 / \mathrm{n}^{2}$.

Pf. Consider a global min-cut (A^{*}, B^{\star}) of G. Let F^{\star} be edges with one endpoint in A^{\star} and the other in B^{\star}. Let $k=\left|F^{\star}\right|=$ size of min cut.

- Let G^{\prime} be graph after j iterations. There are $n^{\prime}=n-j$ supernodes.
- Suppose no edge in F^{\star} has been contracted. The min-cut in G^{\prime} is still k.
- Since value of min-cut is $k,\left|E^{\prime}\right| \geq \frac{1}{2} k n^{\prime}$.
- Thus, algorithm contracts an edge in F^{\star} with probability $\leq 2 / n^{\prime}$.
- Let $\mathrm{E}_{\mathrm{j}}=$ event that an edge in F^{\star} is not contracted in iteration j .

$$
\begin{aligned}
\operatorname{Pr}\left[E_{1} \cap E_{2} \cdots \cap E_{n-2}\right] & =\operatorname{Pr}\left[E_{1}\right] \times \operatorname{Pr}\left[E_{2} \mid E_{1}\right] \times \cdots \times \operatorname{Pr}\left[E_{n-2} \mid E_{1} \cap E_{2} \cdots \cap E_{n-3}\right] \\
& \geq\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right) \cdots\left(1-\frac{2}{4}\right)\left(1-\frac{2}{3}\right) \\
& =\left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right) \cdots\left(\frac{2}{4}\right)\left(\frac{1}{3}\right) \\
& =\frac{2}{n(n-1)} \\
& \geq \frac{2}{n^{2}}
\end{aligned}
$$

Amplification. To amplify the probability of success, run the contraction algorithm many times.

Claim. If we repeat the contraction algorithm $n^{2} \ln n$ times with independent random choices, the probability of failing to find the global min-cut is at most $1 / \mathrm{n}^{2}$.

Pf. By independence, the probability of failure is at most

$$
\left(1-\frac{2}{n^{2}}\right)^{n^{2} \ln n}=\left[\left(1-\frac{2}{n^{2}}\right)^{\frac{1}{2} n^{2}}\right]^{2 \ln n} \leq\left(e^{-1}\right)^{2 \ln n}=\frac{1}{n^{2}}
$$

$(1-1 / x)^{x} \leq 1 / e$

13.3 Linearity of Expectation

Expectation

Expectation. Given a discrete random variables X , its expectation $\mathrm{E}[\mathrm{X}]$ is defined by:

$$
E[X]=\sum_{j=0}^{\infty} j \operatorname{Pr}[X=j]
$$

Linearity of expectation. Given two random variables X and Y defined over the same probability space, $E[X+Y]=E[X]+E[Y]$.

Waiting for a first success. Coin is heads with probability p and tails with probability 1-p. How many independent flips X until first heads?

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Memoryless guessing. No psychic abilities; can't even remember what's been turned over already. Guess a card from full deck uniformly at random.

Claim. The expected number of correct guesses is 1.
Pf.

- Let $X_{i}=1$ if $i^{\text {th }}$ prediction is correct and 0 otherwise.
- Let $X=$ number of correct guesses $=X_{1}+\ldots+X_{n}$.
- $E\left[X_{i}\right]=0 \cdot \operatorname{Pr}\left[X_{i}=0\right]+1 \cdot \operatorname{Pr}\left[X_{i}=1\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 / n$.
- $E[X]=E\left[X_{1}\right]+\ldots+E\left[X_{n}\right]=1$.

Coupon Collector

Coupon collector. Each box of cereal contains a coupon. There are n different types of coupons. Assuming all boxes are equally likely to contain each coupon, how many boxes before you have ≥ 1 coupon of each type?

Claim. The expected number of steps is $\Theta(n \log n)$.
Pf.

- Phase $\mathrm{j}=$ time between j and $\mathrm{j}+1$ distinct coupons.
- Let $X_{j}=$ number of steps you spend in phase j.
- Let $X=$ number of steps in total $=X_{0}+X_{1}+\ldots+X_{n-1}$.

$$
\begin{gathered}
E[X]=\sum_{j=0}^{n-1} E\left[X_{j}\right]=\sum_{j=0}^{n-1} \frac{n}{n-j}=n \sum_{i=1}^{n} \frac{1}{i}=n H(n) \\
\\
\\
\\
\Rightarrow \text { prob of success }=(n-j) / n \\
\text { expected waiting time }=n /(n-j)
\end{gathered}
$$

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card

Guessing with memory. Guess a card uniformly at random from cards not yet seen.

Claim. The expected number of correct guesses is $\Theta(\log n)$.
Pf.

- Let $X_{i}=1$ if $i^{\text {th }}$ prediction is correct and 0 otherwise.
- Let $X=$ number of correct guesses $=X_{1}+\ldots+X_{n}$.
- $E\left[X_{i}\right]=1 /(n-i-1)$.
- $E[X]=1 / n+\ldots+1 / 2+1 / 1=H(n)$.
\uparrow
$\ln (n+1)<H(n)<1+\ln n$

13.4 MAX 3-SAT

exactly 3 distinct literals per clause
MAX-3SAT. Given 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.

$$
\begin{aligned}
& C_{1}=x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}} \\
& C_{2}=x_{2} \vee x_{3} \vee \overline{x_{4}} \\
& C_{3}=\overline{x_{1}} \vee x_{2} \vee x_{4} \\
& C_{4}=\overline{x_{1}} \vee \overline{x_{2}} \vee \frac{x_{3}}{C_{5}}=x_{1} \vee \overline{x_{2}} \vee \overline{x_{4}}
\end{aligned}
$$

Remark. NP-hard search problem.
Simple idea. Flip a coin, and set each variable true with probability $\frac{1}{2}$, independently for each variable.

Maximum 3-Satisfiability: Analysis

Q. Can we turn this idea into a $7 / 8$-approximation algorithm? In general, a random variable can almost always be below its mean.

Lemma. The probability that a random assignment satisfies $\geq 7 \mathrm{k} / 8$ clauses is at least $1 /(8 \mathrm{k})$.

Pf. Let p_{j} be probability that exactly j clauses are satisfied; let p be probability that $\geq 7 \mathrm{k} / 8$ clauses are satisfied.

$$
\begin{aligned}
\frac{7}{8} k=E[Z] & =\sum_{j \geq 0} j p_{j} \\
& =\sum_{j<7 k / 8} j p_{j}+\sum_{j 27 k / 8} j p_{j} \\
& \leq\left(\frac{7 k}{8}-\frac{1}{8}\right) \sum_{j<7 / 8 / 8} p_{j}+k \sum_{j 27 k / 8} p_{j} \\
& \leq\left(\frac{7}{8} k-\frac{1}{8}\right) \cdot 1+k p
\end{aligned}
$$

Rearranging terms yields $p \geq 1$ / (8 k).

Claim. Given a 3-SAT formula with k clauses, the expected number of clauses satisfied by a random assignment is $7 \mathrm{k} / 8$.

Pf. Consider random variable $Z_{j}= \begin{cases}1 & \text { if clause } C_{j} \text { is satisfied } \\ 0 & \text { otherwise } .\end{cases}$

- Let $Z=$ weight of clauses satisfied by assignment Z_{j}.

Corollary. For any instance of 3-SAT, there exists a truth assignment that satisfies at least a $7 / 8$ fraction of all clauses.

Maximum 3-Satisfiability: Analysis

Johnson's algorithm. Repeatedly generate random truth assignments until one of them satisfies $\geq 7 k / 8$ clauses.

Theorem. Johnson's algorithm is a 7/8-approximation algorithm.
Pf. By previous lemma, each iteration succeeds with probability at least $1 /(8 \mathrm{k})$. By the waiting-time bound, the expected number of trials to find the satisfying assignment is at most 8 k . -

Extensions.

- Allow one, two, or more literals per clause.
- Find max weighted set of satisfied clauses.

Theorem. [Asano-Williamson 2000] There exists a 0.784-
approximation algorithm for MAX-SAT.

Theorem. [Karloff-Zwick 1997, Zwick+computer 2002] There exists a
7/8-approximation algorithm for version of MAX-3SAT where each clause has at most 3 literals.

Theorem. [Håstad 1997] Unless $P=N P$, no ρ-approximation algorithm for MAX-3SAT (and hence MAX-SAT) for any $\rho>7 / 8$.
\uparrow
very unlikely to improve over simple randomized algorithm for MAX-3SAT

RP and ZPP

RP. [Monte Carlo] Decision problems solvable with one-sided error in poly-time

$$
\begin{array}{ll}
\text { One-sided error. } & \text { Can decrease probability of false negativ, } \\
\text { to } 2^{-100} \text { by } 100 \text { independent repetitions }
\end{array}
$$

- If the correct answer is no, always return no.
wes with probability

ZPP. [Las Vegas] Decision problems solvable in expected poly-time.

$$
\begin{aligned}
& \uparrow \\
& \text { running time can be unbounded, but } \\
& \text { on average it is fast }
\end{aligned}
$$

Theorem. $P \subseteq Z P P \subseteq R P \subseteq N P$.

Fundamental open questions. To what extent does randomization help? Does $P=Z P P$? Does $Z P P=R P$? Does RP = NP?

Monte Carlo algorithms. Guaranteed to run in poly-time, likely to find correct answer.
Ex: Contraction algorithm for global min cut.

Las Vegas algorithms. Guaranteed to find correct answer, likely to run in poly-time
Ex: Randomized quicksort, Johnson's MAX-3SAT algorithm.
stop algorithm after a certain point \downarrow
Remark. Can always convert a Las Vegas algorithm into Monte Carlo, but no known method to convert the other way.

13.6 Universal Hashing

Dictionary. Given a universe U of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in S is efficient.

Dictionary interface.

- Create (): Initialize a dictionary with $S=\phi$.
- Insert(u): Add element $u \in U$ to S.
- Delete (u): Delete u from S, if u is currently in S.
- Lookup(u): Determine whether u is in S.

Challenge. Universe U can be extremely large so defining an array of size $|U|$ is infeasible.

Applications. File systems, databases, Google, compilers, checksums P2P networks, associative arrays, cryptography, web caching, etc.

Algorithmic Complexity Attacks

Deterministic hashing. If $|U| \geq n^{2}$, then for any fixed hash function h, there is a subset $S \subseteq U$ of n elements that all hash to same slot. Thus, $\Theta(n)$ time per search in worst-case.

When do we need stronger performance guarantees?

- Obvious situations: aircraft control, nuclear reactors.
- Surprising situations: denial-of-service attacks.

> malicious adversary chooses which strings to insert into your hash table

Real world exploits. [Crosby-Wallach 2003]

- Bro server: send carefully chosen packets to DOS the server, using less bandwidth than a dial-up modem
- Perl 5.8.0: insert carefully chosen strings into associative array.
- Linux 2.4.20 kernel: save files with carefully chosen names.

Hash function. $h: U \rightarrow\{0,1, \ldots, n-1\}$.
Hashing. Create an array H of size n. When processing element u, access array element $H[h(u)]$.

Collision. When $h(u)=h(v)$ but $u \neq v$.

- Birthday paradox \Rightarrow expect a collision after $\sqrt{ } n$ random insertions.
- Separate chaining: $H[i]$ stores linked list of elements u with $h(u)=\mathrm{i}$

```
[[1] jocularly \longrightarrow moriousy
```

${ }^{\text {H[2] }}$ nu
${ }_{\mathrm{H}}[$ 3] $\xrightarrow{\text { suburran }} \longrightarrow$ untravelited \longrightarrow considerating
:[n] brovsing

Hashing Performance

Idealistic hash function. Maps m elements uniformly at random to n hash slots.

- Running time depends on length of chains.
- Average length of chain $=\alpha=m / n$.
- Choose $n \approx m \Rightarrow$ on average $O(1)$ per insert, lookup, or delete.
- Max length of chain $=\Theta(\log m / \log \log m)$, assuming α is a constant.
see 13.10

Challenge. Find an efficiently computable hash function h that has idealized properties.

Approach. Use randomization in the choice of h.

Universal class of hash functions. [Carter-Wegman, 1980s]

- For any pair of elements $u, v \in U, \operatorname{Pr}_{h \in H}[h(u)=h(v)] \leq 1 / n$
- Can select random h efficiently
chosen uni formly at random
- Can compute h(u) efficiently.

Ex. $U=\{a, b, c, d, e, f\}, n=2$.

	a	b	c	d	e	f	$H=\left\{h_{1}, h_{2}\right\}$	not universal
$h_{1}(x)$	0	1	0	1	0	1	$\operatorname{Pr}_{h \in H}[h(a)=h(b)]=1 / 2$	
$h_{2}(x)$	0	0	0	1	1	1	$\begin{aligned} & \operatorname{Pr}_{h \in H}[h(a)=h(c)]=1 \\ & \operatorname{Pr}_{h \in H}[h(a)=h(d)]=0 \end{aligned}$	
							\cdots	
	a	b	c	d	e	f	$H=\left\{h_{1}, h_{2}, h_{3}, h_{4}\right\}$	universal
$h_{1}(x)$	0	1	0	1	0	1	$\operatorname{Pr}_{h \in H}[\mathrm{~h}(\mathrm{a})=\mathrm{h}(\mathrm{b})]=1 / 2$	
$h_{2}(x)$	0	0	0	1	1	1	$\operatorname{Pr}_{n \in H}[\mathrm{~h}(\mathrm{a})=\mathrm{h}(\mathrm{c})]=1 / 2$	
$h_{3}(x)$	0	0	1	0	1	1	$\operatorname{Pr}_{h \in H}[h(a)=h(d)]=1 / 2$ $\operatorname{Pr}_{h \in H}[h(a)=h(e)]=1 / 2$	
$h_{4}(x)$	1	0	0	1	1	0	$\operatorname{Pr}_{h \in H}[h(a)=h(f)]=0$	

Modulus. Choose a prime number p between n and Zn .

ok to use a table of primes

Integer encoding. Identify each element $u \in U$ with a base-p integer of r digits: $x=\left(x_{1}, x_{2}, \ldots, x_{r}\right)$.

Hash function. Let $A=$ set of all r-digit, base-p integers. For each $a=\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ where $0 \leq a_{i}<p$, define

$$
h_{a}(x)=\left(\sum_{i=1}^{r} a_{i} x_{i}\right) \bmod p
$$

Hash function family. $H=\left\{h_{a}: a \in A\right\}$.

Universal hashing property. Let H be a universal class of hash functions; let $h \in H$ be chosen uniformly at random from H ; and let $u \in U$. For any subset $S \subseteq U$ of size at most n, the expected number of items in S that collide with u is at most 1 .

Pf. For any element $s \in S$, define indicator random variable $X_{s}=1$ if $h(s)=h(u)$ and 0 otherwise. Let X be a random variable counting the total number of collisions with u.

$$
\begin{gathered}
E_{h \in H}[X]=E\left[\sum_{s \in S} X_{s}\right]=\sum_{s \in S} E\left[X_{s}\right]=\sum_{s \in S} \operatorname{Pr}\left[X_{s}=1\right] \leq \sum_{s \in S} \frac{1}{n}=|S| \frac{1}{n} \leq 1 \\
\\
\\
\\
\text { linearity of expectation } \quad \mathrm{X}_{\mathrm{s}} \text { is a } 0 \text { - } 1 \text { random variable } \quad \begin{array}{c}
\text { universal } \\
\text { (assumes } \mathrm{u} \notin \mathrm{~S} \text {) }
\end{array}
\end{gathered}
$$

Designing a Universal Class of Hash Functions

Theorem. $H=\left\{h_{a}: a \in A\right\}$ is a universal class of hash functions.

Pf. Let $x=\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{r}\right)$ be two distinct elements of U. We need to show that $\operatorname{Pr}\left[h_{a}(x)=h_{a}(y)\right] \leq 1 / n$.

- Since $x \neq y$, there exists an integer j such that $x_{j} \neq y_{j}$.
- We have $h_{a}(x)=h_{a}(y)$ iff

$$
a_{j} \underbrace{\left(y_{j}-x_{j}\right)}_{z}=\underbrace{\sum_{i \neq j} a_{i}\left(x_{i}-y_{i}\right)}_{m} \bmod p
$$

- Can assume a was chosen uniformly at random by first selecting all coordinates a_{i} where $i \neq j$, then selecting a_{j} at random. Thus, we can assume a_{i} is fixed for all coordinates $i \neq j$.
- Since p is prime, $a_{j}=m z^{-1}$ is the unique solution among p possibilities.
- Thus $\operatorname{Pr}\left[h_{a}(x)=h_{a}(y)\right]=1 / p \leq 1 / n$. -

Bloom Filters

Bloom Filter

Bloom filter. [Bloom, 1978] Ingenious data structure to maximize space efficiency by allowing some false positives.

- Maintain one bit-array of size $n \approx 8|S|$
- Choose k independent hash functions $h_{1}, \ldots, h_{k}: U \rightarrow\{1, \ldots, n\}$.
- Insert (u): set $H\left[h_{i}(u)\right]=1$ for each $i=1, \ldots, k$
- Exists (u) : check $H\left[h_{i}(u)\right]=1$ for each $i=1, \ldots, k$
- if any are $0, u$ is definitely not in set
- if all are $1, u$ is probably in the set

Set membership. Represent of a set S of m elements from universe U where $|U| \gg|S|$ to support membership queries.

Ex. ISP caches web pages, especially large data files like images and video. Client requests URL. Server needs to quickly determine whether the page is in its cache. False positive undesirable, but acceptable; don't want false negatives.

More applications.
Reference: A. Broder and M. Mi trenmacher. Network applications of

- Packet routing
- Unsuitable password list.
- URLs in web proxy cache.
- Early Unix spell checkers.
- Network intrusion detection.
- Set intersection for keyword search.
- peed up semijoin operation in databases.
- Collaborating in overlay and P2P networks.

Bloom Filter: Analysis

Parameters. m elements in S, n bits in table, k hash functions.

Claim. The probability of a false positive is at most $(0.62)^{n / m}$.
Pf. assumes hash functions are idealized (or universal)

- $\operatorname{Pr}[\mathrm{H}[\mathrm{i}]=0] \stackrel{\swarrow}{=}\left(1-\frac{1}{n}\right)^{k m} \approx e^{-k m / n}$
- $\operatorname{Pr}[$ false positive for element $u]=\operatorname{Pr}\left[h_{1}(u)=\ldots=h_{k}(u)=1\right]$.

$$
\approx\left(1-e^{-k m / n}\right)^{k}
$$

- Optimal choice is $k \approx \ln 2(n / m)$.
- $\operatorname{Pr}[$ false positive for element $u] \approx(1 / 2)^{k} \leq(0.62)^{n / m}$.

Ex. $n=8 m, k=5$, false positive rate $\approx 2.2 \%$.

Set membership. Represent of a set S of m elements from universe U where $|U| \gg m$ to support membership queries.

- Insert.
- Exists.

Delete.

Counting bloom filter. Count number of times each bit is set.

- Insert: add 1 to each of k counts.
- Delete: delete 1 from each of k counts.

Practice. Use 4 bits per hash value since probability of max value exceeding $15<1.37 n \times 10^{-15}$.

Advantage. No collisions to deal with, efficient use of space, provides privacy since no way to reconstruct S from bit array.
Disadvantage. No easy way to store info with keys.
Hashing. Use $\log m$ bits per element \Rightarrow vanishingly small error
Bloom filter. Use $O(1)$ bits per element \Rightarrow constant error.

Bloom filter principle. Whenever a list or set is used and space is a consideration, a Bloom filter should be considered When using a Bloom filter, consider the potential effects of false positives. - Broder and Mitzenmacher

Chernoff Bounds

Theorem. Suppose X_{1}, \ldots, X_{n} are independent 0-1 random variables. Le \dagger $X=X_{1}+\ldots+X_{n}$. Then for any $\mu \geq E[X]$ and $\delta>0$, we have

$$
\begin{aligned}
\operatorname{Pr}[X>(1+\delta) \mu] & <\left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{\mu} \\
& \begin{array}{l}
\text { sum of independent 0-1 random variables } \\
\text { is tightly centered on the mean }
\end{array}
\end{aligned}
$$

Pf. We apply a number of simple transformations.

- For any $\dagger>0$,

$f(x)=e^{+x}$ is monotone in $x \quad$ Markov's inequality: $\operatorname{Pr}[X>a] \leq E[X] / a$
- Now $\begin{gathered}E\left[e^{t X}\right]=E\left[e^{t \sum_{i} X_{i}}\right]=\prod_{i} E\left[e^{t X_{i}}\right] \\ \uparrow \quad \underset{\uparrow}{\text { definition of } X \quad \text { independence }}\end{gathered}$

$$
\text { definition of } X \quad \text { independence }
$$

Pf. (cont)

- Let $p_{i}=\operatorname{Pr}\left[X_{i}=1\right]$. Then,

$$
\begin{aligned}
E\left[e^{t X_{i}}\right]=p_{i} e^{t}+\left(1-p_{i}\right) e^{0}=1+p_{i}\left(e^{t}-1\right) & \leq e^{p_{i}\left(e^{t}-1\right)} \\
& \uparrow \\
\text { for any } \alpha & \geq 0,1+\alpha \leq e^{a}
\end{aligned}
$$

- Combining everything:

- Finally, choose $t=\ln (1+\delta)$.

Theorem. Suppose X_{1}, \ldots, X_{n} are independent 0-1 random variables. Let $X=X_{1}+\ldots+X_{n}$. Then for any $\mu \geq E[X]$ and $0<\delta<1$, we have

$$
\operatorname{Pr}[X<(1-\delta) \mu]<e^{-\delta^{2} \mu / 2}
$$

Pf idea. Similar.

Remark. Not quite symmetric since only makes sense to consider $\delta<1$.

Load Balancing

Load balancing. System in which m jobs arrive in a stream and need to be processed immediately on n identical processors. Find an assignment that balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each processor receives at most $\lceil\mathrm{m} / \mathrm{n}\rceil$ jobs.

Decentralized controller. Assign jobs to processors uniformly at random. How likely is it that some processor is assigned "too many" jobs?

Analysis.

- Let $X_{i}=$ number of jobs assigned to processor i.
- Let $Y_{i j}=1$ if job j assigned to processor i, and 0 otherwise.
- We have $E\left[Y_{i j}\right]=1 / n$
- Thus, $X_{i}=\sum_{j} Y_{i j}$, and $\mu=E\left[X_{i}\right]=1$.
- Applying Chernoff bounds with $\delta=c-1$ yields $\operatorname{Pr}\left[X_{i}>c\right]<\frac{e^{c-1}}{c^{c}}$
- Let $\gamma(n)$ be number x such that $x^{x}=n$, and choose $c=e \gamma(n)$.

$$
\operatorname{Pr}\left[X_{i}>c\right]<\frac{e^{c-1}}{c^{c}}<\left(\frac{e}{c}\right)^{c}=\left(\frac{1}{\gamma(n)}\right)^{e \gamma(n)}<\left(\frac{1}{\gamma(n)}\right)^{2 \gamma(n)}=\frac{1}{n^{2}}
$$

- Union bound \Rightarrow with probability $\geq 1-1 / n$ no processor receives more than e $\gamma(n)=\Theta(\log n / \log \log n)$ jobs.

Many jobs. Suppose the number of jobs $m=16 n \ln n$. Then on average, each processor handles $\mu=16 \ln n$ jobs. The probability that any processor exceeds 2μ jobs is at most $1 / n$.

Analysis.

- Let $X_{i}, Y_{i j}$ be as before.
- Applying Chernoff bounds with $\delta=1$ yields

$$
\operatorname{Pr}\left[X_{i}>2 \mu\right]<\left(\frac{e}{4}\right)^{16 n \ln n}<\left(\frac{1}{e}\right)^{\ln n}=\frac{1}{n^{2}} \quad \operatorname{Pr}\left[X_{i}<\frac{1}{2} \mu\right]<e^{-\frac{1}{2}\left(\frac{1}{2}\right)^{2}(16 n \ln n)}=\frac{1}{n^{2}}
$$

- Applying the union bound, we conclude that all n machines will have load between half and twice the average.

