8. NP and Computational Intractability

Algorithm Design by Éva Tardos and Jon Kleinberg - Copyright $\odot 2005$ Addison Wessey . Slides by Kevin Wayne

Algorithm design patterns.

- Greed.
- Divide-and-conquer.
- Dynamic programming
- Duality.
- Reductions
- Randomization

Algorithm design anti-patterns.

- NP-completeness.
- PSPACE-completeness.
- Undecidability.
$O\left(n^{k}\right)$ algorithm unlikely.
$O\left(n^{k}\right)$ certification algorithm unlikely. No algorithm possible.

Classify Problems According to Computational Requirements
Q. Which problems will we be able to solve in practice?

A working definition. [Cobham 1964, Edmonds 1965, Rabin 1966]
Those with polynomial-time algorithms.

Yes	Probably no
Shortest path	Longest path
Euler cycle	Hamiltonian cycle
Min cut	Max cut
2-SAT	3-SAT
Planar 4-color	Planar 3-color
Bipartite vertex cover	Vertex cover
Matching	3D-matching
Primality testing	Factoring

Desiderata. Classify problems according to those that can be solved in polynomial-time and those that cannot.

Provably requires exponential-time.

- Given a Turing machine, does it halt in at most k steps?
- Given a board position in an n-by-n generalization of chess, can black guarantee a win?

Bad news. Huge number of fundamental problems have defied classification for decades.

Worse news. Many were shown to be "computationally equivalent" and intractable for all practical purposes.

Polynomial-Time Reduction

Purpose. Classify problems according to relative difficulty.

Design algorithms. If $X s_{p} Y$ and Y can be solved in polynomial-time, then X can also be solved in polynomial time.

Establish intractability. If $X s_{p} Y$ and X cannot be solved in polynomial-time, then Y cannot be solved in polynomial time.

Establish equivalence. If $X s_{p} Y$ and $Y s_{p} X$, we use notation $X \equiv_{p} Y$. \uparrow
up to cost of reduction

Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time?
don't confuse with reduces from don'
Reduction. Problem X polynomial reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y .

\uparrow

Notation. $\mathrm{X} \leq \mathrm{p} \mathrm{Y}$.
of hardware that solves instances of y in a single step

Remarks.

- We pay for time to write down instances sent to black box \Rightarrow instances of Y must be of polynomial size.
- Note: Cook reducibility.
- in contrast to Karp reductions

Polynomial-Time Reduction

Basic strategies.

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.

INDEPENDENT SET: Given a graph $G=(V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \geq k$, and for each edge at most one of its endpoints is in S?

Ex. Is there an independent set of size ≥ 6 ? Yes.
Ex. Is there an independent set of size ≥ 7 ? No.

independent set

Vertex Cover and Independent Set

Claim. VERTEX-COVER \equiv_{p} INDEPENDENT-SET.
Pf. We show S is an independent set iff $V-S$ is a vertex cover.

VERTEX COVER: Given a graph $G=(V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge, at least one of its endpoints is in S ?

Ex. Is there a vertex cover of size ≤ 4 ? Yes.
Ex. Is there a vertex cover of size ≤ 3 ? No.

vertex cover

Vertex Cover and Independent Set

Claim. VERTEX-COVER \equiv_{p} INDEPENDENT-SET.
Pf. We show S is an independent set iff $V-S$ is a vertex cover. \Rightarrow

- Let S be any independent set.
- Consider an arbitrary edge (u, v).
. S independent $\Rightarrow u \notin S$ or $v \notin S \Rightarrow u \in V-S$ or $v \in V-S$.
- Thus, V-S covers (u, v).
\Leftarrow
- Let V - S be any vertex cover.
- Consider two nodes $u \in S$ and $v \in S$.
- Observe that (u, v) $\notin E$ since $V-S$ is a vertex cover.
- Thus, no two nodes in S are joined by an edge \Rightarrow S independent set. -

Polynomial-Time Reduction

Basic strategies.

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.

Vertex Cover Reduces to Set Cover

Claim. VERTEX-COVER $\leq p$ SET-COVER.
Pf. Given a VERTEX-COVER instance $G=(V, E), k$, we construct a set cover instance whose size equals the size of the vertex cover instance.

Construction.

- Create SET-COVER instance:
$-k=k, U=E, S_{v}=\{e \in E: e$ incident to $v\}$
- Set-cover of size $\leq k$ iff vertex cover of size $\leq k$. -


```
SET COVER
U={1,2,3,4,5,6,7}
k=2
S
S
Se={1}
S}\mp@subsup{S}{f}{}={1,2,6,7
```

SET COVER: Given a set U of elements, a collection $S_{1}, S_{2}, \ldots, S_{m}$ of subsets of U, and an integer k, does there exist a collection of $\leq k$ of these sets whose union is equal to U ?

Sample application.

- m available pieces of software.
- Set U of n capabilities that we would like our system to have.
- The ith piece of software provides the set $S_{i} \subseteq U$ of capabilities.
- Goal: achieve all n capabilities using fewest pieces of software.

Ex:

$$
\begin{array}{ll}
U=\{1,2,3,4,5,6,7\} \\
\mathrm{V}=2 & \\
S_{1}=\{3,7\} & S_{4}=\{2,4\} \\
S_{2}=\{3,4,5,6\} & S_{5}=\{5\} \\
S_{3}=\{1\} & S_{6}=\{1,2,6,7\}
\end{array}
$$

Integer Programming

INTEGER-PROGRAMMING: Given integers $a_{i j}$ and b_{i}, find integers x_{j} that satisfy:

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j} & \geq b_{i} & & 1 \leq i \leq m \\
x_{j} & \geq 0 & & 1 \leq j \leq n \\
x_{j} & & \text { integral } & 1 \leq j \leq n
\end{aligned}
$$

Claim. VERTEX-COVER $\leq p$ INTEGER-PROGRAMMING.

$$
\begin{array}{rlrl}
\sum_{u \in V} x_{u} & \leq k & \\
x_{u}+x_{v} & \geq 1 & & (u, v) \in E \\
x_{u} & \geq 0 & & u \in V \\
x_{u} & & \text { integral } & u \in V
\end{array}
$$

Satisfiability

Basic strategies.

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.

Claim. 3 -SAT s_{p} INDEPENDENT-SET.
Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size k iff Φ is satisfiable.

Construction.

- G contains 3 vertices for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

Literal: A Boolean variable or its negation.	x_{i} or $\overline{x_{i}}$
Clause: A disjunction of literals.	$C_{j}=x_{1} \vee \overline{x_{2}} \vee x_{3}$
Conjunctive normal form: A propositional formula Φ that is the conjunction of clauses.	$\Phi=C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}$

SAT: Given CNF formula Φ, does it have a satisfying truth assignment?
3-SAT: SAT where each clause contains exactly 3 literals.
each corresponding to different variables

```
Ex: (\overline{\mp@subsup{x}{1}{}}\vee\mp@subsup{x}{2}{}\vee\mp@subsup{x}{3}{})\wedge(\begin{array}{l}{1}\\{1}\end{array}\overline{\mp@subsup{x}{2}{}}\vee\mp@subsup{x}{3}{})\wedge(\begin{array}{c}{2}\\{\vee}\end{array}\mp@subsup{x}{3}{})\wedge(\overline{\mp@subsup{x}{1}{}}\vee\overline{\mp@subsup{x}{2}{}}\vee\overline{\mp@subsup{x}{3}{}})
Yes:}\mp@subsup{x}{1}{}=\mathrm{ true, }\mp@subsup{x}{2}{}=\mathrm{ true }\mp@subsup{x}{3}{}=\mathrm{ false.
```

Claim. G contains independent set of size $k=|\Phi|$ iff Φ is satisfiable.

Pf. \Rightarrow Let S be independent set of size k.

- S must contain exactly one vertex in each triangle.
- Set these literals to true. \leftarrow and any other variables in a consistent way
- Truth assignment is consistent and all clauses are satisfied.

Pf \Leftarrow Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k. -

G

Basic reduction strategies

- Simple equivalence: INDEPENDENT-SET \equiv p VERTEX-COVER
- Special case to general case: VERTEX-COVER \leq_{p} SET-COVER.
- Encoding with gadgets: 3 -SAT $\leq \mathrm{p}$ INDEPENDENT-SET.

Transitivity. If $X \leq_{p} Y$ and $Y \leq_{p} Z$, then $X \leq_{p} Z$
Pf idea. Compose the two algorithms.
Ex: 3 -SAT \leq_{p} INDEPENDENT-SET \leq_{p} VERTEX-COVER \leq_{p} SET-COVER

Decision problem. Does there exist a vertex cover of size $\leq k$?
search problem. Find vertex cover of minimum cardinality.

Self-reducibility. Search problem $\leq p$ decision version.

- Applies to all (NP-complete) problems in this chapter.
- Justifies our focus on decision problems.

Ex: to find min cardinality vertex cover.

- (Binary) search for cardinality k^{*} of min vertex cover.
- Find a vertex v such that $G-\{v\}$ has a vertex cover of size $\leq \mathrm{k}^{*}-1$. - any vertex in any min vertex cover will have this property
- Include v in the vertex cover.
- Recursively find a min vertex cover in $G-\{v\}$.
\uparrow
delete v and all incident edges

