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1 Introduction

In broad terms, property testing is the study of the following class of problems:

Given the ability to perform (local) queries concerning a particular object (e.g., a func-
tion, or a graph), the task is to determine whether the object has a predetermined
(global) property (e.g., linearity or bipartiteness), or is far from having the property.
The task should be performed by inspecting only a small (possibly randomly selected)
part of the whole object, where a small probability of failure is allowed.

In order to define a property testing problem, we need to specify the type of queries that the
testing algorithm can perform, and a distance measure between objects. The latter is required in
order to define what it means that the object is far from having the property. We assume that the
algorithm is given a distance parameter e. The algorithm should accept with probability at least
2/3 every object that has the property, and should reject with probability at least 2/3 every object
that has distance more than e (according to the selected distance measure) from any object having
the property. 2

When the object in question is a function f : X — Y (for finite X and Y), then the natural
form of queries is: “What is the value of f(z)?” for any choice of z € X. A natural distance
measure between two functions is the fraction of domain elements on which the functions differ.
Thus, for example, when testing linearity of functions, the testing algorithm can obtain the value
of the tested function f on z’s of its choice. If f is a linear function then the algorithm should
accept it with probability at least 2/3. However, if the value of f must be modified on more than
an e fraction of the domain elements so that it becomes linear, then the algorithm should reject it
with probability 2/3. (If f is close to being linear, then the algorithm can either accept or reject.)

When studying graph properties, the form of queries, and in some cases the distance measure,
depend on the graph representation. For instance, if graphs are represented by their adjacency
matrix, then the queries are of the form: “Is there an edge between vertex v and vertex w”? The
distance measure between graphs in this case is the fraction of adjacency-matrix entries on which

! A more general definition in which the algorithm cannot necessarily perform queries but rather is given “samples”
from the object distributed according to some fixed (possibly unknown) distribution, will be discussed subsequently.

*The choice of success probability 2/3 is of course arbitrary, and any constant strictly greater than 1/2 can be
used. In order to obtain success probability of 1 — § for any § < 1/3, the algorithm should be executed ©(log(1/4d))
times, and the majority output taken.



the two graphs differ. Thus, for example, when testing bipartiteness® of graphs represented by
their adjacency matrix, then the algorithm is only allowed to accept graphs G = (V,E) for which
at most ¢[V|? edges should be removed so that they become bipartite.

In this tutorial we mainly focus on testing graph properties, though we shall briefly survey other
results as well. For sake of the presentation, some of the following motivational discussion refers to
graphs. However, much of it is relevant to testing other types of objects.

1.1 Motivation

The task of testing a certain graph property is a relaxation of the task of deciding ezactly whether a
graph has the property. Namely, an exact decision procedure is required to accept every graph that
has the property and reject every graph that does not have the property. A testing algorithm is
still required to accept every graph that has the property, but is only required to reject every graph
that is far from having the property. While relaxing the task, we expect the algorithm to observe
only a small part of the graph and to run significantly faster than any exact decision procedure.
Specifically, we aim at spending time that is sub-linear in or even independent of the size of the
graph.

In fact, as we shall elaborate later, many graph properties have very fast property testing al-
gorithms whose query complexities do not depend at all on the size of the graph. This should be
put in contrast to known lower bounds on the complexity of exactly deciding graph properties.
Rivest and Vuillemin [RV76] showed that any deterministic procedure for deciding any non-trivial
monotone N-vertex graph property must examine Q(/N?) entries in the adjacency matrix represent-
ing the graph, thus resolving the Aanderaa—Rosenberg Conjecture [Ros73]. The query complexity
of randomized decision procedures was conjectured by Yao to be also Q(N?). Progress towards
proving this conjecture was made by Yao [Yao87], King [Kin91] and Hajnal [Haj91] culminating in
an Q(N*/3) lower bound.

1.1.1 A Tradeoff Between Accuracy and Efficiency

It follows from the above discussion that Property Testing trades accuracy for efficiency, where
accuracy is measured in terms of the distance parameter e. Since we expect the running time of
the algorithm to increase as a function of 1/e, the algorithm is more accurate as e decreases, but
its running time increases.

This paradigm may be useful is several scenarios.

1. A fast property tester can be used to speed up a slow exact decision procedure as follows. Before
running the decision procedure, run the tester. If the tester rejects, then we know with high
confidence that the property does not hold and it is unnecessary to run the (slower) decision
procedure. In fact, it is often the case that when the testing algorithm rejects, it provides a
witness that the graph does not have the property. On the other hand, if the tester accepts,
then an exact decision procedure will determine whether the property is close to holding or
actually holds. We thus save time in applications where typical graphs are either good (have
the property), or very bad (far from having the property).

2. Furthermore, if it is guaranteed that graphs are either good or very bad then we may not even
need the exact algorithm at all.

3A graph is bipartite if its set of vertices can be partitioned into two disjoint subsets such that there are not edges
within the subsets.



3. There are circumstances in which knowing that a property nearly holds is good enough and
consequently exact decision is unnecessary.

4. In some cases (e.g., connectivity) there are algorithms for “fixing” the graph (that is, modifying
it so that it will have the property). If the graph is accepted then we know with high confidence
that the number of required modification is not too large, and assuming there is a cost associated
with each edge modification, the total cost is not too large.

5. The graph may be too large to fully scan, so one must make a decision without observing the
whole graph.

6. It may be NP-hard to answer the question exactly, and so (even if scanning the graph is feasible),
some form of approximation is inevitable

1.1.2 Relation to Other Notions of Approximation

In the study of approximation algorithms, and in particular approximation algorithms for graph
optimization problems, the following is the dominant approach. For each instance (graph) there is
a set of feasible solutions (e.g., subsets of vertices that form cliques). With each feasible solution
there is an associated cost or utility (e.g., the size of the clique). The goal is to approximate the
value of the minimum cost or maximum utility of a feasible solution. In some cases, the goal is to
actually find a solution whose cost or utility is close to optimal.

Property testing is related to an alternative notion of approximation, namely that of dual
approximation [HS87, HS88]. Instead of approximating the maximum utility of a feasible solution,
dual approximation tries to approximate the distance (in terms of edge-modifications) to having
a feasible solution with a certain utility. In the example of the clique for instance, the goal is to
approximate the number of edges that must be added in order to obtain a clique with a certain
size.

The preferred notion of approximation is naturally dependent on the context in which it is
applied. We note that in some cases the two notions coincide. This is true for example in the case
of Max-Cut. In the more standard approach, the goal is to approximate the size of a maximum
cut (that is, the maximum number of edges crossing any two-way partition). In the dual approach,
the goal is to approximate the number of edges that should be added in order to obtain some cut
with a given size. In this case, an algorithm for the latter problem can be used to solve the former
problem.

1.1.3 Property Testing, Program Testing and PCP

Property testing of functions was first explicitly defined by Rubinfeld and Sudan [RS96] in the
context of program testing. The goal of a program testing algorithm is to test whether a given
program computes a specified function. Here one may choose to test that the program satisfies a
certain property (which the function holds) before checking that it computes the specified function
itself. This paradigm has been followed both in the theory of program testing [BLR93, RS96,
Rub99], and in practice where often programmers first test their programs by verifying that the
programs satisfy properties that are known to be satisfied by the function they compute.
Property testing also emerges naturally in the context of probabilistically checkable proofs
(pcp). In this context the property being tested is whether the function is a codeword of a specific
code. This paradigm, explicitly introduced in [BFLS91], has shifted from testing codes defined by



low-degree polynomials [BFL91, BFLS91, FGL 196, AS98, ALM'98] to testing Hadamard codes
[ALM*98, BGLR93, BS94, BCH195, Kiw96, Tre98], and to testing the “long code” [BGS98, H4s96,
Has97, Tre98].

We note that in both the above contexts, the properties tested were algebraic.

1.1.4 Property Testing and Learning

One of the initial motivations for the study of property testing is its relation to Computational
Learning Theory. Let the objects we are interested in be functions (in particular, boolean functions),
and consider the following variant of our initial description of property testing: Instead of allowing
the algorithm to query the tested function f on inputs of its choice, it is provided with a labeled
sample {(z', f(z™)),..., (™, f(z™))}, where the z'’s are distributed according to some fixed but
unknown distribution D over the domain X. In this case, distance between functions is measured
with respect to the distribution D. That is, the distance between functions g and h is Pry..p[g(z) #
h(z)].

The above definition of property testing is inspired by the Probably Approximately Correct
(PAC) learning model proposed by Valiant [Val84]. In the PAC model, a learning algorithm is given
a random sample labeled by an unknown function f as defined above, and is required to output
(with high probability) a hypothesis h that approximates f well. That is, Pryp[h(z) # f(z)] <e.
In the standard PAC model, it is assumed that f belongs to a known class of functions F', and it
is either required that h belong to F as well, or to some specified hypothesis class H D F.*

Thus, property testing as defined in this subsection can be viewed as a relaxation of PAC
learning — instead of requiring a good approximation of the function f, we only ask whether such
a good approximation ezists in a given class (the class of functions having the tested property).
Our original definition of property testing which allows queries and defines distance with respect
to the uniform distribution can be seen as a relaxation of a variant of the PAC model: Learning
with queries under the uniform distribution.

Given the above view, it is reasonable to expect that for some classes of functions (properties),
testing can be done much more efficiently than learning (in terms of sample/query complexity
and/or running time). This is true for example in the case of linear functions [BLR93], multivari-
ate polynomials [RS96], and monotone functions [GGL100]. If we have fast testing algorithms that
require relatively small samples, we may be able to use such algorithms in the context of learn-
ing. Namely, we can use them to choose between alternative hypothesis representations without
actually incurring the expense of running the corresponding learning algorithms. For example,
suppose that we are considering running C4.5 (a fast algorithm) to find a decision tree hypothesis
(a relatively weak representation). But we may also want to consider running backpropagation (a
slow algorithm) to find a multilayer neural network (a relatively powerful representation, requiring
more data, but with perhaps greater accuracy). Ideally, we would like a fast, low-data test that
informs us whether this investment would be worthwhile.

1.2 Testing Graph Properties

The study of testing graph properties was initiated by Goldreich Goldwasser and Ron [GGRYS].
As noted previously, the precise definition of testing graph properties is dependent on the repre-

“In the agnostic model [KSS94], nothing is assumed about f, and so the distance between h and f is required to
be not much larger than the distance between f and the closest function in H.



sentation of graphs. There are two standard representations of graphs, adjacency matrices and
incidence lists, and we discuss the related testing models below. We restrict our attention to
undirected graphs.

e Adjacency-Matriz Model. Goldreich et. al. [GGR98] consider the adjacency-matrix representa-
tion of graphs, where the testing algorithm is allowed to probe into the matrix. That is, the
algorithm can query whether there is an edge between any two vertices of its choice. In this
representation the distance between graphs is the fraction of entries in the adjacency matrix on
which the two graphs differ. By this definition, for a given distance parameter e, the algorithm
should reject every graph that requires more than 5 - |V|? edge modifications in order to acquire
the tested property (the factor of % is because each edge is represented twice in the matrix).
This representation is most appropriate for dense graphs, and the results for testing in this
model are most meaningful for such graphs.

e Incidence-Lists Models. Goldreich and Ron [GR97] consider the incidence-lists representation
of graphs. In the model they consider, graphs are represented by lists of length d, where d is
a bound on the degree of the graph. Here the testing algorithm can query, for every vertex v
and index 7 € {1,...,d}, which vertex is the 7’th neighbor of v. If no such neighbor exists then
the answer is ‘0’. Analogously to the adjacency-matrix model, the distance between graphs is
defined to be the fraction of entries on which the graphs differ according to this representation.
Since the total number of incidence-list entries is d-|V|, a graph should be rejected if the number
of edge modifications required in order to obtain the property is greater than § - d|V|. (Once
again, the factor of % is because each edge (u,v) is represented both as an entry [u,?] and as

an entry [v,j]).

A variant of the above model allows the incidence lists to be of varying lengths [PR99a]. In
such a case, the distance between graphs is defined with respect to the total number of edges
in the graph (or an upper bound on this number). This model is suitable for testing graphs
that are not dense but for which there is large variance in the degrees of the graph vertices.
Furthermore, some problems are more interesting in this model, in the sense that removing the
degree bound makes them less restricted. For example, testing whether a graph has a diameter
of at most a bounded size, is less interesting in the bounded degree model, since a bound d on
the degree implies a lower bound on the diameter of a graph. Intuitively, testing in this model
is at least as hard as testing in the bounded-degree model described above, and in fact in some
cases it is strictly harder.

We note that for both the adjacency-matrix model and the bounded-degree incidence-lists
model, the representations can be viewed as functional representations of graphs. Namely, in
the first model it is a function from all |V|? vertex-pairs to {0,1}, and in the second case it is a
function from all |V|-d pairs of vertex and index, to the set of vertices. Furthermore, the definition
of distance between graphs in these models is determined by the representation: it is the symmetric
difference between the functions representing the graphs, divided by the size of the domain of the
functions. The unbounded-degree incidence-lists model is not a functional representation, and the
notion of distance is divorced from the representation.

1.2.1 Techniques

The applicable techniques depend on the choice of representation. A central technique that is used
for the adjacency-matrix representation is random sampling. Specifically, the algorithm randomly



selects a small set U of vertices from the graph G, finds the edges interconnecting the vertices, and
determines whether the property holds (or “almost holds”) for the small subgraph induced by U.
If so, then the algorithm accepts. If not, the algorithm rejects. It is typically straightforward to
show that any graph having the property is accepted (always, or with high probability). The crux
of the proof is in showing that a graph that is far from having the property is rejected with high
probability.

The following general analysis technique is often used for proving the above claim. The sample
is viewed as consisting of two disjoint subsamples. The first sample is viewed as implicitly inducing
certain constraints on all other graph vertices. These constraints are such that if the graph is far
from having the property then many vertices (or pairs of vertices) do not obey the constraints. The
function of the second part of the sample is to show evidence to the unsatisfied constraints.

The incidence-lists representation requires a different set of techniques, more applicable to sparse
graphs. Specifically, because the graphs have few edges, a small random sample of vertices typically
has no edges internal to the sample, that is, it is just the empty graph. Thus, algorithms for this
setting use additional techniques besides pure random sampling. In particular, some algorithms
apply various forms of exhaustive local search [GR97, PR99a] (such as performing a breadth-first-
search until a particular number of vertices are observed). Other algorithms use random walks
starting from randomly selected vertices [GR99].

1.3 Testing Other Properties

As mentioned previously, there is a body of work dealing with testing of algebraic properties of
functions (see [BLR93, RS96, Rub99, EKK*98]). Testing monotonicity of functions was studied
in [GGL'00, DGL*99, EKK'98]. Testing properties defined by regular languages was studied
in [AKNS99], and recently Newman [New00] extended this result to bounded-width branching
programs. Properties of geometric objects were studied in [EKK 198, CSZ00], and algorithms for
testing of clustering were given in [ADPRO00]. Metric properties were recently considered in [PR0O].

Organization

The rest of the paper consists of three sections. The first (and main) two sections deal with testing
graph properties, and the last with other properties. In particular, the first section is dedicated to
the adjacency-matrix model. We provide a summary of results in this model, and present in detail
the algorithm for testing bipartiteness and its analysis. We also sketch the ideas for testing whether
a graph has a clique of a given size, and give some further details for a few other results. The second
section is dedicated to testing in the incidence-lists model. Here too we give a summary of the results
in this model, and provide more details for two properties: k-connectivity and bipartiteness. The
last section gives a summary of other property-testing results that do not deal with graphs.

2 Testing Graph Properties in the Adjacency Matrix Model

2.1 Definitions

We consider undirected, simple graphs (no multiple edges or self-loops). For a graph G, we denote
by V(G) its vertex set and by E(G) its edge set (whenever it is clear from the context, we shall
simply use V and E). The size of V(G) is denoted by N. We assume, without loss of generality, that



V(G) = {1,..., N}. Graphs are represented by their (symmetric) adjacency matrix. Thus, graphs
are associated with the (symmetric) boolean function fg corresponding to this matrix. That is,
fe(u,v) =1if (u,v) € E(G), and fg(u,v) = 0 otherwise. For two (not necessarily disjoint) sets of
vertices, X; and Xz, we let E(X;,X2) % {(u,v) € E(G) : u e Xy,v € Xa}.

The distance between two N-vertex graphs G; and Gg is defined as the number of unordered
pairs (u,v) € [N]? such that fg,(u,v) # fa,(u,v), divided by the total number of pairs,® N2.

Definition 2.1.1 For any graph property P, and 0 < € < 1, we say that a graph G is e-far
from (having) property P, if it has distance greater than € from every graph that has the property.
Otherwise it is e-close.

Definition 2.1.2 A property testing algorithm for property P working in the adjacency matriz
model is given a distance parameter € and can perform queries concerning the existence of edges
between any pair of vertices of its choice. If the tested graph has the property, the algorithm should
accept with probability at least 2/3, and if it is e-far from having the property then the algorithm
should reject with probability at least 2/3.

2.2 Summary of Results

The following graph properties were studied in [GGR98] and were shown to have testing algorithms
with query complexity poly(1/¢) and time complexity at most exp(poly(1/¢)). In what follows, N
denotes the number of graph vertices.

o Bipartiteness. The algorithm has query complexity and running time 0(6_3).6 Recently, Alon
and Krivelevich [AK99] improved the analysis of the algorithm and obtained a bound of
O(e2) on the query complexity and running time.

e k-colorability, & > 3. The algorithm has query complexity O (k*/e%) and running time
exp (O (k2 /63)). Recently, Alon and Krivelevich [AK99] improved the analysis of the al-

gorithm and obtained a bound of O (k?/€*) on the query complexity, and exp (é (k/ 62)) on
the running time.

e p-Clique. The property is having a clique of size p- N, where 0 < p < 1 is a constant. The
query complexity of the algorithm is O (p?/€®) and the running time is exp (O (p/ 62)).

e p-Cut. The property is having a 2-way cut with p/N? crossing edges. The query complexity of
the algorithm is O (¢~ 7) and the running time is exp (O (6*3)). The algorithm generalizes to
k-way cuts, at a multiplicative cost of O(log?(k)) in the query complexity and in the exponent

of the running time. The algorithm can also be modified to test p-Bisection. This property is
similar to p-Cut except that the partition is to equal size subsets. The query complexity is

O (¢7®) and the running time is exp (O (6_3)).

5In [GGRY8] (and in the introduction) the distance was defined as the number of such ordered pairs (entries in
the matrix) divided by N2. While this seems more appropriate as N? is the number of ordered pairs, it implies that
each undirected edge in the symmetric difference between the graphs is counted twice, causing slight cumbersomeness
in the analysis of the algorithms. Thus, we have chosen here a less natural definition that makes the analysis later
simpler.

6The O(-) notation, which is used for sake of succinctness, “hides” logarithmic factors (which in all our algorithms
are at most quadratic).



NOTES

1. For all the above properties (except bipartiteness) it is very unlikely that there is a testing
algorithm having running time poly(1/¢). If such an algorithm exists, by setting e = 1/N one
would be able to obtain an exact (randomized) decision procedure that runs in polynomial
time, and this would imply that NP C BPP.

2. The bipartiteness and k-colorability algorithms have one sided error: they always accept
graphs that have the property. Furthermore, whenever a graph is rejected, the algorithm
supplies evidence that it does not have the property. FEvidence is in the form of a small
subgraph that is not bipartite/k-colorable. All other algorithms have two-sided error and
this can be shown to be unavoidable within o(N) query-complexity.

A testing algorithm for k-Colorability whose complexity is independent of N was already implicit
in work of Alon et. al. [ADL'94]. They build on a constructive version of the Regularity Lemma
of Szemerédi [Sze78] which they prove, and the complexity of the resulting testing algorithm is a
tower of poly(1/€) exponents.

Constructing (Good) Partitions For all the above properties, in case the graph has the desired
property, the testing algorithm outputs some auxiliary information which allows to construct, in
poly(1/€) - N time, a partition that approximately obeys the property. For example, for p-Clique,
the algorithm will find a subset of vertices of size pN, such that at most e N? edges need to be added
so that it becomes a clique. In the case of p-Cut, the algorithm will construct a partition with at
least (p — €)N? crossing edges. The basic idea is that the partition of the sample that caused the
algorithm to accept is used to partition the whole graph. This idea was later also used by Frieze
and Kannan [FK99] to obtain polynomial time approximation schemes for various problems, where
they apply a relaxed constructive version of Szemerédi’s Regularity Lemma [Sze78|.

General Graph Partition Properties All the above properties are special cases of a class of
graph partition properties. Each property in the class is parameterized by an integer k and by k+k?
pairs of lower and upper bounds in the interval [0,1]. A graph has the property if its vertices can
be partitioned into k subsets having relative sizes within the designated upper and lower bounds,
and such that the edge densities between the parts are within the required bounds as well. A more
precise definition is given in Subsection 2.5.

Not surprisingly, generality has a price, and the testing algorithm for the above class
)2k+8

of properties, presented in [GGR98], has query complexity (O(kQ)/e and running time

exp (O(kQ)/e)k+1

First Order Graph Properties Alon, Fischer, Krivelevich and Szegedy [AFKS99], study the
class of first order graph properties. These are properties that can be formulated by first order
expressions about graphs. That is, expressions that contain quantifiers over vertices, boolean
connectives, equality of vertices, and adjacency relations. They show that all first order graph
expressions containing at most one quantifier, as well as all first order graph expression of the type
“” (ie., Iz1,...,xt YY1,...,Yys A(x1,...,T¢,Y1,--.,Ys) where A is a quantifier-free first order
graph expression and ¢ and s are constants), can be tested with query complexity and running
time independent of N. Once again generality has a (steep) price: the dependence on the distance



parameter e is either a tower of poly(1/e) exponents or a tower of towers of poly(1/e) exponents.
They also prove that there exist first order graph expressions of the type “VY3” that cannot be tested
with query complexity and running time independent of N. In particular this is true of a natural
property based on graph isomorphism, where the required number of queries is Q(v/N).”

We give some more details in Subsection 2.6

Properties of Directed Graphs The adjacency-matrix model can be naturally extended to
deal with directed graphs. The algorithm may perform queries of the form: “is there an edge from
vertex u to vertex u”, and distance between graphs is defined as the number of ordered pairs that
are an edge in one graph and not in the other, divided by N2.

Some properties of undirected graphs have analogies in directed graphs. Furthermore, in some
cases the testing algorithms for undirected graphs can be extended to directed graphs. This is true
for example in the case of p-Cut (see [GGR98, Sec. 10.1]). However, in other cases, the testing
problems are quite different. This is true for example for the cycle-freeness property. In order for
an undirected graph to be cycle-free it must be very sparse. Namely, it may contain at most N — 1
edges. Hence, in order to test cycle-freeness of undirected graphs (in the adjacency-matrix model),
all that is required is to roughly estimate the number of edges in the graph by sampling. This is not
true of directed graphs. Namely, a directed graph may be very dense but still acyclic. Hence, for this
property a non-trivial analysis is needed. In [BROO0] it is shown that the “natural” algorithm that
takes a sample of vertices and accepts or rejects based on the acyclicity of the induced subgraphs,
is a testing algorithm. The required sample size is O(log(1/¢)/¢). The special case in which there is
a directed edge (in some direction) between every pair of vertices, was treated in [EKK'98] when
dealing with total orders. They present an algorithm having complexity poly(1/e).

2.3 Testing Bipartiteness

Recall that a graph G = (V,E) is bipartite if its set of vertices V can be partitioned into two
(disjoint) subsets V; and V3 so that there are no edges between vertices that belong to the same
subset. If there is no such partition, then the graph is not bipartite. Deciding whether a graph is
bipartite or not can be done in time linear in the number of graph edges by performing a Breadth
First Search (BFS) starting from an arbitrary vertex.

What does it mean that a graph is e-far from bipartite? For any two-way partition (V1,Va) of
V, we say that an edge (u,v) € E is a violating edge with respect to (V1,Vs), if either u,v € V; or
u,v € Vo. We say that (Vi,Vs) is e-bad if the number of violating edges with respect to (V1,Vs),
is greater than eN?, otherwise it is e-good. Given the above definition, G is e-far from bipartite if
and only if every partition (V1, V) of V is e-bad.

Suppose we fix a particular partition (V1, Vy). If we now take a sample of size ©(1/¢) of vertices
(or pairs of vertices) and obtain the edges between them, then with high probability we shall see
evidence to the badness of the partition in the form of a violating edge. Since in case G is e-far from
bipartite, all its partitions are e-bad, the naive use of the above observation is to take a sufficiently
large sample of vertices such that with high probability for every partition there exists an edge
between vertices in the sample that violates the partition. Such a sample induces a subgraph that
is necessarily not bipartite, and so the algorithm could simply run a BFS on the sample to detect
this. Unfortunately, the number of all two-way partitions of V is exponential in N. Therefore, a

"Previous hardness results in [GGR98] only showed the ezxistence of such hard-to-test properties (in N'P).



straightforward analysis of the above algorithm (which applies a probability union bound) would
require that the size of the sample be logarithmic in the number of partitions, that is, linear in V.

Nonetheless, as we shall see below, the naive algorithm that simply takes a uniformly selected
sample of vertices and checks whether the induced subgraph is bipartite does work, but requires a
slightly more refined analysis.

Test-Bipartite

1. Uniformly and independently select m = @(logE#) vertices.

2. For every pair of vertices v and u selected, query whether there is an edge between v and u,
thus obtaining the induced subgraph.

3. Perform a (BFS) to determine whether the subgraph induced by the sample is bipartite. If
it is bipartite output accept otherwise output reject.

Theorem 1 The algorithm Test-Bipartite is a testing algorithm for bipartiteness. In particular,
if the graph is bipartite, then it is always accepted, and if it is e-far from bipartite, then it is
rejected with probability at least 2/3. Furthermore, whenever the algorithm rejects a graph, it
outputs a certificate to the non-bipartiteness of the graph in form of a non-bipartite subgraph having
0 (logE#) vertices.

Proof: The first claim in the theorem, concerning bipartite graphs is obvious: if G is bipartite
then every subgraph of G is bipartite, and so the graph is accepted for any choice of the sample.
The heart of the proof is hence in the second claim, that is, showing that if a graph is e-far from
bipartite then with probability at least 2/3 over the choice of the sampled vertices, the resulting
induced subgraph is not bipartite. We thus focus on the second part of the theorem, and assume
from now on that G is e-far from bipartite. Recall that this implies that for every two-way partition
of V there are at least e N? violating edges. The rough outline of the proof is the following:

1. We shall view the sample of vertices as consisting of two parts, which we refer to as U and
S. The set U consists of the first m; = ©((log(1/e€))/e) vertices selected, and the set S of
the latter mo = ©((log(1/€))/e?) vertices. (Since the vertices are selected independently,
repetitions may occur.)

2. We show that with probability at least 5/6 over the choice of U, it can be used to implicitly
induce a relatively small number of partitions of the whole graph, that are in a way consistent
with U (this notion will be clarified later).

3. We then show that with probability at least 5/6 over the choice of the second part of the
sample, S, it will contain violating edges with respect to each of the partitions implicitly
induced by U.

4. Putting the above two items together we conclude that with probability at least 2/3 over the
choice of both parts of the sample, the induced subgraph is not bipartite.

We start with some definitions.

Definition 2.3.1 A wvertex v is influential if its degree in G is at least ;N. Otherwise it is not
influential.
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If a vertex v is not influential, then by definition, for every partition (Vi, Va) of V, the number of
edges incident to v that are violating with respect to (V1, Vg) is at most (¢/4) N. Furthermore, since
there are at most N non-influential vertices, the total number of edges incident to non-influential
vertices that violate some partition, is at most (¢/4)N?. Intuitively, the means that we shall “not
rely” on non-influential vertices for giving us evidence to the fact that G is far from bipartite.

Definition 2.3.2 For any vertex v and set of vertices U, we say that U covers v if v has at least
one neighbor in U.

We are now ready for our first lemma concerning the first part of the sample U.

Lemma 2.3.1 With probability at least 5/6 over the choice of the vertices in U, all but at most
(e/4)N influential vertices are covered by U.

Proof: Consider any fixed influential vertex v. Recall that the vertices in U are selected uniformally
and independently. Hence, the probability that U does not cover v, that is, that U contains none
of the at least (¢/4)N neighbors of v is at most

e\™ €
(1 — Z) < exp (Z -m1>

If we set m; = 2 -In(24/€) then the above probability is at most (¢/24). Since there are at most
N influential vertices, this implies that the expected number of influential vertices that are not
covered by U is at most (¢/24) N. By Markov’s inequality, the probability that there are more than
(¢/4)N such influential vertices, is at most 1/6, as required. H

We assume from now on that U in fact covers all but at most (¢/4)N of the influential vertices.
Let C be the set of vertices in V that are covered by U and let R be the remaining vertices. (The
sets C and R also contain the vertices of U, but the size of U should be thought of as negligible
compared to |[CUR| = N.) By our assumption, R contains at most (¢/4)N influential vertices,
and possibly all non-influential vertices. Consider a fixed partition (Uy,Uy) of U. Then (Uy, Us)
can be used to induce a partition (Cq,Cq) of C as follows: every vertex in C that has a neighbor
in Uy, belongs to Co, and all other vertices in C (that necessarily have a neighbor in Us), belong
to C1. Let (Ry,R2) be an arbitrary partition of R (with the only restriction that Uy NR C R; and
Us NR C Ry), and consider the partition (C; UR;,Co URy) of V.

Since all partitions of V are e-bad, this is in particular true of the partition (C; UR;,Co URy).
Where do the at least eN? edges reside? Since R contains at most (¢/4)N influential vertices, each
incident to at most N edges, and at most N non-influential vertices, each incident to at most (e/4) N
edges, the total number of edges incident to vertices in R is at most (¢/4)N - N + N - (¢/4)N =
(¢/2)N2. Thus, the number of violating edges with respect to (C; URy, Co UR;) that are incident
to vertices in R is at most (¢/2)N2, and this is true for every possible partition (Ri,Rg). This
implies that (no matter how R is partitioned) there must be at least (¢/2)N? violating edges that
are incident only to vertices within C; or within C,. As we show in the next lemma, if we now take
an additional (sufficiently large) sample (the sample S), then with high probability it will contain
a pair of vertices connected by a violating edge (with respect to (C;,Cg)). This is then shown to
imply that for every partition (S1,S2) of S, there is some edge between the sample vertices that is
violating with respect to (U; U S1,Us U Ss). For an illustration of the partition and the violating
edges, see Figure 1.

11



R1 R2

Figure 1: An illustration of the partition induced by (Uy,Us). The vertices in Cy each have at least one
neighbor in Uy, and the vertices in C; at least one neighbor in U,. The vertices in R have no neighbor
in either Uy or Us, and are partitioned arbitrarily. The edges incident to R (of which there are at most
(e/2)N?, both violating and not violating), are dotted, and the violating edges residing in either C; or Cs
(of which there are at least (¢/2) N?), are dashed.

Lemma 2.3.2 Let G = (V,E) be a graph that is e-far from bipartite, U a subset of V that covers
all but at most (e/4)N of the influential vertices in G, and (U1, Us) a fized partition of U. Let S be
a uniformly and independently selected sample of mo = O(|U|/€) vertices. Then, with probability at
least 1 — 2_‘U|/6 over the choice of S, for every partition (S1,S2) of S, there is some edge between
vertices in U U S that is violating with respect to (Uy U S1, Uy U So).

Proof: It will be convenient to view S as ma/2 pairs of vertices. By the discussion preceding
the lemma, for every such pair (v, w), the probability that (v, w) constitutes a violating edge with
respect to (Cp, Cs) is at least €/2. The probability that among the m9/2 pairs, there is no violating
edge, is at most (1 — (¢/2))™2/? which for my = (16|U]|/e) is less than 27 VI/6. To complete the
claim we need to show that if S contains such a pair, then it is not possible to partition S into
(S1,S2) so that (U; USy, Uz U S2) has no violating edges.

Consider an edge (v, w) such that v,w € S that violates (C1, Cs), and without loss of generality,
assume v, w € Cy. If we put both vertices either in S or in Sy then (v, w) is violating with respect
to (S1,S2). However, since v and w belong to Cq, by our definition of the partition (Cy, Cs), v has
some neighbor v € U; and w has some neighbor u € U;. Therefore, if we put v € S; and w € So,
then the edge (u,v) will be violating, and if we put w € S; and v € Sy, then the edge (u',w) will
be violating. The lemma follows. W

Combining Lemma 2.3.2 with the fact that there are 2!Vl partitions of U, it follows that with
probability at least 5/6 over the choice of S, for every partition (Uy, Ug) of U, and for every partition
(S1,S2) of S, the sample contains edges that violate (U; US1, Uz US2). In other words, the sample
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U U S cannot be partitioned without violations. Combining this with Lemma 2.3.1, the theorem
follows. M (Theorem 1)

The Query and Time Complexities As described, the algorithm Test-Bipartite has query
and time complexities that are quadratic in the size of the sample. That is, ©(log?(1/¢)/€*).
However, given the analysis, we can slightly improve on this bound. Assume the algorithm actually
partition the sample into two parts U and S of sizes m; = ©(log(1/€)/¢) and my = O(log(1/€)/€?),
respectively. It views S as consisting of mg/2 pairs of vertices, and queries whether an edge exists
only between all pairs of vertices in U x S, and between the mg/2 pairs in S. It then checks whether
the resulting subgraph is bipartite. Then by the analysis this suffices to obtain the desired success
probability while decreasing the complexities to ©(log®(1/¢)/€®).

2.4 Testing p-Clique

In this subsection we give the basic underlying ideas of a testing algorithm for the p-Clique property.
A graph is said to have the property if it contains a clique of size p- N, for a given constant 0 < p < 1.
Hence, by definition, a graph is e-far from having a p clique, if for every subset X of the vertices
of size pN, the number of pairs of vertices from X that do not have an edge between them is more
than eN2.

While it can be shown that the “natural” algorithm, which simply takes a sample S of vertices
and accepts if an only if S contains a clique of size slightly smaller than p|S|, will work, there is
no direct proof for its correctness. Rather, its correctness follows from that of another somewhat
“unnatural” algorithm, which we discuss below. In the case of the natural algorithm, it is very
easy to show that a graph having a clique of size pN will be accepted with high probability, and
the difficulty is in proving that a graph which is e-far from having the property is rejected with
probability at least 2/3. As we shall see, for the unnatural algorithm it is relatively easy to show
that a graph which is e-far from having the property is rejected with probability at least 2/3, but
we need to work harder to show that a graph having the property is accepted with probability at
least 2/3.

We start by showing how, given a graph that has a cliqgue of size pN it is possible to find a
subset of vertices having size pN that is an approximate clique. Namely, the number of pairs of
vertices in the set that do not have an edge between them is at most eN?2.

An Oracle Aided Procedure Consider first the following mental experiment. Let C be a
clique of size pN in G, and suppose we have access to an oracle that provides us with the number
of neighbors that any given vertex v € V has in C. We would like to use this information in
order to construct a clique C' of size pN (which may differ from C). Let dc(v) denote the number
of neighbors that vertex v has in C. By definition of a clique, for every v € C, dc(v) = pN — 1.
However, there may be other vertices, outside of C, for which the same is true. Consider all vertices
v for which dc(v) > pN — 1, and let their set be denoted by T(C). Assume we order these vertices
according to the number of neighbors they have in T(C) (i.e., according to the degree they have in
the subgraph induced by T(C)), and let C' be the first pN vertices according to this order (breaking
ties arbitrarily). Then we claim that C' is a clique.

To see this, observe that by definition of T(C), each vertex in C neighbors every vertex in T(C)
(except itself). Thus, each vertex in C has degree |T(C)| — 1 in the subgraph induced by T(C),
which is the maximum possible. Since |C| = pN, every vertex in C’ must have degree |T(C)|—1 as
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well (because the vertices in C are all candidates for the set C' whose size is pN as well). In other
words, every vertex in C' neighbors every (other) vertex in T(C), and in particular it neighbors
every other vertex in C’, making C' a clique.

Suppose next that instead of having an oracle as described above, we were provided with a
uniformly chosen set U’ in C of sufficient size (i.e., of size ©(p? - log(1/¢))/€?)). Let T(U’) be the
set of vertices that neighbor every vertex in U’. Then, with high probability over the choice of U’,
almost every vertex in T(U’) neighbors almost all vertices in C (where “almost” is all but a fraction
of €2). Similarly to the above, we could order the vertices in T(U’) according to their degree in
the graph induced by T(U’), and take the first pN vertices, whose set we denote by F(T(U’)). By
extending the argument given above for the oracle-aided procedure, it can be shown that F(T(U’)
is close to being a clique.

The Actual Approximate-Clique Finding Algorithm Since a uniformly chosen sample in C
is not provided to the algorithm, it instead “guesses” such a set. More precisely, it uniformly selects
a set U from all graph vertices, and it considers all its subsets U’ of size £|U|. Since with high
probability [UN C| > £|U|, there exists a subset U’ contained in C. Since U is selected uniformly,
the set U’ is uniformly distributed in in C. Hence, with high probability, for this U’, almost all
vertices in T(U’) (the set of vertices that neighbor every vertex in U’), neighbor almost every vertex
in C. If we now order the vertices in T(U’) according to their degree in the subgraph they induce
and select the first pN vertices according to this order, then the resulting set F(T(U’)) is close to
being a clique (with high probability over the choice of U). For an illustration, see Figure 2.

Thus, the algorithm considers all subsets U’ of U having size £|U|. For each subset U’ it finds
the vertices in T(U’) and among them those in F(T(U’)). It selects the set F(T(U’)) that is closest
to being a clique. By the above discussion, if the graph has a clique of size pN, then with high
probability the selected set will in fact be close to being a clique. On the other hand, if the graph
is e-far from having a p clique, then, by definition, none of these sets will be close to a clique.

The Testing Algorithm The testing algorithm is based on the above approximate-clique finding
algorithm. Similarly to that algorithm, it uniformly selects a set U and considers each of its subsets
U’ having size £|U|. The algorithm then: = Samples from T(U’); Approximates the number of
neighbors that each sampled vertex has in T(U’); Orders the sampled vertices according to this
approximate degree; Takes the first p fraction according to this order; And checks how close they
are to being a clique.

More precisely, the algorithm performs the following steps:

1. Uniformly and independently select three samples, U, S, and W, where the first two are of
size O(p - log(1/€))/€?)), and the third of size O(1/¢3).

2. For each subset U’ of U having size £|U|, do:
(a) Let S(U’) C S be the set of vertices in S that neighbor all vertices in U’. Note that since

S is uniformly distributed in V, this set is uniformly distributed in T(U’).

(b) Let W(U') C W be the set of vertices in W that neighbor all vertices in U’. The vertices
in W(U') are also uniformly distributed in T(U’), and they will serve to approximated
the degree of the vertices in S(U’).

(c) For each vertex v € S, let d(v) be the number of neighbors v has in W(U").
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Figure 2: An illustration of the approximate-clique finding algorithm (top figure), and of the testing algo-
rithm (bottom figure). Top figure: the clique C is separated from the rest of the graph vertices by a bold line.
The uniformally selected sample U intersects with C and the intersection is denoted by U’ (more precisely,
U’ is a subset of this intersection having size (p/2)|U| but for sake of brevity we assume it coincides with
the intersection). The set T(U’), denoted by a dashed separating line, is the set of all vertices that neighbor
every vertex in U’ (it is a superset of C). Finally, F(T(U')) are the first pN vertices with highest degree in
the subgraph induced by T(U’). Bottom figure: U’, and T(U’) are as in the top figure. S(U') and W(U)
are the subsets of vertices in the samples S and W, respectively, that intersect T(U’). (S and W are not
illustrated). Finally, F(S(U’)) are the first p|S| vertices in S(U’) with the largest number of neighbors in
w(U’).

(d) Order the vertices in S(U’) according to d(-). Let F(S(U’)) be the first p|S| vertices
according to this order. If S(U') < p|S|, then F(S(U’)) = S(U").

(e) View the sample S as consisting of pairs {sg;_1,s2;}1"; (where the pairing is predeter-
mined), and let mis(U’) be the number of pairs (s9; 1, s2;) € F(S(U’)) x F(S(U’)) that
do not have an edge between them.

If for any one of the subsets U’, the set F(S(U’)) is of size at least (p—¢/80)|S|, and mis(U’) <
%m, then accept, otherwise it reject.

For an illustration, see Figure 2.

If the graph is e-far from having a p-clique then for every U and U’ C U, the set F(T(U")) is
far from being a clique. On the other hand, if the graph has a p-clique, then as we claimed above,
with high probability over the choice of U, for some subset U’, the set F(T(U’)) is is close to being
a clique. A probabilistic argument shows that with high probability over the choices of S and W,
in the former case, for every U’ there are many missing edges between pairs of vertices in F(S(U")),
while in the latter case, for some U’, there are few missing edges.

The above constitutes a rough sketch of the following theorem.

15



Theorem 2 The algorithm described above is a testing algorithm for the p-Clique property: If the
graph has a clique of size pN, then it is accepted with probability at least 2/3, and if it is e-far from
having such a clique, then it is rejected with probability at least 2/3.

2.5 A General class of Partition Properties

The following framework of a general partition problem captures any graph property which requires
the existence of partitions satisfying certain fixed density constraints. These constraints may refer
both to the number of vertices in each component of the partition and to the number of edges
between each pair of components.

j
(Vj) and 3% < % (V3,5'). (LB stands for Lower Bound, and UB stands for Upper Bound.) Let
GPs be the class of graphs which have a k-way partition (V1,..., V) with the following conditions
being satisfied.

k k
Let & 9 { pEB, p}JB}j:l U {gfj,, 0% }j,j’:l be a set of non-negative parameters so that p}® < p7®

Vi opi N < V4| < pf°-N (1)

and
Vi e N® < [B(V; V)l < gf- N ()

where recall that E(V;, V) is the set of edges between vertices in V; and vertices in V. That is,
Equation (1) places lower and upper bounds on the relative sizes of the various components of the
partition; whereas Equation (2) imposes lower and upper bounds on the density of edges among
the various pairs of components.

Below we show how the various properties mentioned in Subsection 2.2 are defined as special
cases.

1. Bipartiteness. We set k = 2 (as we are interested in a two-way partition), pi® = p5® = 0, and
pi® = p§? =1 (as there are no restrictions on the sizes of the partition subsets), oi% = 05% =
o = 055 = 0, enforcing the main constraint that there be no edges within the partition
subsets, and finally 0i%) = 0, o{’3 = 1, since the number of edges between the two subsets is
not restricted.

2. k-colorability, & > 3. This is a generalization of bipartiteness, and the important density

bounds are ;7 = 0 for every 1 < j < k. All lower bounds are 0 and all other upper bounds

are 1.

3. p-Clique. Here k = 1, p}® = p{® = p, enforcing the restriction that one subset should be of
size pN, and p}® = %(p2 — p/N) enforcing the restriction that the subset be a clique.

4. p-Cut. Here k = 2, and g% = p. For the case of p-bisection we add the constraints that
pi® = pi® =1/2 for j € {1,2}.

The testing algorithm for the class of partition properties and its analysis are somewhat complex
and we refer the reader interested in further details to [GGR98].

2.6 First Order Graph Properties

Let A(z1,...,%,Y1,---,Ys) be a quantifier free graph expression. That is, it contains equality of
vertices, adjacency relations between vertices, and boolean connectives. We say that an expression
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is of the type “3v” if it has the form Jz1,...,2: Vy1,...,ysA(z1, ..., Tt Y1, - - -, Ys). An expression of
the type “V3” is defined analogously. Alon, Fischer, Krivelevich and Szegedy [AFKS99] show that
it is possible to test any graph property that can be described as an “JV” statement with query
complexity and running time independent of the size of the graph. The bound on the number
of queries is a tower of towers of poly(1/e,t + s) exponents. They also show that there exists a
(natural) property concerning isomorphism between (sub)graphs, which can be expressed as a “V3”
expression, for which the required query complexity (for constant €) is Q(v/N).

To prove the first (main) result, Alon et. al. introduce the following notion of indistinguishability
between graph properties, which may be useful in general.

Definition 2.6.1 Two graph properties P and P' are said to be indistinguishable if for every e > 0
there exists an integer N¢ for which the following holds. For every graph G with N > N, vertices
such that G has property P, there exists an N-vertex graph G' having property P' such that the
distance between G and G’ is at most €. Similarly, for every graph H with N > N, vertices such
that H' has property P', there exists an N-vertex graph H having property P such that the distance
between H' and H is at most e.

For example, the property of being k-colorable is indistinguishable for the first order property
that there exist k vertices vi,...,vx such that every other vertex is adjacent to exactly one of
v1,...,Vk, but no two vertices that have an edge between them are adjacent to the same v;. To
verify this, consider first the case in which the first order expression holds for G. Let G’ be the graph
in which all edges between the v;’s and the rest of the graph are removed from G. The distance
between G and G’ is less than % which is less than any constant e provided N is sufficiently large.
Then we can color each v; and the vertices it is adjacent to in G with the 7’th color, and obtain
a k-coloring in G’. In the other direction, assume H is k-colorable. Then to obtain H' from H we
can pick k vertices vy, ..., v, each colored by a different color, and add edges between each v; and
the other vertices having the same color. The first order expression holds for H' and the distance
between H and H' is smaller than e.

Given the above definition they then show:

Lemma 2.6.1 If P and P' are indistinguishable graph properties, then P is testable using a number
of queries independent of N if and only if P' is testable using a number of queries independent of
N. Specifically, if the number of queries used in testing one property is Q(e), then the other property
can be tested using at most 3Q(e/2) queries.

Next they define the following generalization of the notions of colorability and subgraph-freeness,
and show that every “3V” first order property is indistinguishable from such a generalized property.

Definition 2.6.2 Let F be a family of graphs (where repetitions are allowed), such that each graph
in the family comes with a (not necessarily proper) coloring by at most ¢ colors. A coloring of a
graph G by ¢ colors (which, again, need not be proper) is called an F-coloring, if no member of F
appears as an induced subgraph of G with an identical coloring. A graph G is called F-colorable if
there exists an F-coloring of G.

The notion of a (proper) k-coloring discussed above, is a special case of this definition. Another,
more complex property for example, is having a coloring with 2 colors without any monochromatic
triangle.
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Lemma 2.6.2 For every first order property P of the form:
Az, . T VY1 ey Ys A(T1y e o s T Y1y -+ -5 Ys)

there exists a family F of (2“'(;) + 1)-colored graphs, each with at most max{2,t + 1, s} wvertices
such that the property P is indistinguishable from the property of being F-colorable.

Finally they show:

Theorem 3 For every constant ¢ and every family F of c-colorable graphs, the property of being
F-colorable can be tested with query complezxity and running time independent of the size of the
graph.

In order to prove Theorem 3 they prove their central technical lemma which is a variant of
Szemerédi’s Regularity Lemma [Sze78].

3 Testing Graph Properties in the Incidence-Lists Models

3.1 Definitions

As in the adjacency-matrix model, we use the notation G, V, E, and N to denote the graph, its
vertex set, its edge set, and the number of graph vertices, respectively.

The Bounded-Degree Incidence-Lists Model In this model, a graph G whose vertices have
degree at most d is represented by a two-dimensional array of size N x d (which can be viewed as
N lists), where for each vertex v and integer ¢ € {1,...,d} the value of the corresponding entry
is the i'" neighbor of v. If v has less than d neighbors then this value may be 0 (where 0 ¢ V).
Distance between graphs is defined as the number of pairs of vertices that have an edge between
them in one graph but not in the other, divided by d- N.® The notion of e-far (e-close) to having a
property is defined analogously to the definition in the adjacency matrix model (Definition 2.1.1).

The Unbounded-Degree Incidence-Lists Model In this model a graph G is represented by
N incidence lists of possibly varying lengths, where the length of each list (i.e., the degree of the
vertex the list corresponds to) is provided at the head of the list. We denote by d(v) the degree of
vertex v. Distance between graphs is defined with respect to a given upper bound M on the number
of graph edges. Namely, the distance between graph G; and Go with respect to the bound M is the
number of (unordered) pairs of vertices that are an edge in one graph but not in the other, divided
by M. When using this notion of distance to define the distance of a graph G to having a property,
we assume G has at most M edges, but do not necessarily assume that the closest graph having the
property has at most this many edges. Thus the unbounded-degree model is more general than the
bounded degree model except in this technical aspect (as in the bounded-degree model the closest
graph having the property must have at most dN edges and degree bound d as well).

80nce again, for sake of simplicity, this definition slightly differs from that discussed in the introduction and
in [GRI7]. There, distance is defined as the fraction of entries in the IV x d matrix representation on which the two
graphs differ. According to that definition, each (undirected) edge (v,u) in the symmetric difference between the
graphs is counted twice - once as an entry [v,4] and once as an entry [u, j], while here we count each edge only once.
(Distance as defined here is also insensitive to the ordering of the edges incident to a vertex, though this issue looses
its relevance once we talk about the distance to having the property.)
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In both models the testing algorithm can query, for each vertex v and every ¢ (where 1 <i <d
in the first model and 1 < 7 < d(v) in the second), what vertex is the i’th neighbor of v. The
acceptance and rejection requirements of a testing algorithm are as in the adjacency-matrix model
(Definition 2.1.2), with the appropriate notions of distance.

3.2 Summary of Results

As noted previously in the introduction, intuitively, testing in the bounded-degree model is easier
(not harder) than testing in the unbounded-degree model. In fact, the bound on the degree of every
vertex can make testing strictly easier (as we see below in the case of cycle-freeness) and there is
no known property for which it is actually harder. However, as mentioned in Subsection 3.1, this
bound also has a price: the definition of distance between a graph and the property (class of graphs
having the property) is more restricted. This sometimes raises the following difficulty when testing
in the bounded-degree model. Suppose the property is such that if a graph does not have the
property then edges should be added so that it have the property (e.g. connectivity). Assume we
would like to show that if a graph is accepted with probability greater than 1/3 then it is close to
having the property (which is equivalent to showing that if it is far from having the property then
it is rejected with probability at least 2/3). Then we would like to show that by adding a relatively
small number of edges, the graph can be made to have the property. The difficulty is that in doing
so we must maintain the degree bound of the graph, and this may sometimes be possible only by
removing other edges. Hence, this technical difficulty sometimes makes the analysis simpler in the
unbounded degree model (as is the case for connectivity).

The following is a list of results concerning testing properties in the incidence-lists model.

3.2.1 Bounded-Degree Model
e Connectivity. The algorithm has query complexity and running time O(e~!) [GR97].

e k-Edge-Connectivity.  The algorithm has query complexity and running time O(k® -
e’3+%~) [GR97]. For k = 2,3 there are improved algorithms whose running-times are O(e™!)
and O(e 2), respectively.

e 2 and 3 -Vertex-Connectivity. The algorithms have query complexity and running time 0(6_2)
and O(e ?), respectively [GRIT].

e Eulerian. The algorithm has query complexity and running time O(e~') [GRI7].

e Cycle-Freeness. The algorithm has query complexity and running time O (6% + 6%) [GRYT].

As we shortly discuss in Subsection 3.5, in the case of acyclicity of directed graphs, there
is a lower bound of Q(N'/3) (for constant ¢ and d) on the query complexity of any testing
algorithm for the property [BROO].

e Bipartiteness. There is a lower bound of Q(v/N) on the query complexity of testing this
property (for constant e and d) [GR97]. There is an algorithm having query complexity and
running time v/N - poly(log N/e) [GR99)].

e Expansion. There is a lower bound of Q(v/N) on the query complexity of testing whether a
graph has a given constant expansion (for constant € and d) [GR97].
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3.2.2 Unbounded-Degree Model

e Connectivity, k-edge-connectivity, 2 and 3-vertex-connectivity, Eulerian. The algorithms for these
properties that work in the bounded-degree model can be adapted to work in the unbounded-
degree model at a multiplicative cost of O(¢71) in the query complexity and running time
(while actually simplifying the analysis).

e Cycle-Freeness. Any algorithm for testing this property (in the unbounded-degree model) has
query complexity Q(v/N) (for constant € and d). This can easily be verified by observing that
the following two graphs (families of graphs) cannot be distinguished using o(v/N) queries:
One graph is the empty graph, which is cycle free, and the other graph contains only a single
clique of size v/N, and is very far from being cycle-free [PR99a].

e Diameter. There is a family of algorithms that test whether the diameter of a graph is bounded
by a given parameter D, or is e-far from any graph with diameter at most 5(D) [PR99a]. The
function (D) ranges between D +4 and 4D + 2, depending on the algorithm. All algorithms
have query complexity and running time O(e3), but differ in the ranges e values for which
they are applicable.

3.3 Testing k-Edge-Connectivity

In this subsection we describe and analyze the algorithm for testing connectivity (i.e., k = 1). We
then sketch the ideas required for testing k-Edge-Connectivity for k& > 2. We present the algorithms
in the unbounded-degree model. Let the tested graph G have at most M edges (where M > N — 1
or otherwise the algorithm could immediately reject), and in what follows, whenever we say e-far
(or e-close), we mean with respect to the bound M.

3.3.1 Testing Connectivity

The algorithm is based on the following simple observation concerning the connected components
(i.e., the maximal connected subgraphs) of a graph.

Lemma 3.3.1 If G is e-far from being connected than it has more than eM connected components.

Proof: Assume contrary to the claim that G has at most eM connected components, and denote
these components by Ci,...,Cg, &k < eM. Then by adding an edge between some vertex in C; and
some vertex in C;41, for every 1 <14 < k, the graph can be made connected. As the total number
of edges added is K — 1 < eM, we obtain a contradiction to the premise of the lemma that G is
e-far from being connected. M

The following notation will be used throughout this subsection: def M Thus, € is € times the

~ def
6 —_—

N

average degree of G. As an immediate corollary of Lemma 3.3.1 we get:

Corollary 3.3.2 If G is e-far from being connected, then G has at least % connected components
each containing less than 2/€ vertices.

Proof: By Lemma 3.3.1, G has more than eM connected components. The number of connected
components containing at least 2/€ vertices is at most % = % So the remaining ones are at least

eM — L = <% in number, and each contains less than 2/¢ vertices. M

20



An implicit implication of Lemma 3.3.1 is that for € > %, every graph is e-close to being connected
(as otherwise the lemma would imply the existence of an N-vertex graph with more than N con-
nected components). Thus we may assume that € < % By using the fact that each connected
component contains at least one vertex we conclude that if G is e-far from being connected then
the probability that a uniformly selected vertex belongs to a connected component which contains
less than 2/€ vertices, is at least GA]/IV/ 2 = €/2. Therefore, if G is e-far from being connected and
we uniformly select m = 4/¢€ vertices, then the probability that no selected vertex belongs to a

component of size less than 2/¢ is bounded above by

e\ € 1
(1 - 5) < exp (—5 m) =exp(—2) < 3

Once we select such a vertex, we may detect that it belongs to a small connected component
by performing a BFS until no new vertices are reached. This gives rise to the following testing
algorithm, where we assume that N > 2/€ (since otherwise a connected graph having less than 2/€
vertices would be rejected in Step (2)). If N < 2/€, we can determine if the graph is connected by
simply inspecting the whole graph (which takes time O(M) = O(e™!)).

Connectivity Testing Algorithm

1. Uniformly and independently select m = 4/¢ vertices in G;

2. For each vertex v selected perform a Breadth First Search (BFS) starting from v until 2/€ ver-
tices have been reached or no more new vertices can be reached (a small connected component
has been found);

3. If any of the above searches finds a small connected component, then output REJECT, other-
wise output ACCEPT.

Since a connected graph consists of a single component, the algorithm never rejects a connected
graph. By the discussion preceding the algorithm and Corollary 3.3.2, if a graph is e-far from
connected then it is rejected with probability at least 2/3. Since the number of edges traversed in
each BFS is at most the number of vertices visited, squared,? the query complexity and running
time of the algorithm are m - (2/€)? = O(¢~3). We note that the choice to perform a BFS is quite
arbitrary, and that any other linear-time (in the number of edges) search method (e.g., DFS) will
do.

The complexity of the Connectivity Tester can be improved by applying Corollary 3.3.2 more
carefully. Above, when analyzing the probability that the algorithm selects a vertex in a small
component, we considered the extreme case in which the component consists of a single vertex.
On the other hand, when analyzing the complexity of scanning the component, we considered the
extreme case in which the component consists of ©(1/€) vertices. Instead, suppose that all compo-
nents in the conclusion of Corollary 3.3.2 were of the same size, denoted s. Then the probability
that a vertex in such a component is selected is at least s - d\z/fv/ 2 = 376 . This implies that it suffices
to set m = ©(1/(s€)) in Step (1) of the algorithm above, and that in Step (2) it suffices to stop
the search after s + 1 vertices (at a cost of O(s?)). Thus, the overall complexity would be O(s/€),

provided that such s exists and is given to the algorithm.

9Here is where the algorithm in the bounded-degree model saves, as in that model the complexity of each BFS is
only O(d/(ed)) = O(e™?).
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Since the latter assumption does not hold, we use a relaxed generalization of the above idea:

That is, suppose that G has at least L def % - M connected components each of size less than 2/¢.

Then, there exists an ¢ < £ def log(2/€) so that G has at least % connected components of size
ranging between 2~! and 2¢ — 1 (see the proof of Lemma 4 for details). We do not know this 4, but
we may try them all. This suggests the following improved algorithm.

Connectivity Testing Algorithm — Improved Version:

1. For i =1 to log(2/(€)) do:

(a) Uniformly and independently select m; = %2%/(5)) vertices in G;

(b) For each vertex v selected, perform a BFS starting from v until 2¢ vertices have been
reached or no new vertices can be reached.

2. If any of the above searches finds a small connected component then output REJECT, other-
wise output ACCEPT.

Once again, if the graph is connected, then it is always accepted. It thus remains to show:

Theorem 4 If G is e-far from being connected, then the improved connectivity testing algorithm
will reject it with probability at least % The query complexity and running time of the algorithm

are O (7101{2 (;2/(6)) ) .

Proof: Let B; be the set of connected components in G which contain at most 2¢ —1 vertices and at
least 201 vertices. Let £ % [log(2/€)]. By Corollary 3.3.2 we know that S By > eM L. N.
Hence, there exists an index j € {1,2,...,4} so that |B;| > % Thus, the number of vertices
residing in components belonging to B; is at least 2/ -1 |B;|. It follows that the probability that a
uniformly selected vertex resides in one of these components is at least
2971 By €2 2
> = =
N - 4.4 m;

(where m; is as defined in Step (la) of the improved connectivity testing algorithm). Thus, with
probability at least 1 — (1 — m%)mﬂ >1—e?> %, a vertex v belonging to a component in B;
is selected in iteration j of Step (2), and the BFS starting from v will discover a small connected
component (of size smaller than 27), leading to the rejection of G. The query complexity and

running-time of the algorithm are bounded by Zle m; 2% =0 (log(éﬁ) |

3.3.2 Testing k-Connectivity for £k > 1

A subset of vertices S C V is said to be k—edge-connected if there are k edge-disjoint paths between
each pair of vertices in S. A graph G = (V,E) is k-(edge-)connected if V is k-edge-connected. The
structure of the testing algorithm for k-Connectivity where & > 1 is similar to the structure of the
Connectivity Tester (i.e., the case k = 1): The algorithm uniformly select a set of vertices and for
each vertex selected, it tests if it belongs to a small component of the graph that is separated from
the rest of the graph by an edge-cut of size less than k. Similarly to the k£ = 1 case, it can be shown
that if a graph is e-far from being k—connected then it has many such components. This can be
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shown by defining an auxiliary graph [DW98] whose nodes are components of the graph and that is
based on the cactus structure of [DKL76]. In addition, there are efficient procedures for recognizing
such a component given a vertex that resides in it. In what follows we sketch these procedures, for
the different values of k. For simplicity we assume the tested graph is k¥ — 1-connected (where this
assumption can be removed).

2-Connectivity and 3-Connectivity In the case of 2-connectivity, the procedure is given a
vertex v, and is required to output found in case v belongs to a 2-connected subset of vertices C of
size at most n < N, that is separated from the rest of the graph by a cut of size 1. (If the graph is
2-connected, the procedure should output not-found). The procedure performs the following steps.

1. Starting from v, perform a Depth First Search (DFS) until n + 1 vertices have been reached.
Let T be the directed tree defined by the search, and let E(T) be its tree edges.

2. Starting once again from v, perform another search (using either DFS or BFS) until n vertices
are reached or no new vertices can be reached. This search is restricted as follows: If (u,v) is
an edge in T, where u is the parent of v, then (u,v) cannot be used to get from u to v in the
second search (but can be used to get from v to u). Let So be the set of vertices reached.

3. If there is a single edge with one end-point in Sy and the other outside of Sy (i.e. (S2,V'\ S2)
is a cut of size 1), then output found, otherwise output not-found.

The running time of the procedure is O(n?), and clearly, if the graph is 2-connected, then it
outputs not-found. Thus assume v belongs to a 2-connected subset of vertices C of size at most
n, that is separated from the rest of the graph by a cut of size 1. Since the first DFS terminates
after seeing n + 1 vertices, it must visit at least one vertex outside of C. This is possible only by
traversing the single edge (u,v) from u € C to v ¢ C. Thus, (u,v) must be a edge in the DFS tree
T (with u being the parent). This ensures that the second search will never exit C. In other words,
So C C. Using the fact that C is 2-connected, it can be shown that the second search will reach
every vertex in C (that is, So = C), and hence will detect the cut.

The procedure for 3-connectivity is given a vertex v that belongs to a subset of vertices C that
is 3-connected. If the cut (C,V \ C) has size 2 and |C| < n (n < N), then the algorithm should
output found. The procedure first performs a DFS until n + 1 vertices are discovered. Next, for
each edge e in this DFS-tree (which contains n edges), it “omits” e from the graph and invokes the
2-connectivity procedure on the residual graph. The procedure has running time O(n?), and its
correctness is argued as follows.

Clearly the initial DF'S must cross an edge of the cut (C,V'\ C) and so its DFS-tree has at least
one cut edge. Let the graph resulting from omitting this cut edge from G be denoted G’. In G’ the
cut (C,V\ C) contains a single edge in the resulting graph, denoted G’. While the removal of this
edge might decrease the connectivity of C (which was 3 in G), it is at least 2-connected in G’. By
the correctness of the procedure for 2-connectivity, we are done.

k-Connectivity, k > 2 The following applies to any k& > 2, but for £ = 2,3 we have described
more efficient procedures above. The procedure for detecting whether a vertex v belongs to a
k-connected subset C of size at most n such that the cut (C,V \ C) has size kK — 1, is based on
Karger’s Contraction Algorithm [Kar93] which is a randomized algorithm for finding a minimum
cut in a graph.
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Gi\;en a vertex v and a size bound n, the following randomized search process is performed
O(n?7%) times, or until a cut (S, V \ S) of size less than k is found:

Random search process: Starting from the singleton set {v}, the procedure maintains the set,
denoted S, of vertices it has visited. In each step, as long as |S| < n and the cut (S,V \ S)
has size at least k, the procedure selects at random (as specified below) an edge to traverse
among the cut edges in (S,V \ S) and adds the new vertex reached to S. In case the cut
(S, V'\ S) has size less than k, output found. If |S| = n then the current search is completed.
Otherwise, proceed to the next step (i.e., select a new random edge from the cut (S,V '\ S)).

In case none of the @(nQ_%) invocations of the above process has detected a small cut, output
not-found.

The random selection of edges to traverse is done as follows. We think of uniformly and
independently assigning each edge in the graph a cost in [0, 1]. Then, at each step of the procedure,
we select the edge with lowest cost in the current cut (S,V \ S). This is implemented as follows:
Whenever a new vertex is added to S, its incident edges that were not yet assigned costs are each
assigned a random cost uniformly in [0,1]. Thus, whenever we need to select an edge from the
current cut (S, V '\ S), all edges in the cut have costs, and we select the edge with lowest cost (just
as in the mental experiment in which all graph edges are assigned uniform costs at the beginning).

The correctness of the procedure follows from a probabilistic analysis that bounds the proba-
bility that an edge in the cut (C,V \ C) is selected before S = C. For further details see [GRI7].

3.4 Testing Bipartiteness

As defined in Subsection 2.3, a graph is said to be bipartite if its set of vertices can be partitioned
into two disjoint sets having no violating edges. An equivalent characterization of bipartite graphs,
which we use in this subsection, is that they contain no odd-length cycles. In what follows we
sketch both the lower bound on testing bipartiteness in the bounded-degree incidence-lists model,
and the (almost matching) upper bound.

3.4.1 The Lower Bound

The following theorem is proved in [GR97].

Theorem 5 Testing Bipartiteness (in the bounded-degree incidence-lists model) with distance pa-
rameter 0.01 requires i -V/N queries.

The proof describes two families of degree-3 N-vertex graphs that are hard to distinguish by
any algorithm that makes less than v/N /4 queries: A typical member of one family is 0.01-far from
being bipartite, whereas all members of the second family are bipartite graphs. Specifically, let us
fix any testing algorithm that makes less than v/N /4 queries, and consider its decision when given a
graph uniformly selected in one of these families. The indistinguishability claim implies that on the
average, such an algorithm will accept the random input graph, with about the same probability
regardless of the family it was selected from. But this contradicts the requirement from a testing
algorithm, since it should accept every member of the second family with probability at least 2/3
while for almost all members of the second family it is allowed acceptance probability smaller than
1/3.
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The two families are defined as follows. Let N be an even integer.'?

1. The first family, denoted GI¥, consists of all degree-3 graphs that are composed of the union
of a Hamiltonian cycle and a perfect matching. That is, there are N edges connecting the
vertices in a cycle, and the other N/2 edges are a perfect matching.

2. The second family, denoted G&¥, is the same as the first ezcept that the perfect matchings
allowed are restricted as follows: the distance on the cycle between every two vertices that
are connected by a perfect matching edge must be odd.

In both cases we assume that the edges incident to any vertex are labeled in the following fixed
manner: Each cycle edge is labeled 1 in one endpoint and 2 in the other. This labeling forms an
orientation of the cycle. The matching edges are labeled 3.

Clearly, all graphs in G are bipartite as all cycles in the graph are of even length. Consider
a graph uniformly selected in GY¥. We would like to show that with high probability it is far
from bipartite. Such a graph can be selected by selecting a random permutation of the vertices
1,..., N on the cycle, and then uniformly selected a matching between the vertices. For any fixed
permutation of the vertices on the cycle, consider any fixed two-way partition of the vertices. If
there are many violating cycle edges with respect to this partition (give the ordering of the vertices
on the cycle), then we are done. Thus, assume there aren’t many. Then it can be shown that
with high probability over the choice of the matching edges, many of these edges will violate the
partition. By bounding the number of such partitions, and using a probability union bound, the
claim follows.

The remainder of the proof is focused on showing that a testing algorithm that performs less
than i\/ﬁ queries is not able to distinguish (with sufficient probability) between a graph chosen
randomly from G (which is always bipartite) and a graph chosen randomly from G&¥ (which with
high probability is far from bipartite). This is done by defining two processes, one for each class
of graphs. Each process answers the queries of the testing algorithm while randomly constructing
a graph in the respective class (where the distribution on the resulting graphs can be shown to be
uniform in the class). The crux of the proof is that for any testing algorithm, the two distributions
on the query-answer sequences induced by the two processes, are statistically indistinguishable as
long as the sequence is of length less than av/N. This essentially follows from the fact that in
sequences of such length, if we consider the subgraph induced by the query-answer sequence, then
it does not contain a cycle (either even or odd).

3.4.2 The Algorithm

Since the algorithm can make queries of the form: “who is the ¢’th neighbor of vertex v”, it can
perform walks on G. Namely, starting from any vertex s, it can obtain the sequence of vertices lying
on any path 41,19,...,% (where each i; is an edge label) that originates from s by querying: who is
the it neighbor of s, who is the 8! neighbor of the vertex returned, and so on. In particular, the
algorithm described below performs random walks on G: At each step, if the degree of the current
vertex v is d' < d, then the walk remains at v with probability 1 — 4 > 1 and for each u € ['(v),
the walk traverses to u with probability %. Thus, the stationary distribution over the vertices is

2d = 2
uniform.

10 For odd N, every graph (in both families) contains one degree-0 vertex, and the rest of the vertices are connected
as in the even case.
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For every walk (or, more generally, any sequence of steps), there corresponds a path in the
graph. The path is determined by those steps in which an edge is traversed (while ignoring all
steps in which the walks stays in the same vertex). Such a path is not necessarily simple, but does
not contain self loops. Note that when referring to the length of a walk, we mean the total number
of steps taken, including steps in which the walk remains at the current vertex, while the length of
the corresponding path does not include these steps.

Test-Bipartite (Incidence-Lists model)

e Repeat T =0 <%) times:

1. Uniformly select s in V.
2. (a) Let K = poly((log N)/e) - VN, and L = poly((log N)/e);
(b) Perform K random walks starting from s, each of length L;
(c) If some vertex v is reached (from s) both on a prefix of a random walk corresponding

to an even-length path and on a prefix of a walk corresponding to an odd-length
path then reject.

e In case the algorithm did not reject in any one of the above iterations, it accepts.

Theorem 6 The algorithm Test-Bipartite is a testing algorithm for bipartiteness. In particular,
if the graph is bipartite it is always accepted, and if it is e-far from bipartite it is rejected with
probability at least 2/3. Furthermore, whenever the algorithm rejects a graph it outputs a certificate
to the non-bipartiteness of the graph in form of an odd-length cycle of length poly(e~!log N).

Clearly, a bipartite graph is always accepted as it contains no odd-length cycles. Hence the
heart of the proof is showing that if a graph is e-far from bipartite it is rejected with probability
at least 2/3. This is shown by proving the contrapositive statement: If a graph is accepted with
probability greater than 1/3, then it is e-close to bipartite. Namely, by removing at most € - dN
edges, it can be made bipartite. The proof of this statement is somewhat complex, and here we
only provide the underlying ideas.

The Rapidly—Mixing Case To gain intuition, consider first the following “ideal” case: From
each starting vertex s in G, and for every v € V, the probability that a random walk of length
L = poly((log N)/e) ends at v is at least 75 and at most 2 — i.e., approximately the probability
assigned by the stationary distribution. (Note that this ideal case occurs when G is an expander).
Let us fix a particular starting vertex s. For each vertex v, let pQ be the probability that a random
walk (of length L) starting from s, ends at v and corresponds to an even-length path. Define p}

analogously for odd-length paths. Then, by our assumption on G, for every v, p) + pl > ﬁ

We consider two cases regarding the sum }°, v pY-pl — In case the sum is (relatively) “small”,
we show that there exists a partition (Vo, Vi) of V that is e-good, and so G is e-close to being
bipartite. Otherwise (i.e., when the sum is not “small”), we show that the probability that the
algorithm finds an odd cycle when performing the random walks starting from s, is constant. This
implies that in case G is accepted with probability greater than %, then G is e-close to being
bipartite. In what follows we give some intuition concerning the two cases.

Consider first the case in which ), - pY - pl is smaller than c - + for some suitable constant
¢ < 1. Let the partition (V, V1) be defined as follows: Vo = {v : pJ > pl} and Vi = {v : p} > pJ}.

26



Consider a particular vertex v € V. By definition of V¢ and our rapid-mixing assumption, pJ > ﬁ.
Assume v has neighbors in Vy. Then for each such neighbor u, pd > ﬁ as well. However, since
there is a probability of % of taking a transition from u to v in walks on G, we can infer that
each neighbor u contributes Q(Ql—d : ﬁ) to the probability pl. (This inference is not completely
straightforward since both p? and p. correspond to walks of length exactly L, but this slight
difficulty can be overcome.) Thus, if there are many (more than edN) violating edges with respect
to (Vo, V1), then the sum Y,y p) - p} is large (greater than edN - ;& - g7~ > ¢ &), contradicting
our case hypothesis.

We now turn to the second case (3 ,cv pd - pL > c- +)- For every fixed pair 4,5 € {1,..., K},
(recall that K = Q(v/N) is the number of walks taken from s), consider the 0/1 random variable
that is 1 if and only if both the i and the j*" walk end at the same vertex v but correspond to
paths with different parity. Then the expected value of each random variable is >,y 2 - pJ - pi.
Since there are K? = Q(N) such variables, the expected value of their sum is greater than 1. These
random variables are not pairwise independent, nonetheless we can obtain a constant bound on the
probability that the sum is 0 using Chebyshev’s inequality (cf., [AS92, Sec. 4.3]).

The General Case Unfortunately, we may not assume in general that for every (or even some)
starting vertex, all (or even almost all) vertices are reached with probability ©(1/N). Instead, for
each vertex s, we may consider the set of vertices that are reached from s with relatively high
probability on walks of length L = poly((log N)/€). As was done above, we could try and partition
these vertices according to the probability that they are reached on random walks corresponding
to even-length and odd-length paths, respectively. The difficulty that arises is how to combine
the different partitions induces by the different starting vertices, and how to argue that there
are few violating edges between vertices partitioned according to one starting vertex and vertices
partitioned according to another.

To overcome this difficulty, we proceed in a slightly different manner. Let us call a vertex s good,
if the probability that the algorithm finds an odd cycle when performing random walks starting
from s, is at most 0.1. Then, assuming G is accepted with probability greater than %, all but at
most {5 of the vertices are good. We define a partition in stages as follows. In the first stage we
pick any good vertex s. What we can show is that not only is there a set of vertices S that are
reached from s with high probability and can be partitioned without many violations (due to the
goodness of s), but also that there is a small cut between S and the rest of the graph. Thus, no
matter how we partition the rest of the vertices, there cannot be many violating edges between S
and V \ S. We therefore partition S (as above), and continue with the rest of the vertices in G.

In the next stage, and those that follow, we consider the subgraph H induces by the yet “un-
partitioned” vertices. If |H| < {N then we can partition H arbitrarily and stop since the total
number of edges adjacent to vertices in H is less than §-dN. If [H| > £N then it can be shown that
any good vertex s in H that has a certain additional property (which at least half of the vertices
in H have), determines a set S (whose vertices are reached with high probability from s) with the
following properties: S can be partitioned without having many violating edges among vertices in
S; and there is a small cut between S and the rest of H. Thus, each such set S accounts for the
violating edges between pairs of vertices that both belong to S as well as edges between pairs of
vertices such that one vertex belongs to S and one to V(H) \ S. Adding it all together, the total
number of violating edges with respect to the final partition is at most € - dN.

THE SET S. To prove the existence of such sets S, consider first the initial stage in the partition
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process (i.e., here H = G). Recall that in this stage we are looking for a subset of vertices S C V, all
reached with relatively high probability from some good vertex s, that are separated from the rest
of G by relatively few edges. From the previous discussion we know that if for all (or almost all)
vertices v in G, a random walk of length poly((log N)/e) starting from s ends at v with probability
O(1/N) then we can define a good partition of all of G and be done. Thus assume we are not in
this case. Namely, there is a significant fraction of vertices that are reached from s with probability
that differs significantly from 1/N. In other words, the distribution on the ending vertices (when
starting from s) is far from stationary. What can be shown (using techniques of Mihail [Mih89]) is
that this implies the existence of a small cut between some set of vertices S that are each reached
from s with probability that is roughly 1/4/|S| - N and the rest of G. Furthermore, it can be shown
that S has an additional property that combined with the fact that s is good implies that it can be
partitioned without having many violating edges.

In the next stages of the partition process, we would have liked to apply the same techniques
to determine small cuts (with other desired properties) in subgraphs H of G. If we could at each
stage “cut-away” the subgraph H from the rest of G and perform walks only inside H then we
would have proceeded as in the first stage. However, these subgraphs H are only determined by
the analysis while the algorithm, oblivious to the analysis, always performs random walks on all of
G. Therefore we would like to have a way to map walks in G to walks in H so that probabilities
of events occurring in imaginary walks on H can be related to events occurring in the real walks
on G. This is done by defining a special Markov chain given H and relating walks on the Markov
chain to walks on G. For further details see [GR99].

3.5 Directed Graphs

As noted at the end of Subsection 2.2, for some properties of undirected graphs that have analogous
properties in directed graphs, algorithms that work on undirected graphs can be transformed to
work on directed graphs. An example in the incidence-lists model is connectivity. A directed graph
is (strongly) connected if there is a directed path in the graph from any vertex to any other vertex.
The algorithm of [GR97] presented in Subsection 3.3 can be extended to the directed case if the
algorithm can also perform queries about the incoming edges to each vertex [PR99b]. Otherwise,
(the algorithm can only perform queries about outgoing edges), a simple lower bound of V/N on the
number of queries can be obtained. In the case of testing acyclicity of directed graphs the situation
is more complex. Here the cycle-freeness test for undirected graphs [GR97] can not be transformed
to work on directed graphs, as it is (partly) based on the observation that that an undirected graph
contains no cycles only if it has at most NV — 1 edges. Furthermore, in the case of directed graphs,
even if there is access to both incoming and outgoing edges, every algorithm for testing acyclicity
must use Q(N %) queries [BROO].

4 Testing Other Properties

In this section we provide a brief summary of results on testing properties of objects other than
graphs. In particular, most results concern functions.

Definition 4.0.1 For a given function f : X — Y, and a property P (defined over functions with
domain X and range Y ), we say that f is e-far from having property P, if for every g : X = Y,
Pryulf(z) # g(x)] > €, (where U denotes the uniform distribution), otherwise it is e-close to P.
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4.1 Testing Algebraic Properties
4.1.1 Testing Linearity

In this subsection we present a test due to Blum, Luby and Rubinfeld [BLR93], with a slightly
modified analysis due to Sudan [Sud99).

Definition 4.1.1 (linearity of a function) Let F be a finite field. A function f : F™ — F is
called linear (or more precisely, multi-linear) if there exist constants a1,...,a,m € F s.t. for all

x=(r1,-..,%m) € F™ it holds that f(z) = in: a;T;.
i=1

It is not hard to verify the following fact, which provides an alternative definition of linearity.

Fact 4.1.1 (alternative definition of linearity) A function f : F™ — F is linear if and only if for
every z,y €F™ f(z) + f(y) = f(z +y).

The following test uniformly selects pairs of elements in the field, and checks whether linearity
(according to the second definition) is violated.

Linearity Test

1. Uniformly and independently select m = ©(¢ 1) pairs of elements z,y € F.
2. For every pair of elements selected, check whether f(z) + f(y) = f(z + y).

3. If for any of the selected pairs linearity is violated (that is f(z) + f(y) # f(z + y)), then
reject, otherwise, accept.

By Fact 4.1.1, if f is linear then it is always accepted. It thus remains to prove:

Theorem 7 If f is e-far from linear then with probability at least 2/3, Linearity Test rejects it.

Here we shall give a simple proof of the theorem for the case in which f is “not too far” from

linear. Namely, that its distance from some linear function is bounded away from % (that is, the
distance is at most % — ~y for some constant 7).

Proof: We say that a pair of elements z,y are a violating pair, if f(z) + f(y) # f(x +y). Let §
denote the (exact) distance of f from linearity (so that in particular, § > €). We shall show that the
probability that a single uniformly selected pair of elements is a violating pair, is at least 36(1—26).
For § bounded away from 3, this probability is (5). Since the test selects ©(1/¢) = 2(1/4) pairs,
the probability that no violating pair is selected is at most 1/3 (for the appropriate choice of
constant in the (-) notation).

Let g be a linear function at distance ¢ from f. Let G def {z : f(z) = g(x)} be the set of good

elements in F on which f and g agree. For any pair z,y, if among the three elements, x, y, and
(z +y) two of them belong to G while the third doesn’t, then z,y are a violating pair. Hence,

Pr[z, y are a violating pair | > Prlz ¢ G,y € G, (z+y) € G]
+ Prilze€G,y¢G, (z+y) €G]
+ PrizeG,yeG, (z+y) ¢ G] (3)
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Consider the first probability in the above sum (the treatment of other two is analogous, as the
important property of any triplet is that every two of the elements are pairwise independent).

Prlr ¢ G, yeG, (z+y) €G] = Prlz¢G]-PrlyeG, (z+vy) € G|z ¢G]
— 5 (1-Pry¢Gor(@ty) ¢GzgC) (1)

By using a probability union bound, and the fact that both y and (z +y) are uniformly distributed,
1-Prly¢Gor(z+y)¢G|z¢ G >1—-2Prly¢ G|z ¢ G (5)
Since z and y are chosen independently,

Prly ¢ G|z ¢ G =Prly ¢ G] = ¢ (6)
and so by combining Equations (3)- (6), the probability of selecting a violating pair is at least
3-0-(1—-24). M
4.1.2 Testing (Low-Degree) Polynomials

We present a test for univariate polynomials that is based on a basic property of polynomials, where
we follow the presentation of Sudan [Sudan-PhD]. There are also tests for multivariate polynomials
but their analysis is more complex (see for example [GLR 91, RS96, RS97, AS97]).

Definition 4.1.2 Let F be a finite field. A function f : F — F is a (univariate) polynomial of

d .
degree d, if there exist coefficients cg,...,cq € F, such that f(x) = > ¢; - z".
i=0

Recall that given any d + 1 pairs {(z;, )}, where z;,y; € F, there exists a unique degree d
polynomial A such that h(z;) = y; for every i € {0,...,d}, and h can be found by interpolation.

Low-Degree Test

1. Repeat the following m = 2/e times:

(a) Uniformly and independently select d + 2 distinct points zg, ..., Z4+1 € F.
(b) Check (by interpolating) whether there exists a degree d polynomial ¢ such that ¢(z;) =
f(z;) for every i € {0,...,d + 1}.

2. If in any of the iterations evidence was found that f is not a degree d polynomial, then reject,
otherwise, accept.

Clearly, if f is a degree d polynomial, then it is always accepted. It thus remains to prove:

Theorem 8 If f is e-far from any degree d polynomial then with probability at least 2/3, Low-
Degree Test rejects it.

Proof: Let § be the distance between f and a closest degree d polynomial (so that § > €). We
show that in each iteration of the algorithm, the probability that the check in Step (1b) fails, is at
least 6. Since m = 2/e > 2/§ iterations are performed, the probability that all checks succeed is
(1 —8)%¢ < exp(—2) < 1/3.
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Let g be a degree d polynomial closest to f (so that the distance between f and g is 4).
We fix zg,..., 24, and let h be the unique degree d polynomial such that h(z;) = f(z;) for every
i € {0,...,d}. By definition of §, we have that the probability over a uniformly chosen point zg;
in F that hA(z441) = f(24+1), is at most 1 — §. Now,

L Pr [3 degree d polynomial ¢ s.t. Vi € {0,...,d}, q(z;) = f(z;)] (7)
05+ Ld+1
< max Pr[a degree d poly that agrees with f on zy,...,z4, agrees on 411 |(8)
Z05--3Td Td+1
< 1-6 9)

and so the probability that such a polynomial g does not exist is at least ¢ as claimed. W

4.1.3 Testing Other Algebraic Properties

Functional Equations Rubinfeld [Rub99] studies properties of functions f : X — Y that can
be characterized by (quantified) functional equations of the form: Vz,y € X, F[f(z), f(y), f(z +
y), f(z — y)] = 0. For example, linearity falls into this framework since it can be characterized by
Vm,yEX, f($+y)_f(x)_f(y) =0.

Such a characterization is said to be robust [RS96] if whenever the functional equation holds for
f for most x,y, there exists a function g that has the property and is close to f. This implies that
the property can be tested by verifying that the functional equation holds on a sample of uniformly
selected pairs z, y.

Rubinfeld shows several sufficient conditions for robustness. In particular, functional equations
of the (additive) form Vz,y, f(z+y) = G[f(x), f(y)] are robust, where many trigonometric functions
can be characterized by such equations. d’Alembert’s equation: Vz,y, f(z +vy) + f(z —y) =
2f(z)f(y) is also robust, and so are several variants of it. Rubinfeld also provides necessary
conditions for robustness (that have a combinatorial form).

Group Operations Let G be a finite set. Let o be an operation on pairs of elements in G,
so that for every z,y € G, z oy € G. The operation o is associative, if for every z,y,z € G,
zo(yoz) = (xoy)oz An identity element with respect to o, is an element e € G such that for
every £ € G, zoe = z. An inverse of an element z € G, is an element z’ € G such that z oz’ = e.
The operation o is a group operation if it is associative, has a unique identity element with
respect to o, and every element has an inverse under o. Ergun et. al. [EKK 98] describe an
algorithm having complexity O(|G|/e) for testing whether o is a group operation, given access to
the value of x o y on pairs of elements of its choice under the assumption that the operation o is
cancelative.!'. This assumption can be removed at a further multiplicative cost of O(v/G).

4.2 Testing Regular Languages

In this subsection we sketch the result of Alon, Krivelevich, Newman, and Szegedy [AKNS99],
showing that for every regular language L C {0,1}*, there exists a testing algorithm for L. Namely,
the algorithm accepts every word w € L, and rejects with probability at least 2/3 every word
w that differs on more than € - |w| bits from any w’ € L. The running time of the algorithm is
O(e™1), that is, independent of the length n of w. (The running time is dependent on the size of

Y An operation o is cancelative if ao ¢ =bo ¢ implies a = b, and a0 b = a o ¢ implies b = ¢
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the (smallest) finite automaton accepting M, but this size is a fixed constant with respect to n).
Recently, Newman [New00] extended this result and gave an algorithm having query complexity
poly(1/e€) for testing whether a word w is accepted by a given constant-width branching program.
We note that Alon et. al. also show that a very simple context free language (of all strings of the
form vv®u, where vf denotes the reversal of v), cannot be tested using o(v/N) queries.

We start by recalling some definitions.

Definition 4.2.1 A deterministic finite automaton (DFA) M over the alphabet {0,1} is defined by
a set of states Q = {qo,---,qm—1}, a subset F C Q of accepting states, and a transition function
0:Qx{0,1} — Q. The state qo is called the initial state. The transition function ¢ is extended to be
defined on {0,1}* in the following recursive manner: For every g € Q, u € {0,1}*, and o € {0,1},
d(q,uc) = 6(0(q,u), o), where §(q, \) = q (A denoting the empty string).

We say that M accepts a word w € {0,1}*, if §(qo, w) € F (otherwise it rejects it).

We shall use the definition of regular languages that is based on DFA.

Definition 4.2.2 A language L C {0,1}* is said to be regular if there exists a DFA M such that
M accepts all words w € L, and no other words.

We thus assume that a regular language L is given by providing the (smallest) DFA M that
accepts it. Given a DFA M, it induces a directed graph G(M) = (V, E) in a straightforward manner:
V=0Q,and E = {(g;,¢;) : Jo € {0,1}, 6(gs,0) = ¢;}. We shall refer to the vertices of G(M) as
states.

Given a word w € {0,1}", we first assume that the language L contains words of length n (or
otherwise w can be directly rejected). Let u be a sub-word of w that starts at position i. That
is w = v'uu" where |u/| = i. We say that u is feasible with respect to the DFA M starting from
position i if there exists a state ¢ such that ¢ can be reached in G(M) from ¢ in exactly 7 — 1 steps
and there is some path in G(M) from ¢’ = d(g,w) to an accepting state. When the index 7 is clear
from the context we just say that u feasible. It is possible to verify whether u is feasible, in time
that depends only on the size of M. Clearly, if a word w contains a sub-word u that is not feasible,
then w ¢ L. The algorithm tries to find evidence to w not belonging to L in the form of infeasible
sub-words.

Following Alon et. al. [AKNS99], we describe a special case of regular languages and show that
for these languages, every word that is e-far from belonging to the language, contains many short
infeasible sub-words. Hence, an algorithm that simply samples such sub-words and checks whether
they are feasible, will, with high probability, detect that a word w is e-far from belonging to the
language. The analysis of Alon et. al. reduces the general case to this special case. (For further
details on the general case see [AKNS99].)

We make the following assumptions concerning the DFA M that accepts the language L. First,
M contains a single accepting state, denoted gacc. Second, the set of states Q of M can be partitioned
into to subsets C and D such that:

1. The subset C contains both gy and gacc.-

2. The subgraph of G(M) induced by C is strongly connected. We denote this subgraph by
G(C).
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3. There are no edges in G(M) going from states in D to states in C (though there may be edges
going in the other direction).

We further assume for simplicity that the greatest common divisor (GCD) of cycle lengths in G(C)
is 1. This implies that there exists a constant r = r(G(C)), referred to as the reachability constant
of G(C), such that for every two states z,y in G(M), and for every n > r, there exists a directed
path from z to y in G(C) of length n. The size of r is at most quadratic in |C|. (If the GCD if
cycle lengths is not 1 then a slightly different notion of reachability constant is required).

Lemma 4.2.1 Let M be constrained as described above, and let w be a word of length n that is
e-far from the language L accepted by M (where M accepts some words of length n). Then the

number of infeasible sub-words of w having length at most T is at least T

€
Proof: We shall construct a sequence of disjoint minimal-length infeasible sub-words of w. That is,
each sub-word is infeasible, but each of its prefixes (and in particular its longest prefix) is feasible.
Let the starting position of the j’th sub-word, u;, be s;, then we shall select the sub-words so that
for very j, s; >r+1, and s; + |uj| <n —r.

We constructs these sub-words in a greedy manner. The first sub-word, u;, starts at position
s1 = r + 1, and is the shortest sub-word of w, starting at position s1, that is infeasible. The next
sub-word, ug, starts at position sa = s1 + |u1]|, and is the shortest infeasible sub-word that starts at
position sy. In general, the j’th sub-word starts at position s; = sj_; + |uj—1| and is the shortest
infeasible sub-word that starts at this position. The procedure terminates when position n — r is
reached, and the last sub-word is “cut-off” at this position. Hence, the last sub-word may actually
be feasible. Note that for every position ¢ < n — r, the empty sub-word is always feasible, and so
each infeasible sub-word has length at least 1. Let the number of sub-words obtained be h. Then,

h
wl =n =21+ |ul (10)
7j=1

For each 1 < j < h, let @; be the prefix of u; of length |u;| — 1 (so that %; may be empty)
Recall that by definition of u;, u; is feasible. For every 1 < j < h we fix a state ¢;; € C so that ¢;;
is reachable from ¢p in s; — 1 steps, and so that §(g;;,%;) € C. Note that such a state in C must
exist because %; is feasible, and by our assumption that there are no edges going from D to C. Not
also that because u; is infeasible, d(g;;,u;) € D (so that the last bit in u; “forces” a transition to
D from which there is no way to reach the accepting state in C).

For a given word w' € {0,1}", we denote by dist(w,w’) the number of bits on which w and w’
differ. We shall show that there exists a word w* € L, having length n, such that dist(w,w*) <
(2-h-r)/n. This will give us a lower bound on h. The construction is done inductively, where in
the j’th step we obtain a word w; of length s; — 1 that is feasible from position 1. Based on our
assumptions on M this in particular means that the sequence of states traversed given w; are all
in C. The basic idea is to modify w so that each bit (at the end of an infeasible sub-word u;) that
causes a transition from a state in C to a state in D, is replaced by a bit that causes a transition
to another state in C (from which the accepting state can be reached). In order to “glue” these
modifications together, a little more work is needed. Details follow.

The initial word, w®, is some word of length r that is feasible from position 1. In general, we
construct w’/ based on w’~! in the following manner. Let 17 ~! be the prefix of length sj—1—rof
w1, and let pj = 6(qo, w’ ~1). Since there exists some path of length 7 from pj to gi (where 4;
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was defined above), by modifying (some of) the last r bits of w/~! we can obtain a word z; such
that (qo,2;) = gi;- It j < h we let w! be the concatenation of Zj, Uj, and some bit b; such that
(g0, w’'1;b;) € C (since G(C) is strongly connected, such a bit must exist). In case j = h we let
w* = w” be the concatenation of zy, @y, and some word v of length r so that §(qgo, wh_lﬂjv) = Qaccs
implying that w* € L. By this construction,

1((h—1)-r+2r):hT+T<&

n n

dist(w, w*) <

N]

By our assumption on w, dist(w,w*) > €, and hence h > §*.

Since all the infeasible sub-words, u1,...,us 1, are disjoint, the number of infeasible sub-words
having length greater than 4r/e is less than n/(4r/e) = (en)/(4r). Since the total number of
infeasible sub-words is at least §* — 1, the lemma follows. W

4.3 Testing Monotonicity

A function f : {0,1}" — {0,1} is said to be monotone if f(z) < f(y) for every z < y, where <
denotes the natural partial order among strings (i.e., 21 -+ 2 < y1 - yn if ; < y; for every i and
x; < y; for some 7).

The algorithm for testing monotonicity presented in [GGLT00] whose query complexity and
running time are linear in n and 1/e performs a simple local test: It verifies whether monotonicity
is maintained for randomly chosen pairs of strings that differ exactly on a single bit. More precisely,

Monotonicity Testing Algorithm
On input n, € and oracle access to f : {0,1}" — {0, 1}, repeat the following steps up to n/e times

1. Uniformly select x =z ---z, € {0,1}" and i € {1,...,n}.

2. Obtain the values of f(x) and f(y), where y results from z by flipping the i'! bit (that is,
Y=T1 L1 T Tip1 - Tn)-

3. If z,y, f(x), f(y) demonstrate that f is not monotone then reject.
That is, if either (z<y) A (f(z)> f(y)) or (y<z) A (f(y)> f(z)) then reject.

If all iterations are completed without rejecting then accept.

Thus the algorithm has a similar structure to the linearity testing algorithm. In the analysis of
the algorithm, the probability of observing a local violation of monotonicity is related to the global
measure relevant to testing — the minimum distance of the function to any monotone function. For
further details see [GGL™00].

The definition of monotonicity can be extended in a straightforward manner to monotonicity of
functions f : £¥" — {0, 1} where there is a total order over X. The algorithm can be modified so as
to yield a testing algorithm having query complexity and running time O (mofgm) [GGL*00]. The
notion of monotonicity can be further extended to functions mapping to totally ordered ranges and
the testing algorithm adapted in a corresponding manner. The dependence of the query complexity
and running time of the modified algorithm are logarithmic in |Z| [DGL199]. The spot-checker for
sorting presented in [EKK 198, Sec. 2.1] implies a tester for monotonicity with respect to functions
from any fully ordered domain to any fully ordered range, having query and time complexities that
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are logarithmic in the size of the domain. This corresponds to the special case n = 1 (with general
Y and E).

Another extension of testing monotonicity of boolean functions is testing unateness of functions.
A function f : {0,1}" — {0,1} is said to be unate if for every ¢ € {1,...,n} exactly one of the
following holds: whenever the " bit is flipped from 0 to 1 then the value of f does not decrease; or
whenever the i*® bit is flipped from 1 to 0 then the value of f does not decrease. Thus, unateness
is a more general notion than monotonicity. The algorithm for testing monotonicity of boolean
functions over {0,1}" can be extended to test whether a function is unate or far from any unate
function at an additional cost of a (multiplicative) factor of v/n [GGL'00].

4.4 Testing using Random Examples

As noted in Subsection 1.1.4, one of the initial motivations for the study of property testing is its
relation to Computational Learning Theory. In particular, while in some learning models queries
are allowed, it is usually preferable that the learning algorithm be only provided with random
examples. In analogy, here we shall assume that the testing algorithm is given a labeled sample
{(z%, f(=)),..., (™, f(z™))}, where the z"’s are distributed according to some fixed (possibly
unknown) distribution D over the domain X. Distance between functions is defined as the weight,
according to D of the symmetric distance between the functions. Namely, dist(f,g) = Pryp[f(z) #
g(z)].

In particular we consider the case in which the underlying distribution D is uniform (and so
the distance measure between functions is as in the case where queries are allowed). In some
cases, such as testing monotonicity, allowing only random examples makes the problem essentially
intractable [GGL100]. In other cases, while testing with queries is more efficient, there are still
efficient testing algorithms that use only random examples.

This is in particular true of testing for decision trees over [0,1]¢ (for constant d) [KR98]. That
is, the property is belonging to the class of decisions trees over [0, 1]d having at most s nodes. This
class of functions is defined as follows. Given an input Z = (z1,...,z4), the (binary) decision at
each node of the tree is whether z; > a for some i € {1,...,d} and a € [0,1]. The labels of the
leaves of the decision tree are in {0,1}. We define the size of such a tree to be the number of leaves,
and we let DT? denote the class of decision trees of size at most s over [0,1]%. Thus, every tree
in DT? determines a partition of the domain [0, 1] into at most s axis aligned rectangles, each of
dimension d (the leaves of the tree), where all points belonging to the same rectangle have the same
label.

The testing algorithm for decision trees decides whether to accept or reject a function f by
pairing “nearby” points in the sample, and checking that such pairs have common labels. More
precisely, it will consider a certain collection of d-dimensional grids that partition the domain into
cells. For each grid the algorithm computes the fraction of pairs of points that fall into the same
grid cell and have the same label. If for some grid this fraction is above a certain threshold then it
accepts, otherwise it rejects. The heart of the analysis is a combinatorial argument, which shows
that there exists a (not too large) set of (relatively coarse) d-dimensional grids G, ..., Gy for which
the following holds: for every function f € DTY, there exists a grid G; such that a “significant”
fraction of the cells in G; “fit inside” the leaves of f — that is, there are not too many cells of G;
that intersect a decision boundary of f.

The following theorem is proved in [KR98]. Note that it uses a more relaxed notion of testing:
First the algorithm needs to distinguish between functions in DT? and functions that are far from
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any function in DT%, where s’ > s (though for constant d, s’ is not much larger). Second, it does
not work for every distance parameter €, but only for values bounded away from 1/2 (and so can
be seen as analogous to weak learning).

Theorem 9 For any size s, dimension d and constant C > 1, let s' = §'(s,d, C) def 20+1(24)141/C
Then there exists an algorithm that uses uniformly distributed examples, and with probability at
least 2/3 accepts functions f € DT‘Si and rejects functions that are (% — m)—ﬁzr from any
decision tree in DTg,. The algorithm uses O ((2Cd)2'5d . s%(l‘H/C)) exzamples, and its running time
is at most (2log(2s))? times the number of ezamples used.

A wersion of the algorithm that performs queries, has query complerity and running time
O ((20d)%+1 - log(s) 7).
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