MST: Red Rule, Blue Rule

Minimum Spanning Tree Origin

Otakar Boruvka (1926).

- Electrical Power Company of Western Moravia in Brno.
- Most economical construction of electrical power network.
- Concrete engineering problem is now a cornerstone problem in combinatorial optimization.

Minimum spanning tree. Given a connected graph G with real-valued edge weights c_{e}, an MST is a spanning tree of G whose sum of edge weights is minimized.

Cayley's Theorem (1889). There are n^{n-2} spanning trees of K_{n}. \uparrow
can' \dagger solve by brute force

Applications

MST is fundamental problem with diverse applications.

- Network design.
- telephone, electrical, hydraulic, TV cable, computer, road
- Approximation algorithms for NP-hard problems.
- traveling salesperson problem, Steiner tree
- Indirect applications.
- max bottleneck paths
- LDPC codes for error correction
- image registration with Renyi entropy
- learning salient features for real-time face verification
- reducing data storage in sequencing amino acids in a protein
- model locality of particle interactions in turbulent fluid flows
- autoconfig protocol for Ethernet bridging to avoid cycles in a network
- Cluster analysis.

Cycle. Set of edges the form $a-b, b-c, c-d, \ldots, y-z, z-a$.

Cycle $=1-2,2-3,3-4,4-5,5-6,6-1$

Cut. The cut induced by a subset of nodes S is the set of all edges with exactly one endpoint in S.


```
S = {4,5,8}
Cut = 5-6, 5-7, 3-4, 3-5, 7-8
```


Generic MST Algorithm

Red rule. Let C be a cycle with no red edges. Select an uncolored edge of C of max weight and color it red.

Blue rule. Let D be a cut with no blue edges. Select an uncolored edge in D of \min weight and color it blue.

Greedy algorithm. Apply the red and blue rules (non-deterministically!) until all edges are colored.
\uparrow
can stop once $n-1$ edges colored blue

Theorem. The blue edges form a MST.

Claim. A cycle and a cut intersect in an even number of edges.

Cycle $=1-2,2-3,3-4,4-5,5-6,6-1$ Cut $=3-4,3-5,5-6,5-7,7-8$ Intersection $=3-4,5-6$

Pf. (by picture)

Greedy Algorithm: Proof of Correctness

Claim. The greedy algorithm terminates.
Pf. (by contradiction)

- Suppose edge e is left colored; let's see what happens.
- Blue edges form a forest F.
- Case 1: adding e to F creates a cycle C.
- Case 2: adding e to F connects two components A_{1} and A_{2}. -

Case 1: apply red rule to cycle C and color e red.

Case 2: apply blue rule to A_{1} or A_{2}, and color some edge blue.

Theorem. Upon termination, the blue edges form a MST.
Pf. (by induction on number of iterations)

```
Color Invariant: There exists a MST T* containing all
the blue edges and none of the red ones.
```

- Base case: no edges colored \Rightarrow every MST satisfies invariant.
- Induction step: suppose color invariant true before blue rule.
- let D be chosen cut, and let f be edge colored blue
- if $f \in T^{\star}, T^{*}$ still satisfies invariant
- o/w, consider fundamental cycle C by adding f to T^{*}
- let e be another edge in $C \cap D$
- e is uncolored and $c_{e} \geq c_{f}$ since

$$
e \in T^{\star} \Rightarrow \text { e not red }
$$

blue rule \Rightarrow e not blue, $c_{e} \geq c_{f}$

- $T^{\star} \cup\{f\}$ - $\{e\}$ satisfies invariant

Special Case: Prim's Algorithm

Prim's algorithm. [Jarník 1930, Dijkstra 1957, Prim 1959]
. S = vertices in tree connected by blue edges.

- Initialize S = any node.
- Apply blue rule to cut induced by S.

Theorem. Upon termination, the blue edges form a MST
Pf. (by induction on number of iterations)

Color Invariant: There exists a MST T* containing all the blue edges and none of the red ones.

- Induction step (cont): suppose color invariant true before red rule.
let C be chosen cycle, and let e be edge colored red
- if $e \notin T^{\star}, T^{\star}$ still satisfies invariant
- o/w, consider fundamental cut D by deleting e from T^{\star}
- let f be another edge in $C \cap D$
- f is uncolored and $c_{e} \geq c_{f}$ since

$$
\begin{aligned}
& f \notin T^{\star} \Rightarrow f \text { not blue } \\
& \text { red rule } \Rightarrow f \text { not red, } c_{e} \geq c_{f}
\end{aligned}
$$

- $T^{\star} \cup\{f\}-\{e\}$ satisfies invariant

T^{\star} 10

Implementation: Prim's Algorithm

Implementation. Use a priority queue ala Dijkstra

- Maintain set of explored nodes S.
- For each unexplored node v, maintain attachment cost $a[v]=$ cost of cheapest edge v to a node in S.
- $O\left(n^{2}\right)$ with an array; $O(m \log n)$ with a binary heap.

```
Prim(G, c) {
    foreach (v \in v) a[v] \leftarrow\infty
    Initialize an empty priority queue Q
    foreach (v G V) insert v onto Q
    Initialize set of explored nodes S }\leftarrow
    while (Q is not empty) {
        u}\leftarrow\mathrm{ delete min element from Q
        S}\leftarrowS U { u }
        foreach (edge e = (u, v) incident to u)
            if ((v & S) and (ce<a[v]))
            decrease priority a[v] to ce
}
```

Kruskal's algorithm. [Kruskal, 1956]

- Consider edges in ascending order of weight.
- Case 1: If both endpoints of e in same blue tree, color e red by applying red rule to unique cycle.
- Case 2: Otherwise color e blue by applying blue rule to cut consisting of all nodes in blue tree of one endpoint.

Case 1

Case 2

Special Case: Boruvka's Algorithm

Boruvka's algorithm. [Boruvka, 1926]

- Apply blue rule to cut corresponding to each blue tree
- Color all selected edges blue.
- $O(\log n)$ phases since each phase halves total \# nodes.

Implementation. Use the union-find data structure

- Build set T of edges in the MST.
- Maintain set for each connected component.
- $O(m \log n)$ for sorting and $O(m \alpha(m, n))$ for union-find.

```
Kruskal (G, c) {
```

Kruskal (G, c) {
Sort edges weights so that c}\mp@subsup{c}{1}{}\leq\mp@subsup{c}{2}{}\leq···\leq\mp@subsup{c}{m}{}
Sort edges weights so that c}\mp@subsup{c}{1}{}\leq\mp@subsup{c}{2}{}\leq···\leq\mp@subsup{c}{m}{}
T}\leftarrow
T}\leftarrow
foreach (u \in V) make a set containing singleton u
foreach (u \in V) make a set containing singleton u
for i = 1 to m are u and v in different connected components?
for i = 1 to m are u and v in different connected components?
(u,v) = e i
(u,v) = e i
if (u and v are in different sets) {
if (u and v are in different sets) {
T}\leftarrowT|{\mp@subsup{e}{i}{}
T}\leftarrowT|{\mp@subsup{e}{i}{}
merge the sets containing }u\mathrm{ and v
merge the sets containing }u\mathrm{ and v
}
}
return T
return T
}
}
merge two components

```
        merge two components
```

Boruvka implementation. $O(m \log n)$

- Contract blue trees, deleting loops and parallel edges.
- Remember which edges were contracted in each super-node.

Deterministic comparison based algorithms.

- $O(m \log n)$ Jarník, Prim, Dijkstra, Kruskal, Boruvka
- $O(m \log \log n)$ Cheriton-Tarjan (1976), Yao (1975)
- $O(m \beta(m, n)$). Fredman-Tarjan (1987)
- $O(m \log \beta(m, n))$. Gabow-Galil-Spencer-Tarjan (1986)
- $O(m \alpha(m, n))$ Chazelle (2000)

Holy grail. $O(m)$.
Notable.

- O(m) randomized. Karger-Klein-Tarjan (1995)
- $O(m)$ verification. Dixon-Rauch-Tarjan (1992)

Euclidean.

- 2-d: $O(n \log n)$. compute MST of edges in Delaunay
- k-d: $O\left(k n^{2}\right)$. dense Prim

Clustering

Clustering. Given a set U of n objects labeled p_{1}, \ldots, p_{n}, classify into coherent groups.
photos, documents. micro-organisms

Distance function. Numeric value specifying "closeness" of two objects.

$$
\begin{aligned}
& \uparrow \\
& \text { number of corresponding pixels whose } \\
& \text { intensities differ by some threshold }
\end{aligned}
$$

Fundamental problem. Divide into clusters so that points in different clusters are far apart.

- Similarity searching in medical image databases
- Skycat: cluster 2×10^{9} sky objects into stars, quasars, galaxies.
- Routing in mobile ad hoc networks.
- Document categorization for web search.
- Identify patterns in gene expression.

4.7 Clustering

Outbreak of cholera deaths in London in 1850s.
Reference: Nine Mishra. HP Labs
Reference: Nina Mishra, HP Labs

Clustering of Maximum Spacing

k-clustering. Divide objects into k non-empty groups.

Distance function. Assume it satisfies several natural properties.

- $d\left(p_{i}, p_{j}\right)=0$ iff $p_{i}=p_{j} \quad$ (identity of indiscernibles)
- $d\left(p_{i}, p_{j}\right) \geq 0 \quad$ (nonnegativity)
- $\mathrm{d}\left(\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}\right)=\mathrm{d}\left(\mathrm{p}_{\mathrm{j}}, \mathrm{p}_{\mathrm{i}}\right) \quad$ (symmetry)

Spacing. Min distance between any pair of points in different clusters.
Clustering of maximum spacing. Given an integer k, find a k-clustering of maximum spacing.

Dendrogram. Scientific visualization of hypothetical sequence of evolutionary events.

- Leaves = genes.
- Internal nodes = hypothetical ancestors.

leaves represent instances (e.g. genes)
Reference: htrp://www.biostat.wisc.edu/bmi $576 /$ fall-2003/lecture13.pdf

Greedy Clustering Algorithm

Single-link k-clustering algorithm.

- Form a graph on the vertex set U, corresponding to n clusters.
- Find the closest pair of objects such that each object is in a different cluster, and add an edge between them.
- Repeat n - k times until there are exactly k clusters.

Key observation. This procedure is precisely Kruskal's algorithm (except we stop when there are k connected components).

Remark. Equivalent to finding an MST and deleting the k-1 most expensive edges.

Tumors in similar tissues cluster together.

Theorem. Let C^{\star} denote the clustering $C^{\star}{ }_{1}, \ldots, C^{\star}{ }_{k}$ formed by deleting the $\mathrm{k}-1$ most expensive edges of a MST. C^{\star} is a k-clustering of max spacing.

Pf. Let C denote some other clustering $C_{1}, \ldots, C_{\mathrm{k}}$.
. The spacing of C^{\star} is the length d^{\star} of the $(k-1)^{\text {st }}$ most expensive edge.

- Let $\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}$ be in the same cluster in ${C^{\star}}^{\star}$, say ${C^{\star}}^{\star}$, but different clusters in C, say C_{s} and C_{+}.
- Some edge (p, q) on $p_{i}-p_{j}$ path in $C^{\star}{ }_{r}$ spans two different clusters in C.
- All edges on $p_{i}-p_{j}$ path have length $\leq d^{*}$ since Kruskal chose them.
- Spacing of C is $\leq d^{*}$ since p and q are in different clusters. -

