
Algorithm Design by Éva Tardos and Jon Kleinberg • Copyright © 2005 Addison Wesley • Slides by Kevin Wayne

MST: Red Rule, Blue Rule

2

Minimum Spanning Tree

Minimum spanning tree. Given a connected graph G with real-valued
edge weights ce, an MST is a spanning tree of G whose sum of edge
weights is minimized.

Cayley's Theorem (1889). There are nn-2 spanning trees of Kn.

 5

23

10
21

 14

24

 16

 6

 4

18
9

7

11
 8

 5

 6

 4

9

7

11
 8

G = (V, E) T = (V, F)
w(T) = 50

can't solve by brute force

3

Minimum Spanning Tree Origin

Otakar Boruvka (1926).
! Electrical Power Company of Western Moravia in Brno.
! Most economical construction of electrical power network.
! Concrete engineering problem is now a cornerstone problem in

combinatorial optimization.

4

Applications

MST is fundamental problem with diverse applications.

! Network design.
– telephone, electrical, hydraulic, TV cable, computer, road

! Approximation algorithms for NP-hard problems.
– traveling salesperson problem, Steiner tree

! Indirect applications.
– max bottleneck paths
– LDPC codes for error correction
– image registration with Renyi entropy
– learning salient features for real-time face verification
– reducing data storage in sequencing amino acids in a protein
– model locality of particle interactions in turbulent fluid flows
– autoconfig protocol for Ethernet bridging to avoid cycles in a network

! Cluster analysis.

5

Cycles and Cuts

Cycle. Set of edges the form a-b, b-c, c-d, …, y-z, z-a.

Cut. The cut induced by a subset of nodes S is the set of all edges
with exactly one endpoint in S.

Cycle = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1

1
3

8

2

6

7

4

5

S = { 4, 5, 8 }
Cut = 5-6, 5-7, 3-4, 3-5, 7-8

1
3

8

2

6

7

4

5

6

Cycle-Cut Intersection

Claim. A cycle and a cut intersect in an even number of edges.

Pf. (by picture)

1
3

8

2

6

7

4

5

S

V - S

C

Cycle = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1
Cut = 3-4, 3-5, 5-6, 5-7, 7-8
Intersection = 3-4, 5-6

7

Generic MST Algorithm

Red rule. Let C be a cycle with no red edges. Select an uncolored
edge of C of max weight and color it red.

Blue rule. Let D be a cut with no blue edges. Select an uncolored edge
in D of min weight and color it blue.

Greedy algorithm. Apply the red and blue rules (non-deterministically!)
until all edges are colored.

Theorem. The blue edges form a MST.

can stop once n-1 edges colored blue

Reference: Data Structures and Algorithms by R. E. Tarjan

8

Greedy Algorithm: Proof of Correctness

Claim. The greedy algorithm terminates.
Pf. (by contradiction)

! Suppose edge e is left colored; let's see what happens.
! Blue edges form a forest F.
! Case 1: adding e to F creates a cycle C.
! Case 2: adding e to F connects two components A1 and A2. !

 Case 1: apply red rule to cycle C
 and color e red.

 e

Case 2: apply blue rule to A1 or A2, and
color some edge blue.

 e

 C A1

 A2

9

Greedy Algorithm: Proof of Correctness

Theorem. Upon termination, the blue edges form a MST.
 Pf. (by induction on number of iterations)

! Base case: no edges colored ! every MST satisfies invariant.

! Induction step: suppose color invariant true before blue rule.
– let D be chosen cut, and let f be edge colored blue
– if f " T*, T* still satisfies invariant
– o/w, consider fundamental cycle C by adding f to T*
– let e be another edge in C # D
– e is uncolored and ce $ cf since

e " T* ! e not red
blue rule ! e not blue, ce $ cf

– T* % { f } - { e } satisfies invariant

f

 T*
e

Color Invariant: There exists a MST T* containing all
the blue edges and none of the red ones.

10

Greedy Algorithm: Proof of Correctness

Theorem. Upon termination, the blue edges form a MST.
 Pf. (by induction on number of iterations)

! Induction step (cont): suppose color invariant true before red rule.
– let C be chosen cycle, and let e be edge colored red
– if e) T*, T* still satisfies invariant
– o/w, consider fundamental cut D by deleting e from T*
– let f be another edge in C # D
– f is uncolored and ce $ cf since

f) T* ! f not blue
red rule ! f not red, ce $ cf

– T* % { f } - { e } satisfies invariant !

f

 T*
e

Color Invariant: There exists a MST T* containing all
the blue edges and none of the red ones.

11

Special Case: Prim's Algorithm

Prim's algorithm. [Jarník 1930, Dijkstra 1957, Prim 1959]
! S = vertices in tree connected by blue edges.
! Initialize S = any node.
! Apply blue rule to cut induced by S.

S

12

Implementation: Prim's Algorithm

Prim(G, c) {

 foreach (v " V) a[v] & '

 Initialize an empty priority queue Q

 foreach (v " V) insert v onto Q

 Initialize set of explored nodes S & (

 while (Q is not empty) {

 u & delete min element from Q

 S & S % { u }

 foreach (edge e = (u, v) incident to u)

 if ((v) S) and (ce < a[v]))

 decrease priority a[v] to ce
}

Implementation. Use a priority queue ala Dijkstra.
! Maintain set of explored nodes S.
! For each unexplored node v, maintain attachment cost a[v] = cost of

cheapest edge v to a node in S.
! O(n2) with an array; O(m log n) with a binary heap.

13

Special Case: Kruskal's Algorithm

Kruskal's algorithm. [Kruskal, 1956]
! Consider edges in ascending order of weight.
! Case 1: If both endpoints of e in same blue tree, color e red by

applying red rule to unique cycle.
! Case 2: Otherwise color e blue by applying blue rule to cut

consisting of all nodes in blue tree of one endpoint.

Case 1 Case 2

e

e

14

Implemention: Kruskal's Algorithm

Kruskal(G, c) {

 Sort edges weights so that c1 * c2 * ... * cm.
 T & (

 foreach (u " V) make a set containing singleton u

 for i = 1 to m

 (u,v) = ei
 if (u and v are in different sets) {

 T & T % {ei}
 merge the sets containing u and v

 }

 return T

}

Implementation. Use the union-find data structure.
! Build set T of edges in the MST.
! Maintain set for each connected component.
! O(m log n) for sorting and O(m + (m, n)) for union-find.

are u and v in different connected components?

merge two components

15

Special Case: Boruvka's Algorithm

Boruvka's algorithm. [Boruvka, 1926]
! Apply blue rule to cut corresponding to each blue tree.
! Color all selected edges blue.
! O(log n) phases since each phase halves total # nodes.

1

3

8

2

6

7

4

5

1

3

8

2

6

7

4

5

16

Implementing Boruvka's Algorithm

Boruvka implementation. O(m log n)
! Contract blue trees, deleting loops and parallel edges.
! Remember which edges were contracted in each super-node.

1

3

8

2

6

7

4

5

6-7 5-4, 4-8, 3-4

1-2

17

MST Algorithms: Theory

Deterministic comparison based algorithms.
! O(m log n) Jarník, Prim, Dijkstra, Kruskal, Boruvka
! O(m log log n). Cheriton-Tarjan (1976), Yao (1975)
! O(m ,(m, n)). Fredman-Tarjan (1987)
! O(m log ,(m, n)). Gabow-Galil-Spencer-Tarjan (1986)
! O(m + (m, n)). Chazelle (2000)

Holy grail. O(m).

Notable.
! O(m) randomized. Karger-Klein-Tarjan (1995)
! O(m) verification. Dixon-Rauch-Tarjan (1992)

Euclidean.
! 2-d: O(n log n). compute MST of edges in Delaunay
! k-d: O(k n2). dense Prim

Algorithm Design by Éva Tardos and Jon Kleinberg • Copyright © 2005 Addison Wesley • Slides by Kevin Wayne

4.7 Clustering

Outbreak of cholera deaths in London in 1850s.
Reference: Nina Mishra, HP Labs

19

Clustering

Clustering. Given a set U of n objects labeled p1, …, pn, classify into
coherent groups.

Distance function. Numeric value specifying "closeness" of two objects.

Fundamental problem. Divide into clusters so that points in different
clusters are far apart.

! Similarity searching in medical image databases
! Skycat: cluster 2 - 109 sky objects into stars, quasars, galaxies.
! Routing in mobile ad hoc networks.
! Document categorization for web search.
! Identify patterns in gene expression.

photos, documents. micro-organisms

number of corresponding pixels whose
intensities differ by some threshold

20

Clustering of Maximum Spacing

k-clustering. Divide objects into k non-empty groups.

Distance function. Assume it satisfies several natural properties.
! d(pi, pj) = 0 iff pi = pj (identity of indiscernibles)
! d(pi, pj) $ 0 (nonnegativity)
! d(pi, pj) = d(pj, pi) (symmetry)

Spacing. Min distance between any pair of points in different clusters.

Clustering of maximum spacing. Given an integer k, find a k-clustering
of maximum spacing.

spacing

k = 4

21

Dendrogram

Dendrogram. Scientific visualization of hypothetical sequence of
evolutionary events.

! Leaves = genes.
! Internal nodes = hypothetical ancestors.

Reference: http://www.biostat.w isc.edu/bmi576/fall-2003/lecture13.pdf

22

Dendrogram of Cancers in Human

Tumors in similar tissues cluster together.

Reference: Botstein & Brown group

Gene 1

Gene n

gene expressed
gene not expressed

23

Greedy Clustering Algorithm

Single-link k-clustering algorithm.
! Form a graph on the vertex set U, corresponding to n clusters.
! Find the closest pair of objects such that each object is in a

different cluster, and add an edge between them.
! Repeat n-k times until there are exactly k clusters.

Key observation. This procedure is precisely Kruskal's algorithm
(except we stop when there are k connected components).

Remark. Equivalent to finding an MST and deleting the k-1 most
expensive edges.

24

Greedy Clustering Algorithm: Analysis

Theorem. Let C* denote the clustering C*1, …, C*k formed by deleting the
k-1 most expensive edges of a MST. C* is a k-clustering of max spacing.

Pf. Let C denote some other clustering C1, …, Ck.
! The spacing of C* is the length d* of the (k-1)st most expensive edge.
! Let pi, pj be in the same cluster in C*, say C*r, but different clusters

in C, say Cs and Ct.
! Some edge (p, q) on pi-pj path in C*r spans two different clusters in C.
! All edges on pi-pj path have length * d*

since Kruskal chose them.
! Spacing of C is * d* since p and q

are in different clusters. !

p qpi pj

Cs Ct

C*r

