Where do we go from here?

+ Visual Basic
- language
- development environment
- building GUT's
- scripting
embedding
viruses

+ component-based software
- libraries and software re-use
- COM
creating your own components
- other approaches to components
CORBA, RMI
- C#and NET

the next generation

+ XML and related acronyms

Visual Basic

+ Windows graphics model similar to X Windows
- big library, with graphics primitives at the bottom
- event loop
- graphical components

+ but different in many respects
- not distributed, not portable
- more complicated
- large library interface

+ Visual Basic for building GUTI's

- alanguage at about the same level as Java
also usually interpreted

- controls analogous to Java Swing
similar properties, methods, events

- interactive development environment
draw the interface on the screen

generally don't use layout managers

code templates for binding actions to events
create the code, run, debug within the environment

Why study / use Visual Basic?

- one of the most widely used languages / systems
+ very easy to start with
- very easy to do useful things
http://www.cs.princeton.edu/courses/archive/
fallxx/cs109/labs/VB1 and VB2

* easy access to Windows environment
- can do almost anything that can be done in Windows
may not be fast
may not scale up to big programs or big data

- embedded in other tools as extension mechanism
- Word, Excel, Powerpoint, ..., all contain VB
- can easily augment their capabilities

- scripting language for controlling other programs
(VBScript)

+ at the heart of a class of computer viruses

Visual Basic components

+ Visual Basic programming language
- modern dialect of Basic (Basic created in 1964 by
John Kemeny ('47, *49) and Tom Kurtz (*56))
- reasonable control flow, data types, arrays, structures
- abit bulky, verbose, clumsy
- good error checking at "compile" and run time

* toolkit / components
- standard library for math, file I/0, text manipulation
- user interface components: buttons, text, menus, ...
- extensible:
access to Windows API and existing objects
can add own C/C++ code and create new controls
- "glue" language for assembling from pre-built pieces

+ integrated development environment
- interactive system for building and testing VB
programs (~1991)
draw interface by dragging and dropping components
fill in behaviors in code templates
set properties like size, color, position, ...
manage/edit source code and other resources
run in controlled environment for testing and debugging
compile and export as .EXE file

Visual Basic language

- variables & constants
- Boolean Integer Single Double String Const
Dim s As String, i As Integer, d As Double
- Byte Date Currency
- Object Variant user-defined

* arrays

- fixed size
Dim ar(100) as Integer

- dynamic
Dim dyn() as Integer * declaration
Redim dyn(10) " set size

- reset size, preserve old contents
Redim Preserve dyn(100) * like realloc

+ operators & expressions
- * / \ mod ~
= < > > < <=
And Or Not

Types, declarations, conversions

- variables declared with Dim statement

Dim i as Integer, s as Single,
d as Double, str as String
- Integer: 32 bits
- Single, Double: approximately 6 or 15 digits with
fractional part
3.14159, 3.14159265358979323846

- String: "any number of characters within quotes"
- Object: object in same sense as Java or C++

+ VB usudlly infers types from context, does
conversions automatically
- sometimes have fo be explicit:

CInt(string) if can't tell from context that string is meant
as a number

CStr(double) o produce a string value
- Variant type holds any type

Control Flow

+ If Then Else

If i >= 0 Then

print i, " is positive"
Elself i = 0 Then

print i, " is zero"
Else

print i, " is negative
End If

+ For Next loop
For i =1 To 10
print i, i * i, 2"i
Next i
can go forward or backward, any step size

+ Do While loop

i=1

Do While i <= 10
print i, i * i, 2"i
i=1+1

Loop
test at top or bottom; use While or Until:
early exit with Exit Do

Subroutines and functions

Sub ask (s As String)
Dim stat As String
stat = MsgBox("Another game?", vbYesNo)
If stat = vbYes Then ...

End Sub
Function Randint(n As Integer) As Integer
Randint = Int(n * Rnd) + 1
// function name => return value

End Function

+ call by reference by default
- ByVal to specify call by value

+ Exit Sub and Exit Function for early exit

Standard VB libraries

+ strings
- Len(s), Mid(s, p, n), InStr(target, pat), ...
- slLlike pat (shell-like pattern match)

* math
- 5qr, Rnd, Sin, Cos, ...

- I/0, etc.

Open fin For Input As #1

Open fout For Output As #2

Do Until EOF(1)
Line Input #1, textline
Print #2, textline

Loop

Close #1

Close #2

* run processes
Call Shell("command...", 1)

Controls: Interface components

- buttons, sliders, labels, text boxes, ..
- about 25 in basic set
- instances normally created at design time

- if inan array, new ones can be added and deleted at
run time

- menubar builder
- dialog controls
- each control has a fixed set of properties,
events, and methods
* properties:
- size, position, color, caption, name, ...) for what it is
- set when drawn (usually) or when program is running
by assignments or functions in your program
+ methods:
- the operations it will do, appropriate to what it is
* events:
- external stimuli that it responds to
mouse click, typing, scrolling, size change, window close
- when an event occurs, VB calls the subroutine
associated with it
e.g., Button_Click(), TextBox_KeyPress(), efc.

- what you write in the subroutine determines what the
program does:
you define what the behavior is

Software re-use

+ how do we re-use code that others have
written?
- "If I have seen further than others, it is because I
have stood on the shoulders of giants."

*+ source
- e.g., Open Source movement
- libraries

- e.g., -Isocket on Unix,
DLL's on Windows,
Java packages
+ classes
- C++ Standard Template Library
- Java Collection classes

+ objects

+ components

Libraries

+ linking to previously compiled code
+ static linking
- all called routines are included in executable
+ dynamic linking
- called routines located and linked in on demand
shared libraries on Unix
dynamic link libraries (DLL's) on Windows
* lots of advantages
- no cost if a particular routine is not called
- minor startup cost for initialization when called
- minimal cost when running (extra indirection for call)
- library code is shared among all simultaneous uses

+ DLL's very much used in Windows

- some disadvantages
- DLL hell: inconsistencies among versions,
especially after installation then uninstallation
- asingle-language solution, more or less
VB can call C/C++DLL's
- DLL runs in same address space
protection issues
not distributed

Extending VB by calling libraries

- can call any DLL from the Windows APL

Project] - Form1 [Form)
w Forml
Command] |2 000IIIIIIITIIITE
|Tam
o

ITEMZ

P8 Project! -Formi{Code) — [=E=H
[command1 =] Jeriex =

Private Declare Function GetCurrentTime Lib "Kernel32™ _
Alias "GetTickGount™ () As Long
Private Declare Function GetCurrentDirectory Lib
Alias "GetCurrentDirectoryn™
{ByVal nBufferLength As Lnng, ByVal lpBuFFer As String)
Private Declare Function GetSystemDirectory Lib "'kernel32"
Alias "GetSystemDirectoryn"
{ByVal 1lpBuffer As Stnnq, ByUal nSize As Long) As Lonc
Private Sub Commandi_Click()
Din s As String = 208, n As Long
n = GetCurrentDirectory{288, s)
Text1.Text = s
n = GetSystemDirectory(s, 208)
Text2.Text = 5
End Sub J |

“kernel32" _

+ can create and call your own DLL's

COM: Microsoft's component object model

+ binary standard for creating & using components

- components can be written in any language
IDL (interface definition language) to describe arguments
and return values, generate necessary code

- components can be in same process,
separate process on same machine,
or on some other machine (DCOM)
DCOM transports include TCP/IP and HTTP
- supporting libraries marshal arguments, call functions,
retrieve results
all happens transparently to process that uses it

- integral part of Microsoft systems
available on non-MS operating systems (sort of?)

+ COM components are objects with interfaces

- interface: functions that provides access to methods
based on C++ virtual function calls
implementable in any language

- interface is also a contract between implementor and

user about what the methods do

- 128-bit ID's identify and guarantee uniqueness

stored in Windows registry so others can find it

+ COM has had several names, continues to evolve
- .NET is the next version / replacement

Using COM components in VB

+ a large industry creates 3rd-party controls

- much modern PC software is packaged as objects
whose methods and properties can be accessed from
VB and other programs

* to add a component to a project

- Project / Components / Controls / Add MediaPlayer
+ examine its properties, methods, events

- View / Object browser / MediaPlayer
* write code to use it

Private Sub Command1_Click()
MediaPlayer1.Open (filename)
End Sub

* you can make your own controls
- using VB, C++, efc.

ActiveX

* Microsoft's marketing name for technologies and
services based on COM

* ActiveX components are COM objects
- executable code that packages an object as
.EXE (standalone executable)
.DLL (dynamic link library)
.OCX (VB-like control)
- can run anywhere (client or server)
+ ActiveX controls
- COM components with user-interface aspects
- written in C++, Java, VB, ...
- can be used in web pages (analogous to applets)
- can be controlled with VBScript, JScript and other
scripting languages
+ ActiveX documents
- lets users view and edit non-HTML documents through
the browser
- integrates existing documents into browser or any
other application

CORBA (Common Object Request Broker Architecture)

* an alternate approach to the same problem

- industry consortium (OMG or Object Management Group)
+ client-server model, using objects
+ object-request broker (ORB)

- communicates client requests to target objects

- finds object implementation, activates it if necessary,
delivers request, and returns response

- IDL (interface definition language) and compiler
for specifying and implementing interfaces
- names, arguments, return values

L
REFOSITORY COMPILER I ‘ REFOSITORY I
args |

O——

CLIENT lfm\I aperation() OBJECT I
\REF | put args + retum valoe 2
"G An Ny

IDL
- | SEELETON [D.'%i],
p—— -|onmj

‘ INTERFACE I ‘ 1 IMPLEMENTATION
in

ADAPTFR

| cropfmor |
- | STANDARD INTERFACE \ STANDARD LANGUAGE MAPFI

DUR_IJ EPECIFIC INTERFACE [] ETANDARD PROTOCOL

Java RMI and Java Beans

+ RMI (Remote Method Invocation)
- aremote procedure call mechanism
- call objects located (usually) on other systems
- very loosely equivalent to (D)COM
- can pass objects, not just primitive types

+ Java Beans
- amarketing name for Java components
- an API for writing component software in Java
- components expose features (methods & events)
- visual application builder tools determine properties
by "introspection"
can query an object about its properties
- loosely analogous to ActiveX components

+ attempting to solve many of the same problems
as COM and CORBA, but entirely within Java

- access to non-Java code through JNI (Java Native
Interface)

Scripting

every component exposes what it can do as an
object interface: methods, properties

can control every object from a programming
language that can access objects

VBScript is a scripting version of VB for
controlling scriptable objects
- can use it to control scriptable programs

Visual Basic for Applications (VBA) is a version
of VB that lives inside some programs
- notably Word, Excel, Powerpoint, etc.

- can use it to control them and other scriptable
programs

VBScript example

Di

Set xl = WScript.CreateObject("Excel .Application™)

x1
x1

x1
x1
x1

x1
x1
x1

xI.

x1
x1
x1

xI.

x1

xI.

Di

m xI

_Visible = TRUE
-WorkBooks .Add

20
30
40

_Columns(1).ColumnWidth
-Columns(2) .ColumnWidth
.Columns(3) .ColumnWidth

_Cells(1, 1).Value = "Property Name"
.Cells(1, 2).value = "value"
.Cells(1, 3).value = "Description”
Range(*'A1:C1™).Select
.Selection.Font.Bold = True

.Selection. Interior.Colorindex = 1
_Selection.Interior_Pattern = 1 "xISolid
Selection.Font.Colorindex = 2

_Columns(*'B:B").Select
Selection.HorizontalAlignment = &hFFFFEFDD

m idx

idx = 2

Sub Show(strName, strValue, strDesc)

xl.Cells(idx, 1).Value = strName
xl.Cells(idx, 2).Value = strVvalue
xI.Cells(idx, 3).value = strDesc

idx = idx + 1
xI.Cells(idx, 1)-Select

End Sub

10

VBScript example, page 2

Call Show(''Name™, WScript.Name,
“Application Friendly Name™)

Call Show("Version"™, WScript.Version,
“Application Version')

Call Show("FullName", WScript.FullName,
“Application Context: Fully Qualified Name™)

Call Show("'Path™, WScript.Path,
“"Application Context: Path Only')

Call Show("Interactive', WScript.Interactive,
“"State of Interactive Mode™)

Dim args

Set args = WScript.Arguments

Call Show("Arguments.Count', args.Count,
“Number of command line arguments')

For i = 0 to args.Count - 1

xI.Cells(idx, 1).-Value = "Arguments(" & i &)"

xI.Cells(idx, 2).Value = args(i)
idx = idx + 1
xI.Cells(idx, 1).Select

Next

Call xI_Workbooks.Open(*'c:\temp\grades.xlIs')

CERT® Advisory CA-1999-04 Melissa
Macro Virus

Onginal issue dale: March 27, 19989
Last revised March 31, 1559

A complete revision history is a the end of thes file.
Systems Affected

+ Mathines with Microsod Word 57 o Ward 2000
+ Any mail handing system could exparence parfemance problems or a danial of sarce &6 & sl
of the propagation of this magen vieus

Overview
M tely 200 PM GHT5 o y Masch 26 1999 wa hogan rocahing apats of a Microsalt Woed

97 and Werd 2000 macro v whech 13 propagabng wa emad sltachenents. The number and vanety of
raparts we have received indicate that this is 3 widespread attack aflecting a variety of sies

Our analysis of this macro virus indicates that human act
dacumant) is required far this vinus to propagate. It is pas
utornatscally opes
wirys. i nod known 1o 8
i genail, any way of tra

im 1k farm of 3 user opening &n infiacted Word

that under samo mailor corfgurations. a user
-t inficted docurnent recened in the form of an email atlachmsent
y rew vulnarabities, Whie 1he primary transpont machanism of this vinus is
rirsg fles can abe propagate 1he vings

11

Security issues

- VB embedding and scripting is a mixed blessing
- lots of nice useful properties
can easily extend capabilities
customize behaviors
- lots of not so nice properties
viruses are very easy

+ scripts and plug-ins and applets let someone else
run their code on your machine

+ how can this be made safe (enough)?

- code-signing (Microsoft's "Authenticode")

- uses cryptographic techniques to assure that code
comes from who it says it does

- and that it hasn't been tampered with
- but NOT that it works properly
doesn't protect against bugs, invasion of privacy, ...

- sandboxing (Java model)
- isolate code inside virtual machine or similar
- limits capabilities (e.g., Java applets)
- doesn't protect against bugs in programs
- or bugs in the security model and implementation

- perfect security is not possible

12

