# Algorithm Design Patterns and Anti-Patterns

Ex.

# 8. NP and Computational Intractability

#### Algorithm design patterns.

# Greed.

- Divide-and-conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Randomization.

# $O(n \log n)$ interval scheduling. $O(n \log n)$ FFT. $O(n^2)$ edit distance. $O(n^3)$ bipartite matching.

#### Algorithm design anti-patterns.

- NP-completeness.
  PSPACE-completeness.
- Undecidability.
- O(n<sup>k</sup>) algorithm unlikely. O(n<sup>k</sup>) certification algorithm unlikely. No algorithm possible.

Algorithm Design by Éva Tardos and Jon Kleinberg · Copyright © 2005 Addison Wesley · Slides by Kevin Wayne

# Classify Problems According to Computational Requirements

Q. Which problems will we be able to solve in practice?

A working definition. [Cobham 1964, Edmonds 1965, Rabin 1966] Those with polynomial-time algorithms.

| Yes                    | Probably no       |
|------------------------|-------------------|
| Shortest path          | Longest path      |
| Euler cycle            | Hamiltonian cycle |
| Min cut                | Max cut           |
| 2-SAT                  | 3-SAT             |
| Planar 4-color         | Planar 3-color    |
| Bipartite vertex cover | Vertex cover      |
| Matching               | 3D-matching       |
| Primality testing      | Factoring         |

# 8.1. Polynomial-Time Reductions

### Classify Problems

Desiderata. Classify problems according to those that can be solved in polynomial-time and those that cannot.

#### Provably requires exponential-time.

- Given a Turing machine, does it halt in at most k steps?
- Given a board position in an n-by-n generalization of chess, can black guarantee a win?

Bad news. Huge number of fundamental problems have defied classification for decades.

Worse news. Many were shown to be "computationally equivalent" and intractable for all practical purposes.

## **Polynomial-Time Reduction**

Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time?

don't confuse with reduces from  $\dot{\boldsymbol{\varphi}}$ 

6

8

Reduction. Problem X polynomial reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Notation.  $X \leq_{P} Y$ .

computational model supplemented by special piece of hardware that solves instances of Y in a single step

#### Remarks.

5

7

- We pay for time to write down instances sent to black box  $\Rightarrow$  instances of Y must be of polynomial size.
- Note: Cook reducibility.

in contrast to Karp reductions

#### Polynomial-Time Reduction

Purpose. Classify problems according to relative difficulty.

Design algorithms. If  $X \leq_p Y$  and Y can be solved in polynomial-time, then X can also be solved in polynomial time.

Establish intractability. If  $X \leq_p Y$  and X cannot be solved in polynomial-time, then Y cannot be solved in polynomial time.

Establish equivalence. If  $X \leq_{P} Y$  and  $Y \leq_{P} X$ , we use notation  $X \equiv_{P} Y$ .

up to cost of reduction

## **Polynomial-Time Reduction**

#### Basic strategies.

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.

# Independent Set

**INDEPENDENT SET:** Given a graph G = (V, E) and an integer k, is there a subset of vertices  $S \subseteq V$  such that  $|S| \ge k$ , and for each edge at most one of its endpoints is in S?

Ex. Is there an independent set of size  $\ge$  6? Yes. Ex. Is there an independent set of size  $\ge$  7? No.



independent set

#### Vertex Cover

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a subset of vertices  $S \subseteq V$  such that  $|S| \le k$ , and for each edge, at least one of its endpoints is in S?

Ex. Is there a vertex cover of size  $\leq$  4? Yes. Ex. Is there a vertex cover of size  $\leq$  3? No.



Vertex Cover and Independent Set

Claim. VERTEX-COVER =<sub>p</sub> INDEPENDENT-SET. Pf. We show S is an independent set iff V – S is a vertex cover.



#### Vertex Cover and Independent Set

Claim. VERTEX-COVER  $=_{P}$  INDEPENDENT-SET. Pf. We show S is an independent set iff V – S is a vertex cover.

⇒

- Let S be any independent set.
- Consider an arbitrary edge (u, v).
- S independent  $\Rightarrow$  u  $\notin$  S or v  $\notin$  S  $\Rightarrow$  u  $\in$  V S or v  $\in$  V S.
- Thus, V S covers (u, v).

⇐

- Let V S be any vertex cover.
- . Consider two nodes  $u \in S$  and  $v \in S.$
- Observe that  $(u, v) \notin E$  since V S is a vertex cover.
- Thus, no two nodes in S are joined by an edge ⇒ S independent set.

## Polynomial-Time Reduction

#### Basic strategies.

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.

#### Set Cover

SET COVER: Given a set U of elements, a collection  $S_1, S_2, \ldots, S_m$  of subsets of U, and an integer k, does there exist a collection of  $\leq k$  of these sets whose union is equal to U?

#### Sample application.

- m available pieces of software.
- . Set U of n capabilities that we would like our system to have.
- . The ith piece of software provides the set  $S_i \subseteq U$  of capabilities.
- . Goal: achieve all n capabilities using fewest pieces of software.

#### Ex:

| U = { 1, 2, 3, 4, 5,          | 6, 7 }                        |
|-------------------------------|-------------------------------|
| k = 2                         |                               |
| S <sub>1</sub> = {3, 7}       | S <sub>4</sub> = {2, 4}       |
| S <sub>2</sub> = {3, 4, 5, 6} | S <sub>5</sub> = {5}          |
| 5 <sub>3</sub> = {1}          | S <sub>6</sub> = {1, 2, 6, 7} |
|                               |                               |

. . . . . . . . . .

#### Vertex Cover Reduces to Set Cover

Claim. VERTEX-COVER  $\leq_{P}$  SET-COVER.

Pf. Given a VERTEX-COVER instance G = (V, E), k, we construct a set cover instance whose size equals the size of the vertex cover instance.

#### Construction.

- Create SET-COVER instance:
- k = k, U = E,  $S_v = \{e \in E : e \text{ incident to } v\}$
- Set-cover of size ≤ k iff vertex cover of size ≤ k.



### Integer Programming

INTEGER-PROGRAMMING: Given integers  $a_{ij}$  and  $b_i$ , find integers  $x_j$  that satisfy:

 $\begin{aligned} \sum_{j=1}^{n} a_{ij} x_j &\geq b_i & 1 \leq i \leq m \\ x_j &\geq 0 & 1 \leq j \leq n \\ x_j & \text{integral} & 1 \leq j \leq n \end{aligned}$ 

#### Claim. VERTEX-COVER $\leq_{P}$ INTEGER-PROGRAMMING.

 $\begin{array}{rcl} \sum\limits_{u \in V} x_u &\leq k \\ x_u + x_v &\geq 1 & (u, v) \in E \\ x_u &\geq 0 & u \in V \\ x_u & \text{integral } u \in V \end{array}$ 

13

## Polynomial-Time Reduction

#### Basic strategies.

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.

#### Satisfiability

| Literal: A Boolean variable or its negation.                                                | $x_i$ or $\overline{x_i}$                     |
|---------------------------------------------------------------------------------------------|-----------------------------------------------|
| Clause: A disjunction of literals.                                                          | $C_j = x_1 \vee \overline{x_2} \vee x_3$      |
| Conjunctive normal form: A propositional formula $\Phi$ that is the conjunction of clauses. | $\Phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$ |

SAT: Given CNF formula  $\Phi$ , does it have a satisfying truth assignment?

3-SAT: SAT where each clause contains exactly 3 literals. each corresponding to different variables

# Ex: $(\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3})$ Yes: $x_1 = true$ , $x_2 = true x_3 = false$ .

## 3 Satisfiability Reduces to Independent Set

17

19

Claim. 3-SAT ≤ p INDEPENDENT-SET.

Pf. Given an instance  $\Phi$  of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size k iff  $\Phi$  is satisfiable.

#### Construction.

- G contains 3 vertices for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- . Connect literal to each of its negations.



## 3 Satisfiability Reduces to Independent Set

Claim. G contains independent set of size  $k = |\Phi|$  iff  $\Phi$  is satisfiable.

Pf.  $\Rightarrow$  Let S be independent set of size k.

G

- S must contain exactly one vertex in each triangle.
- Set these literals to true. and any other variables in a consistent way .
- Truth assignment is consistent and all clauses are satisfied.

Pf  $\leftarrow$  Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k.



18

#### Review

#### Basic reduction strategies.

- Simple equivalence: INDEPENDENT-SET =  $_{P}$  VERTEX-COVER.
- Special case to general case: VERTEX-COVER ≤ p SET-COVER.
- Encoding with gadgets:  $3-SAT \leq_{P} INDEPENDENT-SET$ .

Transitivity. If  $X \leq_P Y$  and  $Y \leq_P Z$ , then  $X \leq_P Z$ . Pf idea. Compose the two algorithms.

Ex:  $3-SAT \leq_{p} INDEPENDENT-SET \leq_{p} VERTEX-COVER \leq_{p} SET-COVER.$ 

# Self-Reducibility

Decision problem. Does there exist a vertex cover of size  $\leq$  k? Search problem. Find vertex cover of minimum cardinality.

Self-reducibility. Search problem  $\leq_{P}$  decision version.

- Applies to all (NP-complete) problems in this chapter.
- Justifies our focus on decision problems.

# Ex: to find min cardinality vertex cover.

- (Binary) search for cardinality k\* of min vertex cover.
- Find a vertex v such that G {v} has a vertex cover of size ≤ k\* 1.
   any vertex in any min vertex cover will have this property
- Include v in the vertex cover.

21

Recursively find a min vertex cover in G - {v}.

delete v and all incident edges