
1

Software methodology and snake oil

• programming is hard
– programs are very expensive to create
– full of errors
– hard to maintain

• how can we design and program better?

• a fruitful area for people selling "methodologies"
– for at least 30 years

• each methodology has the germ of a useful idea
• each claims to solve major programming problems
• some are promoted with religious fervor

• in fact most don't seem to work well
• or don't seem to apply to all programs
• or can't be taught to others

• a few are genuinely useful and should be part of
everyone's repertoire

Examples...

• modularity, information hiding (Parnas)
– coupling, cohesion (Constantine)

• structured programming (programming without goto's)
– top-down development, successive refinement
– structured everything

design, analysis, requirements, specification, walkthroughs...
– chief programmer teams, egoless programming

• CASE tools (Computer Aided Software Engineering)
– UML (Unified Modeling Language)
– message sequence charts, state diagrams

• formal methods
– verification, validation, proof of correctness

• object-oriented programming
– object-oriented everything

design, analysis, requirements, specification, walkthroughs...
– CRC cards (Class, Responsibilities, and Collaborators)

• RAD (rapid application development)
– components, COTS (Components off the Shelf)
– 4th generation languages, automatic programming

X by example, graphical programming
• extreme programming, refactoring, ...
• design patterns

– patterns of everything

2

Design patterns

• "Design patterns ... describe simple and elegant
solutions to specific problems in object-oriented
software design."
– Design Patterns: Elements of Reusable Object-

Oriented Software, by Gamma, Helm, Johnson,
Vlissides (the "Gang of Four")

• successful among broad group of programmers

• increasingly used to describe software structure

Bridge pattern

• "Decouple an abstraction from its implementation
so that the two can vary independently"

• C++ string class: separate handle from body
– implementation can be changed without changing

abstraction of "string"

class String {
private:

Srep *p;
public:

...

};

class Srep {
char *sp; // data
int n; // ref count
...

};

• sometimes called "Handle / Body"

• similar examples:
– FILE * in C stdio
– RE * in regexpr interface
– connection in MySQL interface

3

Bridge pattern, continued

• change of implementation has no effect on client
– can even switch implementation at run time

• (in C and C++) hides implementation completely
– C: hidden behind opaque type
– C++: implementation class is invisible

• can share implementation among multiple objects
without revealing the sharing
– e.g., reference counting
– e.g., sharing of open files in FILE*

Adapter pattern

• "Convert the interface of one class into another
interface that clients expect"

• maps one interface into another
– more or less at the same level

• e.g., in the C stdio package:
fread(buf, objsize, nobj, stream)
fwrite(buf, objsize, nobj, stream)

are wrappers around
read(fd, buf, size)
write(fd, buf, size)

• also known as "wrapper" pattern

• real-world examples:
– electrical plugs, various other connectors

4

Decorator pattern

• "Attach additional responsibilities to an object
dynamically"

• decorator conforms to interface it decorates
– transparent to clients
– forwards some requests
– usually does some actions of its own before or after

• e.g., Java Swing JScrollPane class

JTextArea tpay = new JTextArea(15, 45);

JScrollPane jsp = new JScrollPane(tpay,
JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,
JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);

Other structural patterns

• Facade: "Provide a unified interface to a set of
interfaces in a subsystem."
– provides a higher-level interface to something

underneath that remains visible and accessible
– Perl CGI package (and others)
– simplified socket package (Perl and others)
– graphics interfaces

(X widgets -> X toolkits -> X intrinsics -> Xlib)
– …

• Proxy: "Provide a surrogate or placeholder for
another object to control access to it."
– smart pointers
– implicit initialization
– load on demand (lazy evaluation)
– …

• how do we tell all of these patterns apart?
– distinctions are not always clear

5

Iterator

• "Provide a way to access the elements of an
aggregate object sequentially without exposing
its underlying representation"

• in Java, iterators and tokenizers

Map hs = new TreeMap();
for (Iterator it = hs.keySet().iterator();

it.hasNext();) {
String n = (String) it.next();
Integer v = (Integer) hs.get(n);
...

• the basis of algorithms in C++ STL

template <class InputIterator,
class OutputIterator>

OutputIterator mycopy(InputIterator first,
InputIterator last, OutputIterator result)

{
...

}

Interpreter

• "Given a language, define a representation for
its grammar along with an interpreter that uses
the presentation to interpret sentences in the
language"

• regular expression processor
– variations of grep

int match(char *regexp, char *text) ...

• eval(…) or execute(…) in many languages

• printf format strings?

6

Observer (/observable)

• "Define a one-to-many dependency between
objects so that when one object changes state,
all its dependents are notified and updated
automatically"

• Java ActionListener mechanism:

button.addActionListener(this)
– tells button to notify this container when event

happens
– usually called by container that contains object that

will get the event
– can have more than one listener

void actionPerformed(ActionEvent e) { … }

– called when event occurs
– determines type or instance that caused event
– handles it

Others...

• Abstract Factory: "Provide an interface for
creating families of related or dependent
objects." (also Factory)

• Singleton: "Ensure a class only has one instance"
– Java System, Runtime, Math classes

• Visitor: "Represent an operation to be
performed on the elements of an object
structure"
– almost any tree walk that does some evaluation at

each node
– draw() where one kind of "Shape" is an entire picture

made of Shapes

• Memento: "Without violating encapsulation,
capture and externalize an object's internal
state so that the object can be restored to this
state later"
– Java serialization

