
Algorithm Design by Éva Tardos and Jon Kleinberg • Copyright © 2005 Addison Wesley • Slides by Kevin Wayne

2. Basic of Algorithms Analysis

"For me, great algorithms are the poetry of computation.
Just like verse, they can be terse, allusive, dense, and
even mysterious. But once unlocked, they cast a brilliant
new light on some aspect of computing." - Francis Sullivan

2

Computational Tractability

Charles Babbage (1864)

As soon as an Analytic Engine exists, it will necessarily
guide the future course of the science. Whenever any
result is sought by its aid, the question will arise - By what
course of calculation can these results be arrived at by
the machine in the shortest time? - Charles Babbage

Analytic Engine (schematic)

3

Computational Tractability

Worst case running time. Obtain bound on largest possible running
time of algorithm on input of a given size N, and see how this scales
with N.

! Generally captures efficiency in practice.
! Draconian view, but hard to find effective alternative.

Desirable scaling property. When the input size increases by a factor
of 2, the algorithm should only slow down by some constant factor C.

Def. An algorithm is efficient if it has polynomial running time.

Justification. It really works in practice!

There exists constants c > 0 and d > 0 such that on every
input of size N, its running time is bounded by c Nd steps.

4

Why It Matters

5

Asymptotic Order of Growth

Upper bounds. T(n) is O(f(n)) if there exist constants c > 0 and n0 # 0
such that for all n # n0 we have T(n) $ c · f(n).

Lower bounds. T(n) is "(f(n)) if there exist constants c > 0 and n0 # 0
such that for all n # n0 we have T(n) # c · f(n).

Tight bounds. T(n) is !(f(n)) if T(n) is both O(f(n)) and "(f(n)).

Ex: T(n) = 32n2 + 17n + 32.
! T(n) is O(n2), O(n3), "(n2), "(n), and !(n2) .
! T(n) is not O(n), "(n3), !(n), or !(n3).

6

Notation

Slight abuse of notation. T(n) = O(f(n)).

Vacuous statement. Any comparison-based sorting algorithm requires
at least O(n log n) comparisons.

7

Properties

Transitivity.
! If f = O(g) and g = O(h) then f = O(h).
! If f = "(g) and g = "(h) then f = "(h).
! If f = !(g) and g = !(h) then f = !(h).

Additivity.
! If f = O(h) and g = O(h) then f + g = O(h).
! If f = "(h) and g = "(h) then f + g = "(h).
! If f = !(h) and g = O(h) then f + g = !(h).

8

Asymptotic Bounds for Some Common Functions

Polynomials. a0 + a1n + … + adnd is !(nd) if ad > 0.

Polynomial time. Running time is O(nd) for some constant d
independent of the input size n.

Logarithms. O(log a n) = O(log b n) for any constants a, b > 0.

Logarithms. For every x > 0, log n = O(nx).

Exponentials. For every r > 1 and every d > 0, nd = O(rn).

every exponential grows faster than every polynomial

can avoid specifying the base, assuming it is a constant

log grows slower than every polynomial

9

Linear Time: O(n)

Linear time. Running time is at most a constant factor times the size
of the input.

Computing the maximum. Compute maximum of n numbers a1, …, an.

max % a1
for i = 2 to n {

 if (ai > max)

 max % ai
}

10

Linearithmic Time: O(n log n)

Linearathmic time. Arises in divide-and-conquer algorithms.

Sorting. Mergesort and heapsort are sorting algorithms that perform
O(n log n) comparisons.

Largest empty interval. Given n time-stamps x1, …, xn on which copies
of a file arrive at a server, what is largest interval of time when no
copies of the file arrive?

O(n log n) solution. Sort the time-stamps. Scan the sorted list in
order, identifying the maximum gap between successive time-stamps.

11

Quadratic Time: O(n2)

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane (x1, y1), …,
(xn, yn), find the pair that is closest.

O(n2) solution. Try all pairs of points.

Remark. "(n2) seems inevitable, but this is just an illusion.

min % (x1 - x2)
2 + (y1 - y2)

2

for i = 1 to n {

 for j = i+1 to n {

 d % (xi - xj)
2 + (yi - yj)

2

 if (d < min)

 min % d

 }

}

don't need to
take square roots

Chapter 5

12

Cubic Time: O(n3)

Cubic time. Enumerate all triples of elements.

Set disjointness. Given n sets S1, …, Sn each of which is a subset of
1, 2, …, n, is there some pair of these which are disjoint?

O(n3) solution. For each pairs of sets, determine if they are disjoint.

foreach set Si {

 foreach other set Sj {

 foreach element p of Si {

 determine whether p also belongs to Sj
 }

 if (no element of Si belongs to Sj)

 report that Si and Sj are disjoint

 }

}

13

Polynomial Time: O(nk) Time

Independent set of size k. Given a graph, are there k nodes such that
no two are joined by an edge?

O(nk) solution. Enumerate all subsets of k nodes.

! Check whether S is an independent set = O(k2).
! Number of k element subsets =
! O(k2 nk / k!) = O(nk).

foreach subset S of k nodes {

 check whether S in an independent set

 if (S is an independent set)

 report S is an independent set

 }

}

!

n

k

"

$
%

&
' =

n (n(1) (n(2) L (n(k +1)

k (k (1) (k (2) L (2) (1)
)

n
k

k!

assuming k is a constant

14

Exponential Time

Independent set. Given a graph, what is maximum size of an
independent set?

O(n2 2n) solution. Enumerate all subsets.

S* % &

foreach subset S of nodes {

 check whether S in an independent set

 if (S is largest independent set seen so far)

 update S* % S

 }

}

