
1

Evolution of Programming Languages

• 40's machine level
– raw binary

• 50's assembly language
– names for instructions and addresses
– very specific to each machine

• 60's high-level languages
– Fortran, Cobol, Algol

• 70's system programming languages
– C
– Pascal (more for teaching structured programming)

• 80's object-oriented languages
– C++, Ada, Smalltalk, Modula-3, Eiffel, …

strongly typed (to varying degrees)
better control of structure of really large programs
better internal checks, organization, safety

• 90's scripting, Web, component-based, …
– Perl, Java, Visual Basic, …

strongly-hyped languages
• 00's cleanup, or more of the same?

– Python, PHP, C#, ...
increasing focus on interfaces, components

Program structure issues

• objects
– user-defined data types

• components
– related objects

• interfaces
– detailed boundaries between code that provides a

service and code that uses it

• information hiding
– what parts of an implementation are visible

• resource management
– creation and initialization of entities
– maintaining state
– ownership: sharing and copying
– memory management
– cleanup

• error handling

2

Java

• invented mainly by James Gosling (Sun)
• 1990: Oak language for embedded systems

– toasters, microwave ovens
– needs to be reliable, easy to change, retarget
– efficiency is secondary
– implemented as interpreter, with virtual machine

• 1993: run it in a browser instead of a microwave
– renamed "Java"
– HotJava browser supports Java applets, run JVM

• 1994: Netscape supports Java in their browser
– enormous hype: a viable threat to Microsoft

• 1995-present: rapid growth of libraries
– language is relatively stable
– libraries grow and change rapidly
– compiler technology improvements (but still runs slow)
– significant commercial use

but interface/glue, not applets, as originally thought
– AP computer science language as of fall 2003
– Sun sues Microsoft multiple times over Java

• lots of documentation
– http://java.sun.com/docs

Java is fully buzzword-compliant

• Sun: "simple, object-oriented, distributed
interpreted, robust, secure, architecture
neutral, portable, high performance, multi-
threaded, dynamic"

• simple: reaction to complexity of C++, risks of C
– no goto, no header files, no preprocessor, no pointers
– garbage collection

• object-oriented: everything is a class
– no independent variables or functions

• distributed: classes for networking, URL's, etc.
• interpreted: compiled into byte codes for a
virtual machine
– JVM interprets byte codes on the target environment
– the same everywhere

• robust: eliminates unsafe constructs
– strongly typed, no pointers, garbage collection,

exception handling
• secure: language is safer; security model

– byte code verifier, run-time checks (e.g., array
bounds, casting)

3

Buzzwords, continued

• architecture neutral: runs on anything
– byte codes + JVM; large set of libraries

• portable: runs the same on anything
– bytes codes + JVM;
– sizes, behaviors, etc., fully specified
– "write once, run anywhere" (in theory)

• high performance: (not really)
– just-in-time compilation, native mode extensions

• multi-threaded:
– language and library facilities for multiple threads in a

single process
• dynamic:

– classes loaded as needed (like .DLL or shared
libraries)

– run-time type identification, etc.

Java vs. C and C++

• no preprocessor
– import instead of #include
– constants use static final declaration

• C-like basic types, operators, expressions
– sizes, order of evaluation are specified

• really object-oriented
– everything is part of some class
– objects all derived from Object class
– static member function applies to whole class

• references instead of pointers for objects
– null references, garbage collection, no destructors
– == is object identity, not content identity

• all arrays are dynamically allocated
– int[] a; a = new int[100];

• strings are more or less built in
• C-like control flow, but

– labeled break and continue instead of goto
– exceptions: try {…} catch(Exception) {…}

• threads for parallelism within a single process
– in language, not a library add-on

4

Hello world

import java.io.*;

public class hello {

public static void main(String[] args)
{

System.out.println("hello, world");
}

}

• compiler creates hello.class
javac hello.java

• execution starts at main in hello.class
java hello

• filename has to match class name

• libraries in packages loaded with import
– java.lang is core of language

System class contains stdin, stdout, etc.
– java.io is basic I/O package

file system access, input & output streams, ...

Basic data types

public class fahr {
public static void main(String[] args){
for (int fahr = 0; fahr < 300; fahr += 20)

System.out.println(fahr + " " +
5.0 * (fahr - 32) / 9.0);

}
}

• basic types:
– boolean true / false (no conversion to/from int)
– byte 8 bit signed
– char 16 bit unsigned (Unicode character)
– int 32 bit signed
– short, long, float, double

• String is sort of built in
– "..." is a String
– holds chars, NOT bytes
– does NOT have a null terminator
– + is string concatenation operator; += appends

• System.out.println(s) is only for a single string
– formatted output is a total botch

5

C interface for an RE package

• functions analogous to assignment 1:

RE *RE_new(char *)
int RE_match(RE *, char *)
int RE_start(RE *)
int RE_end(RE *)
void RE_free(RE *)
...

• "RE" is an opaque type
– conceals the implementation as much as possible

• implementation uses a structure like this
typedef struct RE {

...

} RE;

• user code sees only
typedef struct RE *RE;

• analogous to FILE* in C stdio

• in real life, there would be a header file RE.h

Design issues

• what functions?
– relatively few
– fundamental, most commonly used
– not easily synthesized from others

but others can be synthesized from them
– not easily implemented by users

• this would be sufficient
int RE_match(char *re, char *str,

int *start, int *end);

• but not really convenient or efficient:
– typically compile once, test matches often
– often don't care about the matched string

• better: different functions for different ops
– create a new regexp from a string (constructor)
– match a string
– access matched substring
– free any resources (destructor)

6

Convenience & usability issues

• small things, but they make a difference

• should there be functions for common operations
– immediate match of a regexp and string

like Java's Pattern.matches(regexp, string)
(which is an anchored match!!)

• which of these is best?
char *RE_start(), int RE_length()
char *RE_start(), char *RE_end()
char *RE_matched_substr()

• how should errors be reported and returned?
– bool, int, struct, pointers?
– print? assertion failure?

• consistency in choices, naming, order of args, ...

Resource management issues

• when are start() and end() valid?
– what if source string changes?
– what if multiple matches are in process?

• what if you want successive searches, as in
Java's Matcher.find?
– who remembers where you were?
– what if the source string has changed in the interim?
– how do you make it re-entrant?
– why is C's strtok is a botch?

• what if there were an array of matched
substrings?
– like Perl's $1, $2, …

• suppose RE's were to be cached as in Awk
– how are they coordinated?

• how would you know if the RE had changed?
– is the string saved? hashed? quietly assumed ok?

7

Who manages what memory when?

• a big, fundamental interface issue
– getting it wrong or inconsistent is a major problem
– making it hard for users is a major problem

• char *RE_substr(RE *) needs space for string

• who allocates space for the string?
• should it grow? without limit?
• who grows it?
• who complains if it gets too big? how?
• who owns it?
• who can change its contents? how?
• who sees the changes? re-entrant?
• what is its lifetime?

– when are pointers into the data structure invalidated?
• who frees it?

• these issues are not all solved by garbage
collection

Classes and objects

• language support for design and implementation
of data structures and operations on them
– data abstraction and protection mechanism
– originally from Simula 67

class thing {

public part:
methods: functions that define what operations

can be done on this kind of object
visible outside the class

private part:
functions and variables that implement the

operation
invisible outside the class

}

• a class defines a new data type
– can declare variables and arrays of this type, pass to

functions, return them, etc.
• object: an instance of a class variable
• method: a function defined in the class

– (and visible outside)
• from outside, can't tell HOW the operations are
implemented, only WHAT they do

• localizes all aspects of design & implementation

8

Classes & objects in Java

• in Java, everything is part of some object
– all classes are derived from class Object

public class RE {
String re; // regular expression
int start, end; // of last match

public RE(String r) {...} // constructor
public int match(String s) {...}
public int start() { return _start; }
int matchhere(String re, String text) {...}
// etc.

}

• member functions are defined inside the class
– internal functions shouldn't be public (e.g., matchhere)
– internal variables shouldn't be public

Constructors: making a new object

• all objects are created dynamically, by a special
member function called a constructor

public RE(String str) { // same name as class
re = str;

}

• have to call new to construct an object

RE re; // null: doesn't yet refer to an object

re = new RE("abc*"); // now it does

int m = re.match("abracadabra");
int start = re.start();
int end = re.end();

• can define multiple constructors with different
arguments to construct in different ways

public RE() { /* ??? */ }

9

Class variables & instance variables

• every object is an instance of some class
– created dynamically by calling new

• class variable: a variable declared static in class
– only one instance of it in the entire program
– exists even if the class is never instantiated
– the closest thing to a global variable in Java

public class RE {
static int num_REs = 0;

public RE(String re) {
num_REs++;
...

}
public static int RE_count() {

return num_REs;
}

• class methods
– most methods associated with an object instance
– if declared static, associated with class itself, not a

specific instance
e.g., main()

Class methods

• most methods associated with an object instance
• if declared static, amounts to a global function

class RE {
public boolean equals(RE r) {

return re.equals(r.re);
}
public static boolean equals(RE r1, RE r2) {

return r1.re.equals(r2.re);
}

public static void main(String[] args) {
RE r1 = new RE(args[0]);
RE r2 = new RE(args[1]);
if (equals(r1, r2)) ... // compare contents
if (r1.equals(r2)) ... // compare contents
if (r1 == r2) ... // object equality

}

• some classes are entirely static members and
class functions, e.g., Math, System, Color
– can't make a new one: no constructor

10

Destruction & garbage collection

• interpreter keeps track of what objects are
currently in use

• memory can be released when last use is gone
– release does not usually happen right away
– has to be garbage-collected

• garbage collection happens automatically
– separate low-priority thread manages garbage

collection
• no control over when this happens

– can set object reference to null to encourage it

• Java has no destructor (unlike C++)
– can define a finalize() method for a class to reclaim

other resources, close files, etc.
– no guarantee that a finalizer will ever be called

• garbage collection is a great idea
– but this is not a great design

Typical program structure

class RE {

private class variables
private object variables
public RE methods, including constructor(s)
private functions

public static void main(String[] args) {
re = args[0];
for (i = 1; i < args.length; i++)

fin = open file args[i]
grep(re, fin)

}
static int grep(String regexp, FileReader fin) {

RE re = new RE(regexp);
for each line of fin

if (re.match(line)) ...
}

}

• order of declarations doesn't matter

11

Scope and visibility

• only one public class per file
– public class hello { } has to be in hello.java

• public methods of the class are visible outside
the file

• other methods are not
– default is file private

• other classes in a file are visible within the file
• but not visible outside the file

• variables of a class are always visible within the
class

• and to other classes in the same file unless
private

• static variables are visible to all class instances
class Math {

public static double PI = 3.141592654;
}
double d = Math.cos(Math.PI)

"Real" example: regular expressions

• simple class to look like RE
• uses the Java 1.4 regex mechanism
• provides a better interface (or at least less clumsy)

import java.util.regex.*;

public class RE {
Pattern p;
Matcher m;

public RE(String pat) {
p = Pattern.compile(pat);

}
public boolean match(String s) {

m = p.matcher(s);
return m.find();

}
public int start() {

return m.start();
}
public int end() {

return m.end();
}

}

12

I/O and file system access

• import java.io.*

• byte I/O
– InputStream and OutputStream

• character I/O (Reader, Writer)
– InputReader and OutputWriter
– InputStreamReader, OutputStreamWriter
– BufferedReader, BufferedWriter

• file access
• buffering
• exceptions

• in general, use character I/O classes

Byte-at-a-time I/O

// cat <stdin >stdout

import java.io.*;

public class cat1 {

public static void main(String args[])
throws IOException {

int b;

while ((b = System.in.read()) >= 0)
System.out.write(b);

}
}

• System.in, .out, .err like stdin, stdout, stderr
• read() returns next byte of input

– returns -1 for end of file
• any error causes an IO Exception

– which is passed on by main

13

File I/O of bytes

// cp infile outfile

import java.io.*;

public class cp1 {

public static void main(String[] args)
throws IOException {

int b;

FileInputStream fin =
new FileInputStream(args[0]);

FileOutputStream fout =
new FileOutputStream(args[1]);

while ((b = fin.read()) > -1)
fout.write(b);

fin.close();
fout.close();

}

}

• this is very slow because I/O is unbuffered

Buffered byte I/O

import java.io.*;

public class cp2 {

public static void main(String[] args)
throws IOException {

int b;

FileInputStream fin =
new FileInputStream(args[0]);

FileOutputStream fout =
new FileOutputStream(args[1]);

BufferedInputStream bin =
new BufferedInputStream(fin);

BufferedOutputStream bout =
new BufferedOutputStream(fout);

while ((b = bin.read()) > -1)
bout.write(b);

bin.close();
bout.close();

}
}

14

Exceptions

• C-style error handling
– ignore errors -- can't happen
– return a special value from functions, e.g.,

-1 from system calls like open()
NULL from library functions like fopen()

• leads to complex logic
– error handling mixed with computation
– repeated code or goto's to share code

• limited set of possible return values
– extra info via errno and strerr: global data
– some functions return all possible values

no possible error return value is available

• Exceptions are the Java solution (also in C++)
• exception indicates unusual condition or error
• occurs when program executes a throw statement
• control unconditionally transferred to catch block
• if no catch in current function, passes to calling
method

• keeps passing up until caught
– ultimately caught by system at top level

try {…} catch {…}

• a method can catch exceptions

public void foo() {
try {

// if anything here throws an IO exception
// or a subclass, like FileNotFoundException

} catch (IOException e) {
// this code will be executed
// to deal with it

}

• or it can throw them, to be handled by caller

• a method must list exceptions it can throw
– exceptions can be thrown implicitly or explicitly

public void foo() throws IOException {
// if anything here throws an exception
// foo will throw an exception
// to be handled by its caller

}

15

With exceptions

public class cp2 {

public static void main(String[] args) {
int b;

try {
FileInputStream fin =

new FileInputStream(args[0]);
FileOutputStream fout =

new FileOutputStream(args[1]);
BufferedInputStream bin =

new BufferedInputStream(fin);
BufferedOutputStream bout =

new BufferedOutputStream(fout);

while ((b = bin.read()) > -1)
bout.write(b);

bin.close();
bout.close();

} catch (IOException e) {
System.err.println("IOException " + e);

}
}

}

Why exceptions?

• reduced complexity
– if a method returns normally, it worked
– each statement in a try block knows that the previous

statements worked, without explicit tests
– if the try exits normally, all the code in it worked
– error code grouped in a single place

• can't unconsciously ignore possibility of errors
– have to at least think about what exceptions can be

thrown

public static void main(String args[])
throws IOException {

int b;

while ((b = System.in.read()) >= 0)
System.out.write(b);

}

• don't use exceptions for normal flow of control
• don't use for "normal" unusual conditions

– e.g., in.read() returns –1 for EOF
– instead of throwing an exception

– should a file open that fails throw an exception?

16

Character I/O (char instead of byte)

• use a different set of functions for char I/O
• works properly with Unicode

• InputStreamReader adapts from bytes to chars
• OutputStreamWriter adapts from chars to bytes

• use Buffered(Reader|Writer) for speed
– and it has a readLine method

public class cat3 {
public static void main(String[] args)

throws IOException {
BufferedReader in =

new BufferedReader(
new InputStreamReader(System.in));

BufferedWriter out =
new BufferedWriter(
new OutputStreamWriter(System.out));

String s;
while ((s = in.readLine()) != null) {

out.write(s);
out.newLine();

}
out.flush(); // required!!

}
}

Unicode (www.unicode.org)

• universal character encoding scheme

• UTF-16
– 16 bit internal representation
– encodes all characters used in all languages

numeric value and name for each
semantic info like case, directionality, …

• UTF-8
– byte-oriented external form

variable-length encoding
– compatible with ASCII 7-bit form

ASCII characters occupy 1 byte in UTF-8

• expansion mechanism for > 216 characters
– 94000+ characters today

• Java supports Unicode
– char data type is 16 bits
– String data type is 16-bit Unicode chars
– \uhhhh is Unicode character hhhh

17

Strings

• a String is a sequence of (Unicode) chars
– immutable: each update makes a new String

s += s2 makes a new s each time
– indexed from 0 to str.length()-1

• useful String methods
– charAt(pos) return character at pos
– substring(start, len) return substring

for (i = 0; i < s.length(); i++)
if (s.charAt(i) != s.substring(i, 1))

// can't happen

• String parsing

String[] fld = str.split("\\s+");

StringTokenizer st = new StringTokenizer(str)
while (st.hasMoreTokens()) {

String s = st.nextToken();
...

}

String methods

• search, comparison, etc.:
– substring, toUpperCase, toLowerCase
– compareTo, equals, equalsIgnoreCase
– startsWith, endsWith, indexOf, lastIndexOf
– …

• StringBuffer vs String
– String can be inefficient

have to create new ones instead of changing existing
– StringBuffer is mutable

grows & shrinks to match size
– append, insert, setCharAt, …

18

Runtime, Process, exec

public class runtime1 {
public static void main(String[] args) {

runtime1 r = new runtime1();
}

runtime1() {
try {

Runtime rt = Runtime.getRuntime();
BufferedReader bin = new BufferedReader(

new InputStreamReader(System.in));
String[] cmd = new String[3];
cmd[0] = "/bin/sh"; // Unix-specific
cmd[1] = "-c";
String s;
while ((s = bin.readLine()) != null) {

cmd[2] = s;
Process p = rt.exec(cmd);
BufferedReader pin = new BufferedReader(

new InputStreamReader(p.getInputStream()));
while ((s = pin.readLine()) != null)

System.out.println(s);
pin.close();
p.waitFor();
System.err.println("status = " + p.exitValue());

}
} catch (InterruptedException e) {

e.printStackTrace(); // ignored
} catch (IOException e) {

e.printStackTrace();
}

}

