COS 333:

Advanced Programming Techniques

Brian Kernighan

- bwk@cs, www.cs.princeton.edu/~bwk

- 311 CS Building

- 609-258-2089 (but email is always better)

TA's:
- Chris DeCoro, cdecoro@cs, CS 103B, 258-0944
- Aquinas Hobor, achobor@cs, CS 214, 258-1793

Today
- course overview
- administrative stuff
- regular expressions and grep

Check out the course web page (€S, not Blackboard!)
- notes, readings and assignments will be posted there
- Assignment 1 is posted
- project information is posted

Do the survey if you haven't already

Themes

languages
- C, Java, AWK, Perl, C++, Visual Basic, C#, ...
- programmable tools, application-specific languages

tools
- where did they come from and why
how they have evolved, mutated, decayed
- how to use them
- how they work
- how to build your own

programming
- design, interfaces, patterns
- reuse, theft, prototyping, components
- programs that write programs
- portability, standards, style
- debugging, testing
- performance assessment and improvement
- tricks of the trade
- tradeoffs, compromises, engineering

history and culture of programming

(Very) Tentative Outline

Feb 1 regular expressions; grep

Feb 8 scripting languages: Awk & Perl
Feb 15 more scripting: Perl, PHP(?), C6GT
Feb 22 Java; object-oriented programming
Mar 1 networking: MySQL: project
Mar 8 user interfaces, Swing

Mar 15 (spring break)

Mar 22 C++

Mar 29 C++, Standard Template Library
Apr 5 Visual Basic; COM, components
Apr 12 XML, web services; .net, C#
Apr 19 Tcl/Tk?, language tools?

Apr 26 ?

May 4-5 project presentations

Some Mechanics

prerequisites
- C, Unix (COS 217)

5 programming assignments in first half
- posted on course web page
- deadlines matter

group project in second half

- groups of 3-4; start identifying potential teammates
- details in a few weeks

- deadlines matter

monitor the web page
- readings for most weeks
- hotes generally posted ahead of time

class attendance and participation
<=> no midterm or final
- sporadic unannounced short quizzes are possible

Regular expressions and grep

* regular expressions

notation
mechanization
pervasive in Unix tools
not in most general-purpose languages
though common in scripting languages and (some) editors
basic implementation is remarkably simple

efficient implementation requires theory and
practice

grep is the prototypical tool

people used to write programs for searching
(or did it by hand)

tools became important

tools are not as much in fashion today

Grep regular expressions

\c

\(...

any character matches itself, except for
metacharacters . [1~ $ * + \

matches r; followed by r,
matches any single character

matches one of the characters in set ...
a set like a-z or 0-9 includes any character in the range
matches one of the characters not in set
a set like a-z or 0-9 includes any char in the range
matches beginning of line when ~ begins
pattern
no special meaning elsewhere in pattern
matches end of line when $ ends pattern
no special meaning elsewhere in pattern
any regular expression followed by *
matches zero or more instances
matches c unless c is () or digit

\) tagged regular expression that matches ...

the matched strings are available as \1, \2, etc.

Examples of matching

thing
“thing
thing$
“thing$

]
thing.$

thing\.$
\\thing\\

[tTlhing
thing[0-9]
thing[~0-9]

thing[0-9][~0-

thingl.*thing2

thing anywhere in string

thing at beginning of string
thing at end of string

string that contains only thing

empty string
non-empty, i.e., at least 1 char
matches any string, even empty

thing plus any char at end of string
thing. at end of string
\thing\ anywhere in string

thing or Thing anywhere in string
thing followed by one digit
thing followed by a non-digit
9] thing followed by digit,
then non-digit
thingl then any text
then thing2

“thing1.*thing2$ thingl at beginning and

thing2 at end

egrep: fancier regular expressions

r+
r?
ryr,

(r)

one or more occurrences of r
zero or one occurrences of r
riorr,

r (grouping)

([0-971+\.?[0-91*I\. [0-91+) ([Ee]1[-+1?[0-91+)?

Grammar for egrep regular exprs

rre . ~ $ [cccl [“eecl

r* r+ r?

ryr
rilr,

(r)

Precedence:
* + ? are higher than concatenation
which is higher than |

([0-91+\.?[0-91*|\.[0-9]1+) ([Eel[-+]1?[0-9]+)?

The grep family

grep
- basic matching
* egrep
- fancier regular expressions
- trades compile time and space for run time
+ fgrep
- parallel search for many fixed strings
agrep
- "approximate" grep: search with errors permitted

relatives that use similar regular expressions

- ed original unix editor

- sed stream editor

- vi,emacs, sam, ... editors

- lex lexical analyzer generator

- awk, perl, tcl, python, .. scripting languages

- Java, C# ... libraries in mainstream languages

simpler variants
- filename "wild cards" in Unix and other shells
- "LIKE" operator in Visual Basic, SQL, etfc.

Basic grep algorithm

while (get a line)
if match(regexpr, line)
print line

(perhaps) compile regexpr into an internal
representation suitable for efficient matching

match() slides the regexpr along the input line,
looking for a match at each point

regexprm_’
line LITTTTTITTITTTIT

Grep (tror, p 226)

/* grep: search for regexp in file */
int grep(char *regexp, FILE *f, char *name)

int n, nmatch;
char buf[BUFSIZ]:

nmatch = O;
while (fgets(buf, sizeof buf, f) 1= NULL) {
n = strlen(buf);
if (n > 0 && buf[n-1] == '\n')
buf[n-1] = '\0";
if (match(regexp, buf)) {
nmatch++;
if (name != NULL)
printf("%s:", name);
printf("%s\n", buf):

return nmatch;

Match anywhere on a line

look for match at each position of text in turn

/* match: search for regexp anywhere in text */
int match(char *regexp, char *text)
{
if (regexp[0]==""")
return matchhere(regexp+1, text):
do{ /* must look even if string is empty */
if (matchhere(regexp, text))
return 1;
} while (*text++ 1= "\0");
return O;

Match starting at current position

/* matchhere: search for regexp at beginning of text */
int matchhere(char *regexp, char *text)

if (regexp[0] == "\0")

return 1;
if (regexp[1]=="*")

return matchstar(regexp[0], regexp+2, text);
if (regexp[0]=="$" && regexp[1]=="\0")

return *text == '\0";

if (*textl="\0" && (regexp[0]=="." || regexp[0]==*text))
return matchhere(regexp+1, text+1);
return O;

follow the easy case first: no metacharacters
note that this is recursive

- maximum depth: one level for each regexpr character
that matches

Matching * (repetitions)

+ matchstar() called to match c*...
+ matches if rest of regexpr matches rest of
input
- null matches require test at the bottom

/* matchstar: search for c*regexp at beginning of text */
int matchstar(int ¢, char *regexp, char *text)

do{ /* a* matches zero or more instances */
if (matchhere(regexp, text))
return 1;
} while (*text 1= '\0" && (*text++==c || c=="."));
return O;

- finds the leftmost shortest match
- just right for pattern matching in grep
- NOT usually what we want in a text editor
null matches are surprising and rarely desired

Profiling: where does the time go

+ count number of times each line is executed
- measure how long each function takes
- plus lots of other information

$ Icc -p grep.c

$ a.out x ../bib >foo

$ prof

%Time Seconds Cumsecs #Calls msec/call Name

52.1 0.37 0.37 4360969 0.0001 matchhere
16.9 0.12 0.49 4528173 0.0000 _mcount
11.3 0.08 0.57 31102 0.0026 match
8.5 0.06 0.63 546 0.11 _read
7.0 0.05 0.68 31642 0.0016 _memccpy
1.4 0.01 0.69 546 0.02 __Filbuf
1.4 0.01 0.70 31103 0.0003 fgets
1.4 0.01 0.71 32429 0.0003 strlen
0.0 0.00 0.71 1 0. main
0.0 0.00 0.71 1 0. grep
0.0 0.00 0.71 1 0. setprognam
0.0 0.00 0.71 1326 0.000 printf

$ wc ../bib

31102 851820 4460056 ../bib
$ a.out x ../bib | wc

1326 39057 207477

+ _mcount is profiling overhead
+ note consistent counts

Statement frequency counts

$ gcc -fprofile-arcs -ftest-coverage grep.c: a.out x ../bib
$ gcov grep.c: cat grep.c.gcov

/* matchhere: search for regexp at beginning of
int matchhere(char *regexp, char *text)
4360969 {

4360969 if (regexp[0] == *"\0")
1326 return 1;
4359643 if (regexp[l] == "*%)
ittt return matchstar(regexp[0], regexp+2, t
4359643 if (regexp[0] == "$" && regexp[1l] == *"\0%)
T return *text == *\0";
4359643 if (Ctext!="\0" && (regexp[0]=="." || regex
1326 return matchhere(regexp+1l, text+1);
4358317 return O;
}

/* match: search for regexp anywhere in text */
int match(char *regexp, char *text)

31102 {
31102 if (regexp[0] == "~%)
it return matchhere(regexp+1l, text);
4359643 do { /* must look even if string is empt
4359643 ifT (matchhere(regexp, text))
1326 return 1;
4358317 } while (*text++ I= "\07);
29776 return O;
}

- note conservation laws

How to make grep faster
+ use optimization (cc -O)
+ change compilers (lcc, gcc, ve++)
*+ code tuning
- e.g., match calls matchhere many times

- even though most of them must necessarily fail

- because the target string doesn't contain the first
character of the pattern

+ algorithm changes

Code tuning variant

+ checks whether target contains first character
of pattern before calling matchhere
unless it is x*

/* match: search for regexp anywhere in text */
int match(char *regexp, char *text)

{

char *p;

if (regexp[0] == '"")

return matchhere(regexp+1, text):
if (regexp[0] != '\O' && regexp[0] != '.'

&& regexp[1] = '*')

if ((p=strchr(text, regexp[0])) == NULL)

do {
if (matchhere(regexp, p))

return O;
/* must look even if string is empty */

return 1;

} while (*p++ 1= '\0');
return O;

+ is this faster?

Statement frequencies after change

2652
2652
1326
1326
HHIHIH
1326
HHIHH
1326
1326
HH T

31102
31102

31102
HHIHH
31102
31102
29776
1326
1326
1326
HH
HHIHH

/* matchhere: search for regexp at beginning of
int matchhere(char *regexp, char *text)

}

if (regexp[0] == *"\0")
return 1;
if (regexp[1] == **%)
return matchstar(regexp[0], regexp+2, t
if (regexp[0] == "$" && regexp[1] == *"\0%)
return *text == *\0";
iT (Ctext!="\0" && (regexp[0]=="." || regex
return matchhere(regexp+1, text+l);
return O;

/* match: search for regexp anywhere in text */
int match(char *regexp, char *text)

{

char *p = text;

if (regexp[0] == "~%)
return matchhere(regexp+1l, text);

if (regexp[0] '= "\0" && regexp[0] = "." &
if ((p=strchr(text, regexp[0])) == NULL
return O;
do { /* must look even if string is empt
it (matchhere(regexp, p))
return 1;
} while (*p++ 1= "\0");
return O;

10

Simple grep algorithm

- best for short simple patterns

- eg., grep foo *.[ch]

- most use is like this

- reflects use in text editor for a small machine

limitations

- fries the pattern at each possible starting point
e.g., look for aaaaab in aaaa....aaaab
potentially O(mn) for pattern of length m

- complicated patterns (* .* *) require backup
potentially exponential

- can't do some things, like alternation (OR)

this leads to extensions and new algorithms

- egrep complicated patterns, alternation
- fgrep lots of simple patterns in parallel
- boyer-moore long simple patterns

- agrep approximate matches

Finite state machines/finite automata

finite state machine
- aset of states
- an alphabet (e.g., ascii)
- fransition rules: current state & input char -> new
state
- astart state
- aset of final "accepting" states
regular expressions are equivalent to finite state
machines
- can go from one to the other mechanically
ab*c

(b
Oo—0O—@
a c
+ an, ifn< 4

- can't count: can't handle arbitrary n in a fixed
number of states

- can't do palindromes: no memory

11

Non-deterministic finite automata mora)
RE: .*ab.*abab

Fsm: O 1 2 3 4 5 6

input: x x a b a b a a b a b
state after: 0 0 1 2 3 4 5 ?

diff seq: 0 01 2 2 2 2 3 4 5 6

if the machine could guess right every time, it
would match properly

- avoids "backing up", decides about each character the
first time it's seen

a NDFA matches an input if there is any possible
path from start state to a final state.

it rejects/does not match if there is no path from
the start state to a final state.

how do we make a machine that's always lucky?

- make a deterministic finite automaton that simulates
the NDFA

Egrep: regexpr -> NDFA -> DFA

Example: (alaalaaa)b

NDFA: Q

Convert to DFA by inventing states that
represent sets of states of the NDFA:

(2o (2)
a b b
Cd——()

Recognition time is O(n)
Construction time could be O(2™)
- because there are 2™ subsets of the states

- newer versions construct states as needed:
lazy evaluation

12

Important ideas from regexprs & grep

* tools: let the machine do the work
- good packaging matters
notation: makes it easy to say what to do
- may organize or define implementation
* hacking can make a program faster, sometimes,
usually at the price of more complexity

a better algorithm can make a program go a lot
faster

don't worry about performance if it doesn't
matter (and it often doesn't)

when it does,
- use the right algorithm
- use the compiler's optimization
- code tune, as a last resort

13

