11. Approximation Algorithms

Algorithm Design by Éva Tardos and Jon Kleinberg · Copyright © 2005 Addison Wesley · Slides by Kevin Wayne

11.1 Load Balancing

Approximation Algorithms

- Q. Suppose I need to solve an NP-hard problem. What should I do?
- A. Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.

- Solve problem to optimality.
- Solve problem in poly-time.
- Solve arbitrary instances of the problem.

ρ -approximation algorithm.

- Guaranteed to run in poly-time.
- Guaranteed to solve arbitrary instance of the problem
- Guaranteed to find solution within ratio ρ of true optimum.

Challenge. Need to prove a solution's value is close to optimum, without even knowing what optimum value is!

Load Balancing

Input. m identical machines; n jobs, job j has processing time t_j .

- Job j must run contiguously on one machine.
- A machine can process at most one job at a time.

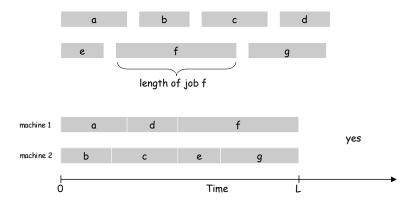
Def. Let J(i) be the subset of jobs assigned to machine i. The load of machine i is L_i = $\Sigma_{j\,\in\,J(i)}\, t_j.$

Def. The makespan is the maximum load on any machine $L = \max_i L_i$.

Load balancing. Assign each job to a machine to minimize makespan.

Load Balancing on 2 Machines

Claim. Load balancing is hard even if only 2 machines. Pf. PARTITION \leq p LOAD-BALANCE.



Load Balancing: List Scheduling Analysis

Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.

- First worst-case analysis of an approximation algorithm.
- Need to compare resulting solution with optimal makespan L*.

Lemma 1. The optimal makespan $L^* \ge \max_j t_j$.

Pf. Some machine must process the most time-consuming job. •

Lemma 2. The optimal makespan $L^* \ge \frac{1}{m} \sum_j t_j$. Pf.

- . The total processing time is $\Sigma_i t_i$.
- One of m machines must do at least a 1/m fraction of total work. ■

Load Balancing: List Scheduling

List-scheduling algorithm.

- Consider n jobs in some fixed order.
- Assign job j to machine whose load is smallest so far.

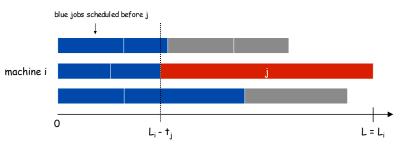

```
\label{eq:List-Scheduling} \begin{array}{lll} \text{List-Scheduling} \left(m, \ n, \ t_1, t_2, ..., t_n\right) & \\ & \text{for } i = 1 \text{ to } m & \\ & L_i \leftarrow 0 & \leftarrow \text{ load on machine } i \\ & J(i) \leftarrow \varphi & \leftarrow \text{ jobs assigned to machine } i \\ & \\ & \text{for } j = 1 \text{ to } n & \\ & i = \text{argmin}_k \ L_k & \leftarrow \text{ machine } i \text{ has smallest load} \\ & J(i) \leftarrow J(i) \ U & \{j\} & \leftarrow \text{ assign job } j \text{ to machine } i \\ & L_i \leftarrow L_i + t_j & \leftarrow \text{ update load of machine } i \\ & \\ & \} & \\ & \\ & \\ & \\ \end{array}
```

Implementation. O(n log n) using a priority queue.

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.

- Pf. Consider load Li of bottleneck machine i.
- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load. Its load before assignment is L_i $t_i \Rightarrow L_i$ $t_i \leq L_k$ for all $1 \leq k \leq m$.



Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.

Pf. Consider load Li of bottleneck machine i.

- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load. Its load before assignment is $L_i t_i \implies L_i t_i \le L_k$ for all $1 \le k \le m$.
- Sum inequalities over all k and divide by m:

$$\begin{array}{rcl} L_i - t_j & \leq & \frac{1}{m} \sum_k L_k \\ & = & \frac{1}{m} \sum_k t_k \end{array}$$

Now
$$L_i = \underbrace{(L_i - t_j)}_{\leq L^*} + \underbrace{t_j}_{\leq L^*} \leq 2L^*.$$

Load Balancing: List Scheduling Analysis

- Q. Is our analysis tight?
- A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

1	11	21	31	41	51	61	71	81	10
2	12	22	32	42	52	62	72	82	20
3	13	23	33	43	53	63	73	83	30
4	14	24	34	44	54	64	74	84	40
5	15	25	35	45	55	65	75	85	50
6	16	26	36	46	56	66	76	86	60
7	17	27	37	47	57	67	77	87	70
8	18	28	38	48	58	68	78	88	80
9	19	29	39	49	59	69	79	89	90
91									

m = 10, optimal makespan = 11

Load Balancing: List Scheduling Analysis

- Q. Is our analysis tight?
- A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

1	11	21	31	41	51	61	71	81	91
2	12	22	32	42	52	62	72	82	Machine 2 idle
3	13	23	33	43	53	63	73	83	Machine 3 idle
4	14	24	34	44	54	64	74	84	Machine 4 idle
5	15	25	35	45	55	65	75	85	Machine 5 idle
6	16	26	36	46	56	66	76	86	Machine 6 idle
7	17	27	37	47	57	67	77	87	Machine 7 idle
8	18	28	38	48	58	68	78	88	Machine 8 idle
9	19	29	39	49	59	69	79	89	Machine 9 idle
10	20	30	40	50	60	70	80	90	Machine 10 idle

m = 10, list scheduling makespan = 19

Load Balancing: LPT Rule

Longest processing time (LPT). Sort n jobs in descending order of processing time, and then run list scheduling algorithm.

```
\begin{split} & \text{LPT-List-Scheduling}\,(\text{m}, \ \text{n}, \ t_1, t_2, ..., t_n) \ \{ \\ & \text{Sort jobs so that} \ t_1 \geq t_2 \geq ... \geq t_n \end{split} \begin{aligned} & \text{for } i = 1 \ \text{to m} \ \{ \\ & L_i \leftarrow 0 \qquad \leftarrow \ \text{load on machine i} \\ & J(i) \leftarrow \phi \qquad \leftarrow \ \text{jobs assigned to machine i} \\ \} & \\ & \text{for } j = 1 \ \text{to n} \ \{ \\ & i = \text{argmin}_k \ L_k \qquad \leftarrow \ \text{machine i has smallest load} \\ & J(i) \leftarrow J(i) \ U \ \{j\} \qquad \leftarrow \ \text{assign job j to machine i} \\ & L_i \leftarrow L_i + t_j \qquad \leftarrow \ \text{update load of machine i} \\ \} & \\ \end{cases} \end{aligned}
```

12

Load Balancing: LPT Rule

Observation. If at most m jobs, then list-scheduling is optimal. Pf. Each job put on its own machine. •

Lemma 3. If there are more than m jobs, $L^* \ge 2 t_{m+1}$. Pf.

- Consider first m+1 jobs t₁, ..., t_{m+1}.
- Since the t_i 's are in descending order, each takes at least t_{m+1} time.
- There are m+1 jobs and m machines, so by pigeonhole principle, at least one machine gets two jobs. ■

Theorem. LPT rule is a 3/2 approximation algorithm.

Pf. Same basic approach as for list scheduling.

11.2 Center Selection

Load Balancing: LPT Rule

- Q. Is our 3/2 analysis tight?
- A. No.

Theorem. [Graham, 1969] LPT rule is a 4/3-approximation.

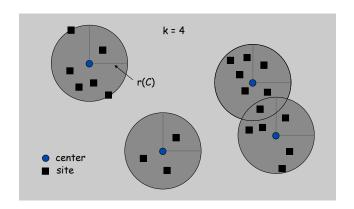
- Pf. More sophisticated analysis of same algorithm.
- Q. Is Graham's 4/3 analysis tight?
- A. Essentially yes.

Ex: m machines, n = 2m+1 jobs, 2 jobs of length m+1, m+2, ..., 2m-1 and one job of length m.

Center Selection Problem

Input. Set of n sites $s_1, ..., s_n$.

Center selection problem. Select k centers C so that maximum distance from a site to nearest center is minimized.



Center Selection Problem

Input. Set of n sites $s_1, ..., s_n$.

Center selection problem. Select k centers C so that maximum distance from a site to nearest center is minimized.

Notation.

- dist(x, y) = distance between x and y.
- dist (s_i, C) = min $c \in C$ dist (s_i, c) = distance from s_i to closest center.
- $r(C) = \max_i dist(s_i, C) = smallest covering radius.$

Goal. Find set of centers C that minimizes r(C), subject to |C| = k.

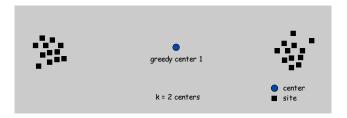
Distance function properties.

- dist(x, x) = 0 (identity) • dist(x, y) = dist(y, x) (symmetry) • $dist(x, y) \le dist(x, z) + dist(z, y)$ (triangle inequality)

Greedy Algorithm: A False Start

Greedy algorithm. Put the first center at the best possible location for a single center, and then keep adding centers so as to reduce the covering radius each time by as much as possible.

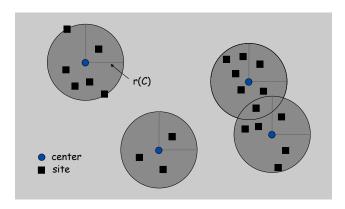
Remark: arbitrarily bad!



Center Selection Example

Ex: each site is a point in the plane, a center can be any point in the plane, dist(x, y) = Euclidean distance.

Remark: search can be infinite!



Center Selection: Greedy Algorithm

Greedy algorithm. Repeatedly choose the next center to be the site farthest from any existing center.

```
Greedy-Center-Selection(k, n, s<sub>1</sub>, s<sub>2</sub>,...,s<sub>n</sub>) {

C = $\phi$

repeat k times {

Select a site s<sub>i</sub> with maximum dist(s<sub>i</sub>, C)

Add s<sub>i</sub> to C

}

site farthest from any center

return C
}
```

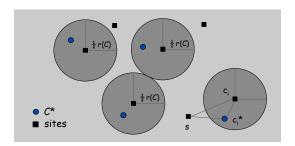
Observation. Upon termination all centers in \mathcal{C} are pairwise at least $r(\mathcal{C})$ apart.

Pf. By construction of algorithm.

Center Selection: Analysis of Greedy Algorithm

Theorem. Let C^* be an optimal set of centers. Then $r(C) \le 2r(C^*)$. Pf. (by contradiction) Assume $r(C^*) < \frac{1}{2} r(C)$.

- For each site c_i in C, consider ball of radius $\frac{1}{2}$ r(C) around it.
- Exactly one c_i^* in each ball; let c_i be the site paired with c_i^* .
- Consider any site s and its closest center c_i^* in C^* .
- $dist(s, C) \leq dist(s, c_i) \leq dist(s, c_i^*) + dist(c_i^*, c_i) \leq 2r(C^*)$.
- Thus $r(C) \le 2r(C^*)$. \triangle \triangle -inequality $\le r(C^*) \text{ since } c_i^* \text{ is closest center}$



11.4 The Pricing Method: Vertex Cover

Center Selection

Theorem. Let C^* be an optimal set of centers. Then $r(C) \le 2r(C^*)$.

Theorem. Greedy algorithm is a 2-approximation for center selection problem.

Remark. Greedy algorithm always places centers at sites, but is still within a factor of 2 of best solution that is allowed to place centers anywhere.

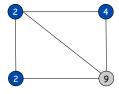
e.g., points in the plane

Question. Is there hope of a 3/2-approximation? 4/3?

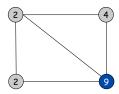
Theorem. Unless P = NP, there no $\rho\text{-approximation}$ for center-selection problem for any ρ < 2.

Weighted Vertex Cover

Weighted vertex cover. Given a graph G with vertex weights, find a vertex cover of minimum weight.



weight = 2 + 2 + 4

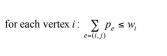


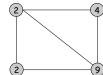
weight = 9

Weighted Vertex Cover

Pricing method. Each edge must be covered by some vertex. Edge e pays price $p_e \ge 0$ to use edge.

Fairness. Edges incident to vertex i should pay $\leq w_i$ in total.





25

27

Claim. For any vertex cover S and any fair prices p_e : $\sum_e p_e \le w(S)$.

Proof.

$$\sum_{e \in E} p_e \leq \sum_{i \in S} \sum_{e = (i,j)} p_e \leq \sum_{i \in S} w_i = w(S).$$

each edge e covered by at least one node in S

sum fairness inequalities for each node in S

Primal Dual Algorithm: Analysis

Theorem. Primal-dual algorithm is a 2-approximation. Pf.

- Algorithm terminates since at least one new node becomes tight after each iteration of while loop.
- Let S = set of all tight nodes upon termination of algorithm. S is a vertex cover: if some edge i-j is uncovered, then either i or j is not tight. But then while loop would not terminate.
- Let S^* be optimal vertex cover. We show $w(S) \le 2w(S^*)$.

$$w(S) = \sum_{i \in S} w_i = \sum_{i \in S} \sum_{e = (i,j)} p_e \leq \sum_{i \in V} \sum_{e = (i,j)} p_e = 2 \sum_{e \in E} p_e \leq 2w(S^*). \quad \blacksquare$$
 all nodes in S are tight
$$S \subseteq V,$$
 each edge counted twice fairness lemma

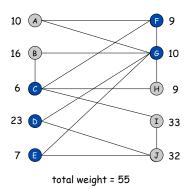
Primal-Dual Algorithm

Primal-dual algorithm. Set prices and find vertex cover simultaneously.

11.6 LP Rounding: Vertex Cover

Weighted Vertex Cover

Weighted vertex cover. Given an undirected graph G = (V, E) with vertex weights $w_i \ge 0$, find a minimum weight subset of nodes S such that every edge is incident to at least one vertex in S.



29

31

Integer Programming

INTEGER-PROGRAMMING. Given integers \mathbf{a}_{ij} and \mathbf{b}_i , find integers \mathbf{x}_j that satisfy:

$$\sum_{j=1}^{n} a_{ij} x_{j} \geq b_{i} \qquad 1 \leq i \leq m$$

$$x_{j} \geq 0 \qquad 1 \leq j \leq n$$

$$x_{j} \qquad \text{integral} \quad 1 \leq j \leq n$$

Observation. Vertex cover formulation proves that integer programming is NP-hard search problem (even if all coefficients are 0/1 and at most two nonzeros per inequality).

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Integer programming formulation.

(ILP) min
$$\sum_{i \in V} w_i x_i$$
s. t.
$$x_i + x_j \ge 1 \qquad (i,j) \in E$$

$$x_i \in \{0,1\} \quad i \in V$$

Observation. If x^* is optimal solution to (ILP), then $S = \{i \in V : x^*_i = 1\}$ is a min weight vertex cover.

30

32

Linear Programming

Linear programming. Max/min linear objective function subject to linear inequalities.

- Input: integers c_j , b_i , a_{ij} .
- Output: real numbers x_j .

(P)
$$\max c^T x$$

s. t. $Ax = b$
 $x \ge 0$

(P) max
$$\sum_{j=1}^{n} c_j x_j$$
s. t.
$$\sum_{j=1}^{n} a_{ij} x_j = b_i \quad 1 \le i \le m$$

$$x_j \ge 0 \quad 1 \le j \le n$$

Linear. No x^2 , xy, arccos(x), x(1-x), etc.

Simplex algorithm. [Dantzig 1947] Can solve LP in practice. Ellipsoid algorithm. [Khachian 1979] Can solve LP in poly-time.

Weighted Vertex Cover: LP Relaxation

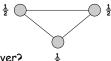
Weighted vertex cover. Linear programming formulation.

(LP) min
$$\sum_{i \in V} w_i x_i$$
s. t. $x_i + x_j \ge 1$ $(i, j) \in E$

$$x_i \ge 0 \quad i \in V$$

Observation. Optimal value of (LP) is \leq optimal value of (ILP).

Note. LP is not equivalent to vertex cover.



Q. How can solving LP help us find a small vertex cover?

A. Solve LP and round fractional values.

Weighted Vertex Cover

Good news.

- 2-approximation algorithm is basis for most practical heuristics.
 - can solve LP with min cut ⇒ faster
 - primal-dual schema ⇒ linear time (see book)
- PTAS for planar graphs.
- Solvable in poly-time on bipartite graphs using network flow.

Bad news. [Dinur-Safra, 2001] If P \neq NP, then no ρ -approximation for ρ < 1.3607, even with unit weights. \uparrow $10\sqrt{5}$ - 21

Weighted Vertex Cover

Theorem. If x^* is optimal solution to (LP), then $S = \{i \in V : x^*_{i} \ge \frac{1}{2}\}$ is a vertex cover whose weight is at most twice the min possible weight.

Pf. [S is a vertex cover]

- Consider an edge $(i, j) \in E$.
- Since $x^*_i + x^*_j \ge 1$, either $x^*_i \ge \frac{1}{2}$ or $x^*_j \ge \frac{1}{2} \implies (i, j)$ covered.

Pf. [S has desired cost]

• Let S* be optimal vertex cover. Then

$$\sum_{i \in S^*} w_i \geq \sum_{i \in S} w_i x_i^* \geq \frac{1}{2} \sum_{i \in S} w_i$$

$$\uparrow \qquad \qquad \uparrow$$

$$\text{LP is a relaxation} \qquad x^*_i \geq \frac{1}{2}$$

3

11.7 Load Balancing Reloaded

Generalized Load Balancing

Input. Set of m machines M; set of n jobs J.

- Job j must run contiguously on an authorized machine in $M_i \subseteq M$.
- Job j has processing time t_i.
- Each machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The load of machine i is $L_i = \Sigma_{j \in J(i)} t_j$.

Def. The makespan is the maximum load on any machine = $\max_i L_i$.

Generalized load balancing. Assign each job to an authorized machine to minimize makespan.

Generalized Load Balancing: Lower Bounds

Lemma 1. Let L be the optimal value to the LP. Then, the optimal makespan $L^* \ge L$.

Pf. LP has fewer constraints than IP formulation.

Lemma 2. The optimal makespan $L^* \ge \max_j t_j$.

Pf. Some machine must process the most time-consuming job. •

Generalized Load Balancing: Integer Linear Program and Relaxation

ILP formulation. x_{ij} = time machine i spends processing job j.

$$(IP) \ \text{min} \quad L$$

$$\text{s. t.} \quad \sum_{i} x_{ij} = t_{j} \qquad \text{for all } j \in J$$

$$\sum_{i} x_{ij} \leq L \qquad \text{for all } i \in M$$

$$x_{ij} \in \{0, t_{j}\} \quad \text{for all } j \in J \text{ and } i \in M_{j}$$

$$x_{ij} = 0 \qquad \text{for all } j \in J \text{ and } i \notin M_{j}$$

LP relaxation.

$$(LP) \ \, \text{min} \quad L$$
 s. t. $\sum_{i} x_{ij} = t_{j} \quad \text{for all } j \in J$
$$\sum_{i} x_{ij} \leq L \quad \text{for all } i \in M$$

$$x_{ij} \geq 0 \quad \text{for all } j \in J \text{ and } i \in M_{j}$$

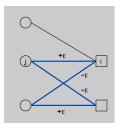
$$x_{ij} = 0 \quad \text{for all } j \in J \text{ and } i \notin M_{j}$$

Generalized Load Balancing: Structure of LP Solution

Lemma 3. Let x be an extreme point solution to LP. Let G(x) be the graph with an edge from machine i to job j if $x_{ij} > 0$. Then, G(x) is acyclic.

Pf. (we prove contrapositive)

- Let x be a feasible solution to the LP such that G(x) has a cycle.
- The variables y and z are feasible solutions to the LP.
- Observe $x = \frac{1}{2}y + \frac{1}{2}z$.
- Thus, x is not an extreme point. ■



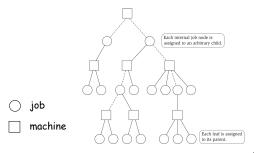
38

Generalized Load Balancing: Rounding

Rounded solution. Find extreme point LP solution x. Root forest G(x) at some arbitrary machine node r.

- If job j is a leaf node, assign j to its parent machine i.
- If job j is not a leaf node, assign j to one of its children.

Lemma 4. Rounded solution only assigns jobs to authorized machines. Pf. If job j is assigned to machine i, then $x_{ij} > 0$. LP solution can only assign positive value to authorized machines.



Generalized Load Balancing: Analysis

Theorem. Rounded solution is a 2-approximation. Pf.

- Let J(i) be the jobs assigned to machine i.
- By Lemma 6, the load L_i on machine i has two components:

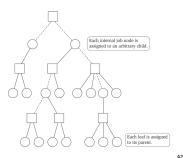
■ Thus, the overall load $L_i \le 2L^*$. ■

Generalized Load Balancing: Analysis

Lemma 5. If job j is a leaf node and machine i = parent(j), then $x_{ij} = t_j$. Pf. Since i is a leaf, $x_{ij} = 0$ for all $j \neq parent(i)$. LP constraint guarantees $\Sigma_i \ x_{ij} = t_j$.

Lemma 6. At most one non-leaf job is assigned to a machine.

Pf. The only possible non-leaf job assigned to machine i is parent(i).



Conclusions

Running time. The bottleneck operation in our 2-approximation is solving one LP with mn + 1 variables.

Remark. Possible to solve LP using max flow techniques. (see text)

Extensions: unrelated parallel machines. [Lenstra-Shmoys-Tardos 1990]

- Job j takes til time if processed on machine i.
- 2-approximation algorithm via LP rounding.
- No 3/2-approximation algorithm unless P = NP.

.-

43

11.8 Knapsack Problem

Algorithm Design by Éva Tardos and Jon Kleinberg · Copyright © 2005 Addison Wesley · Slides by Kevin Wayne

Knapsack Problem

Knapsack problem.

- Given n objects and a "knapsack."
- Item i has value $v_i > 0$ and weighs $w_i > 0$. ← we'll assume $w_i \le W$
- Knapsack can carry weight up to W.
- Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.

W = 11

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Polynomial Time Approximation Scheme

PTAS. $(1 + \varepsilon)$ -approximation algorithm for any constant $\varepsilon > 0$.

- Load balancing. [Hochbaum-Shmoys 1987]
- Euclidean TSP. [Arora 1996]

FPTAS. PTAS that is polynomial in input size and $1/\epsilon$.

Consequence. PTAS produces arbitrarily high quality solution, but trades off accuracy for time.

This section. FPTAS for knapsack problem via rounding and scaling.

Knapsack is NP-Complete

KNAPSACK: Given a finite set X, nonnegative weights w_i , nonnegative values v_i , a weight limit W, and a target value V, is there a subset $S \subseteq X$ such that:

$$\sum_{i \in S} w_i \leq W$$

$$\sum_{i \in S} v_i \geq V$$

SUBSET-SUM: Given a finite set X, nonnegative values u_i , and an integer U, is there a subset $S \subseteq X$ whose elements sum to exactly U?

Claim. SUBSET-SUM \leq p KNAPSACK. Pf. Given instance (u₁, ..., u_n, U) of SUBSET-SUM, create KNAPSACK instance:

$$v_i = w_i = u_i$$
 $\sum_{i \in S} u_i \le U$
 $V = W = U$ $\sum_{i \in S} u_i \ge U$

Knapsack Problem: Dynamic Programming 1

Def. OPT(i, w) = max value subset of items 1,..., i with weight limit w.

- Case 1: OPT does not select item i.
 - OPT selects best of 1, ..., i-1 using up to weight limit w
- Case 2: OPT selects item i.
 - new weight limit = w wi
 - OPT selects best of 1, ..., i-1 using up to weight limit w wi

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max \left\{ OPT(i-1, w), v_i + OPT(i-1, w-w_i) \right\} & \text{otherwise} \end{cases}$$

Running time. O(n W).

- W = weight limit.
- Not polynomial in input size!

Knapsack: FPTAS

Intuition for approximation algorithm.

- Round all values up to lie in smaller range.
- Run dynamic programming algorithm on rounded instance.
- Return optimal items in rounded instance.

Item	Value	Weight
1	134,221	1
2	656,342	2
3	1,810,013	5
4	22,217,800	6
5	28,343,199	7

Item Value Weight 2 1 1 2 2 7 3 19 4 23 6 5 7 29

W = 11

W = 11

51

original instance

rounded instance

Knapsack Problem: Dynamic Programming II

Def. OPT(i, v) = min weight subset of items 1, ..., i that yields value exactly v.

- Case 1: OPT does not select item i.
 - OPT selects best of 1, ..., i-1 that achieves exactly value v
- Case 2: OPT selects item i.
 - consumes weight wi, new value needed = v vi
 - OPT selects best of 1, ..., i-1 that achieves exactly value v

$$OPT(i, v) = \begin{cases} 0 & \text{if } v = 0 \\ \infty & \text{if } i = 0, v > 0 \\ OPT(i-1, v) & \text{if } v_i > v \\ \min \left\{ OPT(i-1, v), \ w_i + OPT(i-1, v - v_i) \right\} & \text{otherwise} \end{cases}$$

/ V* ≤ n v_m

Running time. $O(n V^*) = O(n^2 v_{max})$.

- V^* = optimal value = maximum v such that $OPT(n, v) \le W$.
- Not polynomial in input size!

Knapsack: FPTAS

Knapsack FPTAS. Round up all values: $\bar{v}_i = \begin{bmatrix} v_i \\ \bar{\theta} \end{bmatrix} \theta$, $\hat{v}_i = \begin{bmatrix} v_i \\ \bar{\theta} \end{bmatrix}$

- v_{max} = largest value in original instance
- ε = precision parameter
- $-\theta$ = scaling factor = $\varepsilon v_{max} / n$

Observation. Optimal solution to problems with \overline{v} or \hat{v} are equivalent.

52

Intuition. $\overline{\mathcal{V}}$ close to v so optimal solution using $\overline{\mathcal{V}}$ is nearly optimal; $\hat{\mathcal{V}}$ small and integral so dynamic programming algorithm is fast.

Running time. $O(n^3 / \epsilon)$.

 \blacksquare Dynamic program II running time is $\mathit{O}(\mathit{n}^2\,\hat{v}_{\mathrm{max}})$, where

$$\hat{v}_{\text{max}} = \left[\frac{v_{\text{max}}}{\theta} \right] = \left[\frac{n}{\varepsilon} \right]$$

Knapsack: FPTAS

Knapsack FPTAS. Round up all values: $\bar{v}_i = \begin{bmatrix} v_i \\ \theta \end{bmatrix} \theta$

Theorem. If S is solution found by our algorithm and S* is any other feasible solution then $(1+\varepsilon)\sum_{i\in S}v_i \geq \sum_{i\in S^*}v_i$

Pf. Let S* be any feasible solution satisfying weight constraint.

$$\begin{split} \sum_{i \in S^*} \nu_i & \leq \sum_{i \in S^*} \overline{\nu}_i & \text{always round up} \\ & \leq \sum_{i \in S} \overline{\nu}_i & \text{solve rounded instance optimally} \\ & \leq \sum_{i \in S} (\nu_i + \theta) & \text{never round up by more than } \theta \\ & \leq \sum_{i \in S} \nu_i + n\theta & |S| \leq n \\ & \leq (1 + \epsilon) \sum_{i \in S} \nu_i & \text{n} \theta = \epsilon \, \mathsf{v}_{\mathsf{max}}, \, \mathsf{v}_{\mathsf{max}} \leq \Sigma_{\mathsf{i} \in S} \, \mathsf{v}_i \end{split}$$

Center Selection: Hardness of Approximation

Theorem. Unless P = NP, there is no (2 - ϵ) approximation algorithm for k-center problem for any ϵ > 0.

Pf. We show how we could use a $(2 - \epsilon)$ approximation algorithm for k-center to solve DOMINATING-SET in poly-time.

- Let G = (V, E), k be an instance of DOMINATING-SET.
- Construct instance G' of k-center with sites V and distances
 - d(u, v) = 2 if (u, v) ∈ E
 - d(u, v) = 1 if (u, v) ∉ E
- Note that G' satisfies the triangle inequality.
- Claim: G has dominating set of size k iff there exists k centers C^* with $r(C^*) = 1$.
- Thus, if G has a dominating set of size k, a (2ε) -approximation algorithm on G' must find a solution C^* with $r(C^*) = 1$ since it cannot use any edge of distance 2.

Extra Slides

Algorithm Design by Éva Tardos and Jon Kleinberg · Copyright © 2005 Addison Wesley · Slides by Kevin Wayne

Knapsack: State of the Art

This lecture.

- "Rounding and scaling" method finds a solution within a (1 + ϵ) factor of optimum for any ϵ > 0.
- Takes $O(n^3 / \epsilon)$ time and space.

Ibarra-Kim (1975), Lawler (1979).

- Faster FPTAS: $O(n \log (1/\epsilon) + 1/\epsilon^4)$ time.
- Idea: group items by value into "large" and "small" classes.
 - run dynamic programming algorithm only on large items
 - insert small items according to ratio v_i / w_i
 - clever analysis