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8.  NP and Computational Intractability
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Algorithm Design Patterns and Anti-Patterns

Algorithm design patterns. Ex.
! Greed. O(n log n) interval scheduling.
! Divide-and-conquer. O(n log n) FFT.
! Dynamic programming. O(n2) edit distance.
! Duality. O(n3) bipartite matching.
! Reductions.
! Randomization.

Algorithm design anti-patterns.
! NP-completeness. O(nk) algorithm unlikely.
! PSPACE-completeness. O(nk) certification algorithm unlikely.
! Undecidability. No algorithm possible.
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8.1.  Polynomial-Time Reductions
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Classify Problems According to Computational Requirements

Q.  Which problems will we be able to solve in practice?

A working definition.  [Cobham 1964, Edmonds 1965, Rabin 1966]
Those with polynomial-time algorithms.

Yes Probably no

Shortest path Longest path

Euler cycle Hamiltonian cycle

Min cut Max cut

2-SAT 3-SAT

Matching 3D-matching

Primality testing Factoring

Planar 4-color Planar 3-color

Bipartite vertex cover Vertex cover
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Classify Problems

Desiderata.  Classify problems according to those that can be solved in
polynomial-time and those that cannot.

Provably requires exponential-time.
! Given a Turing machine, does it halt in at most k steps?
! Given a board position in an n-by-n generalization of chess, can

black guarantee a win?

Bad news.  Huge number of fundamental problems have defied
classification for decades.

Worse news.  Many were shown to be "computationally equivalent" and
intractable for all practical purposes.
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Polynomial-Time Reduction

Desiderata'.  Suppose we could solve X in polynomial-time. What else
could we solve in polynomial time?

Reduction.  Problem X polynomial reduces to problem Y if arbitrary
instances of problem X can be solved using:

! Polynomial number of standard computational steps, plus
! Polynomial number of calls to oracle that solves problem Y.

Notation.  X ! P Y.

Remarks.
! We pay for time to write down instances sent to black box  "

instances of Y must be of polynomial size.
! Note:  Cook reducibility.

don't confuse with reduces from

computational model supplemented by special piece
of hardware that solves instances of Y in a single step

in contrast to Karp reductions
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Polynomial-Time Reduction

Purpose.  Classify problems according to relative difficulty.

Design algorithms.  If X ! P Y and Y can be solved in polynomial-time,
then X can also be solved in polynomial time.

Establish intractability.  If X ! P Y and X cannot be solved in
polynomial-time, then Y cannot be solved in polynomial time.

Establish equivalence.  If X ! P Y and Y ! P X, we use notation X # P Y.

up to cost of reduction
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Polynomial-Time Reduction

Basic strategies.
! Reduction by simple equivalence.
! Reduction from special case to general case.
! Reduction by encoding with gadgets.
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Independent Set

INDEPENDENT SET:  Given a graph G = (V, E) and an integer k, is there
a subset of vertices S ( V such that |S| ) k, and for each edge at
most one of its endpoints is in S?

Ex.  Is there an independent set of size ) 6?  Yes.
Ex.  Is there an independent set of size ) 7?  No.

independent set
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Vertex Cover

VERTEX COVER:  Given a graph G = (V, E) and an integer k, is there a
subset of vertices S ( V such that |S| ! k, and for each edge, at least
one of its endpoints is in S?

Ex.  Is there a vertex cover of size ! 4?  Yes.
Ex.  Is there a vertex cover of size ! 3?  No.

vertex cover
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Vertex Cover and Independent Set

Claim.  VERTEX-COVER #P INDEPENDENT-SET.
Pf.  We show S is an independent set iff V $ S is a vertex cover.

vertex cover

independent set

12

Vertex Cover and Independent Set

Claim.  VERTEX-COVER #P INDEPENDENT-SET.
Pf.  We show S is an independent set iff V $ S is a vertex cover.

"

! Let S be any independent set.
! Consider an arbitrary edge (u, v).
! S independent " u % S or v % S  "  u & V $ S or v & V $ S.
! Thus, V $ S covers (u, v).

'

! Let V $ S be any vertex cover.
! Consider two nodes u & S and v & S.
! Observe that (u, v) % E since V $ S is a vertex cover.
! Thus, no two nodes in S are joined by an edge  " S independent set. !
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Polynomial-Time Reduction

Basic strategies.
! Reduction by simple equivalence.
! Reduction from special case to general case.
! Reduction by encoding with gadgets.
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Set Cover

SET COVER:  Given a set U of elements, a collection S1, S2, . . . , Sm of
subsets of U, and an integer k, does there exist a collection of ! k of
these sets whose union is equal to U?

Sample application.
! m available pieces of software.
! Set U of n capabilities that we would like our system to have.
! The ith piece of software provides the set Si ( U of capabilities.
! Goal:  achieve all n capabilities using fewest pieces of software.

Ex:
U = { 1, 2, 3, 4, 5, 6, 7 }
k = 2
S1 = {3, 7} S4 = {2, 4}
S2 = {3, 4, 5, 6} S5 = {5}
S3 = {1} S6 =  {1, 2, 6, 7}
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SET COVER

U = { 1, 2, 3, 4, 5, 6, 7 }
k = 2
Sa = {3, 7} Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1} Sf= {1, 2, 6, 7}

Vertex Cover Reduces to Set Cover

Claim.  VERTEX-COVER ! P SET-COVER.
Pf.  Given a VERTEX-COVER instance G = (V, E), k, we construct a set
cover instance whose size equals the size of the vertex cover instance.

Construction.
! Create SET-COVER instance:

– k = k,  U = E,  Sv = {e & E : e incident to v }
! Set-cover of size ! k iff vertex cover of size ! k.  !

a

d

b

e

f c

VERTEX COVER

k = 2
e1 

e2 e3 

e5 

e4 

e6 

e7 
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Integer Programming

INTEGER-PROGRAMMING:  Given integers aij and bi, find integers xj
that satisfy:

Claim.  VERTEX-COVER ! P INTEGER-PROGRAMMING.

  

! 

aij x j
j=1

n

" # bi          1$ i $ m

x j # 0           1$ j $ n

x j integral 1$ j $ n

  

! 

x
u

u " V

# $ k

x
u

+ x
v

% 1 (u, v)" E

x
u

% 0 u "V

x
u

integral u "V
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Polynomial-Time Reduction

Basic strategies.
! Reduction by simple equivalence.
! Reduction from special case to general case.
! Reduction by encoding with gadgets.
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Ex: 

Yes:  x1 = true, x2 = true x3 = false.

Literal: A Boolean variable or its negation.

Clause: A disjunction of literals.

Conjunctive normal form:  A propositional
formula * that is the conjunction of clauses.

SAT:  Given CNF formula *, does it have a satisfying truth assignment?

3-SAT:  SAT where each clause contains exactly 3 literals.

Satisfiability

  

! 

Cj = x
1
" x

2
" x

3

  

! 

x
i
  or  x

i

  

! 

" =  C
1
#C

2
# C

3
# C

4

! 

x
1
" x

2
" x

3( ) # x
1
" x

2
" x

3( ) # x
2
" x

3( ) # x
1
" x

2
" x

3( )

each corresponding to different variables
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3 Satisfiability Reduces to Independent Set

Claim.  3-SAT ! P INDEPENDENT-SET.
Pf.  Given an instance * of 3-SAT, we construct an instance (G, k) of
INDEPENDENT-SET that has an independent set of size k iff * is
satisfiable.

Construction.
! G contains 3 vertices for each clause, one for each literal.
! Connect 3 literals in a clause in a triangle.
! Connect literal to each of its negations.

  

! 

x
2

  

! 

"  =  x
1
# x

2
# x

3( ) $ x
1
# x

2
# x

3( ) $ x
1
# x

2
# x

4( )

  

! 

x
3

  

! 

x
1

  

! 

x
1   

! 

x
2   

! 

x
4

  

! 

x
1  

! 

x
2

  

! 

x
3

k = 3

G

20

3 Satisfiability Reduces to Independent Set

Claim.  G contains independent set of size k = |*| iff * is satisfiable.

Pf.  "  Let S be independent set of size k.
! S must contain exactly one vertex in each triangle.
! Set these literals to true.
! Truth assignment is consistent and all clauses are satisfied.

Pf  '   Given satisfying assignment, select one true literal from each
triangle. This is an independent set of size k.  !

  

! 

x
2   

! 

x
3

  

! 

x
1

  

! 

x
1   

! 

x
2   

! 

x
4

  

! 

x
1  

! 

x
2

  

! 

x
3

k = 3

G

and any other variables in a consistent way

  

! 

"  =  x
1
# x

2
# x

3( ) $ x
1
# x

2
# x

3( ) $ x
1
# x

2
# x

4( )
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Review

Basic reduction strategies.
! Simple equivalence:  INDEPENDENT-SET # P VERTEX-COVER.
! Special case to general case:  VERTEX-COVER ! P SET-COVER.
! Encoding with gadgets:  3-SAT ! P INDEPENDENT-SET.

Transitivity.  If X ! P Y and Y ! P Z, then X ! P Z.
Pf idea.  Compose the two algorithms.

Ex:  3-SAT ! P INDEPENDENT-SET ! P VERTEX-COVER ! P SET-COVER.
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Self-Reducibility

Decision problem.  Does there exist a vertex cover of size !  k?
Search problem.  Find vertex cover of minimum cardinality.

Self-reducibility.  Search problem ! P decision version.
! Applies to all (NP-complete) problems in this chapter.
! Justifies our focus on decision problems.

Ex:  to find min cardinality vertex cover.
! (Binary) search for cardinality k* of min vertex cover.
! Find a vertex v such that G $ { v } has a vertex cover of size ! k* - 1.

– any vertex in any min vertex cover will have this property
! Include v in the vertex cover.
! Recursively find a min vertex cover in G $ { v }.

delete v and all incident edges


